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Abstract Parkinson’s disease (PD) is a common neurological disease in elderly people, and its mor-

bidity and mortality are increasing with the advent of global ageing. The traditional paradigm of

moving from small data to big data in biomedical research is shifting toward big data-based iden-

tification of small actionable alterations. To highlight the use of big data for precision PD medicine,

we review PD big data and informatics for the translation of basic PD research to clinical applica-

tions. We emphasize some key findings in clinically actionable changes, such as susceptibility genetic

variations for PD risk population screening, biomarkers for the diagnosis and stratification of PD

patients, risk factors for PD, and lifestyles for the prevention of PD. The challenges associated with

the collection, storage, and modelling of diverse big data for PD precision medicine and healthcare

are also summarized. Future perspectives on systems modelling and intelligent medicine for PD

monitoring, diagnosis, treatment, and healthcare are discussed in the end.
Introduction

The disease spectrum is changing with the ballooning of elderly

society. The morbidity and mortality of geriatric disease,
including Alzheimer’s disease (AD) and Parkinson’s disease
(PD), are increasing globally [1]. The social burden of the care

of elderly patients is becoming a considerable challenge
because of the lack of sufficient medical and labour resources.
The shortage of medical care resources and the increasing
nces and
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demand of the ageing society will be obstacles to social and
economic development.

PD is one of the most common neurodegenerative diseases

(NDDs) in elderly people. As the most frequent movement dis-
order, PD usually develops very slowly, although it can be
accelerated in the latter years. It can take more than 20 years

to proceed the beginning of neurodegeneration to the appear-
ance of prodromal symptoms en route and to the manifestation
of typical clinical symptoms of PD [2]. A search of the PubMed

database with the term ‘‘Parkinson’s disease [tiab] OR Parkin-
son disease [tiab]” retrieves more than 87,500 records of PD
studies at present. Nonetheless, the causative and molecular
mechanism of PD remains elusive, although it is generally

believed to involve complex interactions between genetics [3],
gut microbiota [4], environmental factors [5], as well as
unhealthy lifestyles [6]. These complex interactions pose great

challenges in gaining a comprehensive understanding of the
holistic mechanism underlying PD pathogenesis and
progression.

Early diagnosis and prevention of PD is preferred over late
clinical treatment of the disease because it can alleviate both
social demand and family burden. Many basic questions

remain to be addressed for PD studies before potential trans-
lation, such as the identification of biomarkers for personal-
ized diagnosis and stratification of patients [7], the discovery
of genetic or environmental factors for the screening of highly

susceptible populations, and the finding of a positive lifestyle
to facilitate personalized healthcare of elderly people [8,9].
To investigate the molecular mechanisms underlying PD and

answer the aforementioned questions, sufficient data and
information about the genotypes and clinical phenotypes of
different subtypes of PD are prerequisite to model the complex

interactions.
In recent decades, we have witnessed a rapid development

of biotechnologies, especially high-throughput sequencing

technologies. Deep sequencing for genetic architecture, gene
expression and epigenetic patterns is becoming less expen-
sive, and the costs of whole-genome sequencing have
decreased from hundreds of million dollars to hundreds of

dollars. Not only has the sequencing data accumulated at
an unprecedented rate, the physiological data collected from
different wearable sensors, the biochemical data detected by

point-of-care tests, and the medical imaging data, including
magnetic resonance imaging (MRI) and positron emission
tomography computed tomography (PET-CT), are also

increasing rapidly. We are now in a big data and digital
medicine era [10,11]. Data from healthy people as well as
preclinical and clinical data from patients together contribute
to the big volume of big PD data for future data-driven

medicine (Figure 1).
The 5 Vs of big data characterization for PD are shown in

Figure 1. The data formats vary and include strings for genetic

data, images for PD brain structures, unstructured or semi-
structured formats with real values, text for electronic health
record (EHR), and time series data for physiological signals.

The digitalization of diverse measurements speeds up the gen-
eration of all kinds of PD data. In particular, wearable sensors
combined with smart phones make it possible to collect data

real-time and obtain dynamic electroencephalograph (EEG).
These would help with the monitoring and diagnosis of PD
patients [12]. The identification of actionable key players and
alterations from the considerably large, noisy and diverse
unstructured big data is the goal for translational informatics
studies. In this review, we mainly discuss the value of PD big
data mining, as well as the challenges and perspectives for

the translation of PD big data to valuable biomarker discovery
and risk factor screening for the future clinical management
and healthcare of PD.

Actionable alterations for PD diagnosis and

prevention

The traditional paradigm of translational research for disease

biomarker or risk factor discovery is often from small data to
big data. It starts from a hypothesis-driven investigation of
the biological functions of few genes, proteins, or other bio-

logical molecules, followed by test of their biological func-
tions and medical roles, moving from cell lines, animal
models, and a small number of patients to big population

validation. Biomarker and/or drug discoveries often fail in
last-phase trials because the features or discoveries obtained
from small data do not always work well in a big and diverse
data space.

Nowadays, the paradigm of biomedical research is shifting
to one involving a move from big data to small data. Identify-
ing small but important actionable alterations from big data

mining and systems biological modelling is becoming possible.
In this section, we discuss the clinically actionable alterations
from four aspects. These include PD susceptibility genetic vari-

ants, biomarkers for PD diagnosis and prognosis, non-genetic
PD risk factors, and lifestyles positively or negatively affecting
PD (Figure 2).

Genetic alterations and susceptibility to PD

Before 1997, when mutations in SNCA, the gene encoding
synuclein alpha, were screened from PD families, PD was rec-

ognized as a sporadic and typical non-genetic disorder [13].
With the increasing number of genetic risks identified, PD is
now considered a disorder ranging from monogenic to poly-

genic inheritance associated with a complex interaction
between genetics, lifestyle, and environmental exposures [14].

Table 1 provides a partial lists of previously reported

genetic risk factors for familial or sporadic PD, covering
single-nucleotide polymorphisms (SNPs), haplotypes, copy
number variations, and other polymorphisms. In our Neu-
rodegenerative Disease Variation Database (NDDVD), more

than 600 variants in 43 genes associated with PD have been
collected [14]. Some of the genetic variants could be driver
mutations, such as mutations in SNCA and LRRK2. LRRK2

is a key player and a common inheritable factor in PD. It
encodes leucine rich repeat kinase 2, a kinase involved in the
signalling pathways related to neuronal death, and could be

a potential therapeutic target for PD [15–17]. While other vari-
ants are mostly passenger but not driver mutations, they can
work together to disrupt the biological system and cause PD

[18]. At present, both the common disease-multiple rare vari-
ant (CDMV) and common disease-common variant (CDCV)
hypotheses could be applied to explain the genetic variants
for PD [19], and the penetrance of each gene variant may be

associated with different populations, ages, genders, ethnici-
ties, etc. Most of the complex cases cannot be reasonably
explained yet. The cumulative effects of the variants on PD



Figure 1 The 5 Vs of PD big data

PD, Parkinson’s disease; EHR, electronic health record; EEG, electroencephalograph.

Figure 2 PD translational informatics: from big data to small alterations
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need to be evaluated on an individual basis. Two challenges
remain for the genetic study of PD. The first is the discovery
and curation of more variants, as each of them may have only
a small effect on the pathogenesis and progression of PD, and

the second is the building of models to accurately predict the
cumulative effect of these genetic variants.
PD-associated non-genetic risk factors

Although genetic factors could be important or even act as the

driving force behind the pathogenesis and progression of PD,
genetic susceptibility can explain only a small portion of PD
cases. Many non-genetic factors are found to increase the risk



Table 1 PD genetic risk factors

Note: Variants were mentioned in different formats in previous publications and renamed in this article per the recommendation of Human

Genome Variation Society (HGVS) for consistency. PD, Parkinson’s disease; SNP, single nucleotide polymorphism; CNV, copy number variation;

fs, frame shift; IVS, intervening sequence.

Variable sites PMID

SNPs in rs10878226 and rs11176013; p.Gly2385Arg

polymorphism & variant; p.Gly2019Ser mutation; p.A419V 

variant; p.Arg1628Pro variant; homozygous p.Ser1647Thr 

genotype (AA)

23115130; 17314670;

23624603; 17050822; 

26234753; 18716801; 

19854095; 18201193; 

19672984; 20629711

rs1989754, rs1721100, ss20399075; rs12720208; rs1721100

polymorphism & GG genotype; AGCCT haplotype, AGGGC

haplotype

15122513; 26070653; 

22342445; 24942208; 

15122513

p.Leu444Pro, p.Asn386Lys, p.Pro428Ser, IVS2+1G>A, 

IVS9+3G>C, IVS10-9_10GT>AG and c.1309delG; 

p.Leu444Pro mutation; p.Asn188Ser, p.Pro201His, 

p.Arg257Gln and p.Ser271Gly

24997549; 20131388; 

22387070

p.Met108Val polymorphism; p.Val158Met polymorphism 9503277; 23466833

TT genotype and T allele of the 1254T>C polymorphism; CC 

haplotype

25817364; 21777657

p.Cys282Tyr SNP 12098643; 16824219

rs947211, rs823128, rs823156, and rs11240572; rs947211 

GG genotype

27174169; 21419001

Heterozygous deletion of exon 2; p.Val56Glu, p.Cys212Tyr, 

deletion of exons 3/5 and 225delA

24729340; 12056932

p.Gly411Ser heterozygotes; Heterozygous mutations 27807026; 16969854

rs7702187 polymorphism; AC and AT haplotype 24706317; 18950607

c.996delC (p.Pro330fs), p.Leu302Pro, and p.Arg496Leu 26169695; 23535491

rs356219 variant; dinucleotide polymorphism (REP1) 22349157; 18404644

rs75932628 variant; p.Arg47His substitution 25936935; 23800361

g.116154T>C (rs28746504), g.117130A>G (rs2188524), 

g.117356C>G (rs34976462), g.117372T>C (rs3213619)

24572589

Deletion/insertion polymorphism 12084438

Intermediate repeat copies 23845100

p.Arg702Trp, p.Gly908Arg, p.Leu1007fs 17174426

CD14 monocyte receptor gene polymorphism 16337421

p.Pro2Leu variant 27626775

Hemizygous 22q11.2 deletions 24018986

TT genotype derived from SNP rs8126696 27546826

non-p.Asn370Ser GBA1 heterozygote mutation 22968580

Allele 'A' of rs797906 SNP 22759478

rs3129882 polymorphism 25319953

Promoter 819 T>C polymorphism 22387064

607C>A (rs1946518) polymorphism 21241672

MAO-A form loci haplotypes 7913737

H1 haplotype 19912324

p.Pro268Ser variant (rs2066842) 23651603

rs2255929 and rs1060826 16823855

IVS5+29T>A variant 21338583

P2X7 receptor gene 1513A>C polymorphism 23648388

p.Ser167Asn heterozygotes 10511432

p.Asp331Tyr mutation 22213678

rs62063857 polymorphism 25168738

Genotype GG and allele G of the promoter SNP rs2652510 24211691

rs1955337 TT genotype 26469904

rs2306604 GG genotype 19925850

A rare heterozygous deletion of entire TH gene 20809526

AA genotype of UCHL1 p.Ser18Tyr SNP 22839974

rs3025039 polymorphism 27481110

rs363324 at -11.5 kb in the hVMAT2 promoter 27137201

Gene

LRRK2

FGF20

GBA

COMT

DMT1

HFE

PARK16

PARK2

PINK1

SEMA5A

SMPD1

SNCA

TREM2

ABCB1

ACE

C9ORF72

CARD15

pCD14

CHCHD2

DGCR8

DYRK1A

GBA1

GLIS1

HLA-DRA

IL-10

IL-18

MAO

MAPT

NOD2

NOS2A

HTRA2

P2X7

PARKIN

PLA2G6

Saitohin

SLC6A3

STK39

TFAM

TH

UCHL1

VEGF

VMAT2
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Table 2 Epidemiological and environmental risk factors for PD

Epidemiological factors PMID Environmental factors PMID

Age, male gender, and maternal age 19188574;

17884509; 

21587290; 

26952697

Duration of exposure to 

levodopa, along with age

23836370

Alpha-synuclein 15670652 Exposure to neuroleptics 10047927

Aromatase cytochrome P450 function 18063054 Hepatitis C virus infection 25608223;

26701382

Circadian rhythm dysfunction 27046648 Organophosphate or carbamate 

poisoning

27781262

Disturbance of the plasmatic rate of 

copper

23868039 Exposure to toxins other than 

pesticides /herbicides

21059511

Low plasma uric acid, selenium, iron,

and zinc levels

18321759; 

17443703; 

24340079

Paraquat exposure 23150532

High serum lipid peroxidation rates 1641180 Farming 11437458

Rosacea 26999031 Exposure to well water 12140099

Cumulative impact of cardiovascular 

comorbidities

26576320 Exposure to trichloroethylene, 

perchloroethylene, and carbon 

tetrachloride 

22083847

Constipation 27444575; 

27234704

Hydrocarbon solvents 10980731

Anxiety 12784267 Multivitamin use 17408493

Depression 25995056; 

24089392

Occupational lead exposure 17185278

Diabetes 19467671; 

17251276

Nigral iron deposition 22288465

Hyperhomocysteinemia 24052451 Welding 11148228

Restless leg syndrome 27078707 Lead exposure 18607207

Non-apnea sleep disorders 28470725 Exposure to polychlorinated 

biphenyls

22906799

Ulcerative colitis 20584104 Exposure to pesticides 11437458

Head injury early in life, head trauma 25603768; 

2057017; 

2140099

Non-occupational pesticide and 

heavy metal exposure

19818671

Gaucher disease  20177787 Copper exposure 14706220

Metabolic syndrome 24955210 Manganese exposure 14706220
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of PD. Table 2 lists the previously identified PD-associated epi-
demiological and environmental factors. Gender and age,

especially the maternal age, are known epidemiological factors
that are significantly associated with PD. However, the associ-
ation is conditional and could vary between individuals, given

the contradictory reports of previous studies [20,21]. Many
psychiatric disorders can also cause PD, such as anxiety and
depression [22–24]. Since the different systems in our body

interact and are linked with each other, many diseases in other
systems, such as cardiovascular disorders and metabolic syn-
drome, can also be comorbidities or complications of PD, as
listed in Table 2, and therefore risk factors for PD. Addition-

ally, environmental exposure to pesticides, chemical solvents,
drugs, and virus infections can affect gene expression and even
the ecological distribution of gut microbiota [25]. The complex
interactions between these factors form a network that

together regulates our biological systems and determines the
course of PD.

More genetic and non-genetic risk factors are expected to

be identified in future screening. However, their contribution
to the pathogenesis of PD is too complex to investigate with-
out big data collected from PD patients and healthy people

as controls. Two complementary approaches are now available
for the screening of PD risk factors or biomarkers. One
approach is the cross-sectional cohort study designed to collect
medical data from a group of people and then to identify sta-

tistically significant features of disease risk factors [26,27],
while the other approach is the longitudinal personalized study
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of individuals to identify patterns associated with disease and
health status among these individuals [28]. The former
approach can identify important features common to a popu-

lation, but a one-size-fits-all threshold may not be accurate for
individuals when applying statistically averaged indicators to
disease diagnosis, like applying the same blood pressure

thresholds to the diagnosis of high hypertension. The latter
approach assesses the individual’s health status based on per-
sonalized reference data, which could be more accurate than

the former approach for a personalized diagnosis, although
more longitudinal data on individuals need to be collected
for the latter approach.

Lifestyle changes for the prevention of Parkinson’s disease

Compared to genetic and environmental factors, lifestyle can
be adjusted more easily for the prevention of disease and

improvement of health. As shown in Table 3, two types of life-
style behaviours have been found to positively and negatively
affect PD. Although smoking is a risk factor for cancer, espe-

cially lung cancer, it could be a preventive factor for PD
[29,30]. In addition, the consumption of coffee, tea, wine,
etc. could be helpful for the prevention of PD as well.

Although the relationships between lifestyles and diseases are
complicated by their interaction with genetic and environmen-
tal factors, negative lifestyle behaviours should be adjusted to
reduce the risk of PD. Particularly, in the era of elderly society,

actively changing lifestyles for the prevention of disease is a
better strategy for healthcare than traditional clinical interven-
tion, which is cost prohibitive and requires more labour and

medical resources. Lifestyle management for high-risk popula-
tions is an efficient way to prevent PD [31].

To unravel relationships between lifestyle and disease pre-

vention, exclusive use of biomedical data is inadequate, and
mining data from social networks will be important. Differ-
ences between ‘‘translational bioinformatics”, ‘‘translational

biomedical informatics”, and ‘‘translational informatics” are
related to the data types analyzed. Bioinformatics generally
focuses on data at the molecular level, such as genome, tran-
Table 3 Positive and negative lifestyles for PD

Positive lifestyle PMID Negative lifestyle PMID

Coffee, tea 29057010; 18607207; 

18398911; 23377703; 

18156141; 14579122; 

11456310

Habitual longer 

sleep duration

16495472

Smoking 29057010; 18607207; 

23377703; 18156141;

14579122; 10230846;

10970060; 14706220;

12956856

Excessive daytime 

sleepiness

16275833

Fresh vegetables,

fruit, and herbs

29081890 High carbohydrates 14579122

Nuts and seeds, 

non-fried fish

29081890 High intake of 

animal fat

10970060

Spices, olive oil, 

and coconut oil

29081890 Dairy products 18607207; 

23377703

Wine 29081890 Working night shifts 16495472
scriptome, proteome, and metabolome data, whereas biomed-
ical informatics also involves cell/tissue imaging data, patient
data, and the public health data. As noted, translational infor-

matics will cover a wider scope of data relative to the other two
methodologies, as it includes not only biomedical data but also
social network data associated with lifestyle information.

Driver player and biomarker discovery for personalized medicine

Biomarkers are a class of indicators that are able to predict

changes in biological systems and provide specific signatures
for disease diagnosis, prognosis, or treatment [7]. In recent dec-
ades, many PD-related biomarkers, including molecules,

images, clinical symptoms, and physiology, have been identi-
fied for monitoring the occurrence and progression of this
complex disease.

As illustrated in Table 4, biological molecules, such as

genes, RNAs, proteins, and metabolites, play important roles
in PD evolution. For example, cerebro-spinal fluid (CSF) a-
synuclein was one of the well-studied proteins implicated in

PD pathogenesis, and its genetic variability was a prognostic
marker for PD, PD with dementia, and dementia with Lewy
bodies [32]. Ritz et al. [33] demonstrated that a-synuclein
genetic variants were associated with the development of faster
motor symptoms in idiopathic PD. In addition, Ballard et al.
[34] reported that CSF a-synuclein had the potential for diag-
nosing PD and related dementias. Mollenhauer et al. [26]

found that CSF a-synuclein was also a useful indicator in
PD patients undergoing dopamine replacement therapy.
Moreover, plasma and skin nerve a-synuclein is valuable in

predicting PD cognitive impairment and idiopathic PD,
respectively [35,36]. Another key player, CSF b-amyloid 1–
42, was a powerful predictor of the progression of cognitive

impairment, dementia, and dopa-resistant gait in PD. For
example, a lower level of CSF b-amyloid 1–42 was common
in advanced PD patients with cognitive decline and could be

used to predict cognitive impairment in newly diagnosed PD
[37]. Alves et al. [38] indicated that the CSF levels of b-
amyloid 1–42 were lower in PD patients with dementia. The
abnormal expression of this protein increased the risk of

dementia development, which was used for the early prognosis
of PD dementia [38]. Moreover, a decrease in b-amyloid 1–42
was also involved in the pathology of dopa-resistant gait in

early PD [39].
In contrast to molecular biomarkers, imaging and clinical

symptoms are often directly used clinically for PD investiga-

tion. With the development of medical imaging techniques,
PET imaging, quantitative EEG, and single photon emission
computed tomography (SPE-CT) have been widely used to
screen key signatures to predict the progression of dementia,

the severity of fatigue, and dopaminergic responsiveness in
PD patients [40–43]. Clinical symptoms, on the other hand,
call attention to an early diagnosis of PD and its associated

phenotypes. For example, episodic anxiety was found to be
more specific for the anxiety subtypes in PD than the persistent
anxiety. Episodic anxiety was a significant factor related to PD

severity and duration [44]. Based on a case-control study,
Pradhan et al. [45] uncovered that characteristics in grip force
modulation, e.g., force and movement quality, were sensitive

measurements in detecting early PD and tracking the clinical
progression of PD patients. A circadian change in core body



Table 4 Literature-reported biomarkers for diagnosis, prognosis, and treatment of PD

Group Item Classification and function PMID

Molecule
SNCA genetic variability Prognosis for PD, PD with 

dementia, and dementia with Lewy 

bodies, and prediction for the 

progression of faster motor 

symptom in idiopathic PD

27091628; 

22615757

α-synuclein Diagnosis and prognosis for PD 

cognitive impairment, dementias, 

and dopamine replacement therapy

20962288; 

29030452; 

28643805; 

25332447

β-amyloid 1-42 Prediction for cognitive impairment, 

dementia, and the progression of 

dopa-resistant gait in PD

26330275; 

24748671; 

28330963; 

20720189

Urate Prediction of the clinical decline in 

PD progression, and a promising 

target for PD disease-modifying 

therapy

19822770; 

18413464

COMT Val158Met and 

BDNF Val66Met variants

Prediction for cognitive impairment 

in PD

28520803

Parkin human gene 

mutations

Prediction for early-onset PD 20558392

VEGF, PlGF, sVEGFR-2, 

and Ang2 expression

Prediction for the angiogenesis in 

PD

26511451

HLF, E2F1, and STAT4
expression

Diagnosis for PD 23284986

IGF-1 expression Diagnosis and risk prediction for PD 21747033

EGF expression Prediction for cognitive impairment

in PD

21520231

PARK2 and PARK8
expression

Diagnosis and risk prediction for PD 26760142

miR-141, miR-214, 

miR-146b-5p, and 

miR-193a-3p

Diagnosis for early onset of PD 26631297

miR-103a-3p, 

miR-30b-5p, and

miR-29a-3p

Prognosis for L-dopa-treated PD 

patients

25596505

CSF tau protein, 

total-tau/Aβ-42

Prediction for neurodegeneration 

severity in PD

22065209

Lipopolysaccharide 

binding protein

Prediction for gastrointestinal 

inflammation in PD

26388718

Apolipoprotein A1 Prediction for the risk of PD 23447138

DJ-1 isoforms Prediction for the late-stage of PD 23233873

CSF Flt3 ligand, 

fractalkine/Aβ(1-42)

Diagnosis for PD and prognosis for 

PD severity and progression

21400565

Dopamine deficiency Prediction for cognitive impairment 

of PD

28520803

Putaminal dopamine 

turnover

Prediction for later motor 

complications in PD

26718573

CSF peptides Diagnosis for PD and prediction for 

the progression of PD

25556233
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Table 4 (continued)

Group Item Classification and function PMID

Image
Fluorodeoxyglucose-PET 

statistical parametric 

mapping

Prediction for the progression of 

dementia in PD

29453242

Dopaminergic and 

cholinergic PET

Prediction for the severity of fatigue 

in PD

26683744

Quantitative EEG Prediction for dementia incidence in 

PD

21633128

Striatal asymmetry index 

by SPECT

Prediction for dopaminergic 

responsiveness in PD patients

21406999

Clinical symptom

and physiology

Episodic anxiety Diagnosis for PD anxiety subtypes 29528763

Grip force modulation Diagnosis for the early PD 25476717

Core body temperature Prediction for the depression in PD 18332645

Dementia Prediction for the survival of PD 

patients

22213411

Brain volume or thickness Prediction for cognitive impairment 

of PD

28520803

Resting tremor Prediction for the probability of 

levodopa-induced dyskinesia in PD

21825240

REM sleep behavior 

disorder

Prediction for cognitive impairment

in PD

17984452

Body sway velocity and Prediction for the falls in PD 25690532

ability

Electrophysiologic 

subthalamic nucleus length

Prediction for the outcome of deep 

brain stimulation in PD

28982098

Connectivity between 

stimulation site and 

subthalamic nucleus

Prediction for the outcome of deep 

brain stimulation in PD

28586141

Retinal changes Diagnosis for early PD 27586255

Orthostatic hypotension Prediction for motor decline in early 

PD

27639815

Sympathetic skin response 

and heart rate variability

Diagnosis for autonomic disorders 

in PD patients

28471954

Non-motor symptom 

burden and somatic 

affective symptoms

Prediction for the fatigue in PD 26683744

Others
Caffeine and its 

metabolites

Diagnosis for early PD 29298852

Sleep Prediction for the progression of 

early PD

27164658

25-hydroxy-vitamin D3 Prediction for the risk of PD 24068787

Midbrain iron content Prediction for PD status 18172063

8-hydroxydeoxyguanosine Prediction for PD stages and 

progression

15781836

Note: Molecule types includes gene, RNA, protein, and metabolite; CSF, cerebrospinal fluid; PET, positron emission tomography; EEG,

electroencephalograph; SPECT, single photon emission computed tomography; REM, rapid eye movement.
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temperature, i.e., rectal temperature, was detected in PD
patients with depression, suggesting its possibility in predicting

PD depression [46]. Typical clinical symptoms could be evalu-
ated for PD prognosis tracking in addition to diagnosis. Willis
et al. [47] showed that dementia was a prevalent trait in PD
patients, which strongly affected the survival of PD patients
and could increase the chance of mortality. In addition to clin-

ical symptoms, some physiological features were connected
with the functional alterations observed in PD. For example,
the length of the electrophysiologic subthalamic nucleus and
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the connectivity between the stimulation site and subthalamic
nucleus could predict the outcome of deep brain stimulation in
PD [48,49]. Brain volume or thickness could also be used as a

parameter to recognize cognitive impairment during PD devel-
opment [50].

With the coming age of big data and digitalized medicine,

more novel and important functional components in our bio-
logical systems will be discovered, such as how gut flora dys-
biosis can affect brain function and how it is associated with

PD through the microbiota-gut-brain axis. Therefore gut flora
dysbiosis can be used as a new type of biomarker for PD [51].

Data integration and modelling for translational

informatics of PD

PD biomedical data standardization and integration

Big PD biomedical data are diverse and could include the fol-

lowing data types. (1) The first one is different omics data, such
as genomic data on genetic structure, variant susceptibility to
PD, and the transcriptomic, as well as proteomic and metabo-

lomic data characterization of the abnormal states of PD. (2)
The second is neuroimaging data, such as MRI for brain func-
tional structure, as well as PET-CT and SPE-CT for altered

brain structures in PD patients. (3) The third type of data
are physiological signals, including EEG and electrocardiogra-
phy (ECG) to reflect PD patients’ cognitive impairment or
other clinical features [52,53]. (4) The fourth type of data are

information from EHR or electronic medical records (EMR).
These include patient’s demographic data, results of clinical
laboratory tests, medical history, use of specific medications,

and other clinical phenotype data. (5) Finally, the last type
of data are epidemiological data on lifestyle, environment, or
social network information.

These big PD biomedical data could be static or dynamic
and can reflect the development of PD from early prodromal
symptoms to the latter clinical stages. As presented in Figure 3,

big PD data have several characteristics that differ from those
of other types of big data such as business, market, and social
network data. Notably, data privacy is important for patients
ethically, and the data need to be transformed before they can
Figure 3 Diverse data type
be accessed by users and researchers. The heterogeneity of PD
is caused by the interaction between multiple pathogenic fac-
tors, such as genetics, lifestyle, and environment. In addition,

these data could be collected from different platforms and
stages of different patients. The PD data listed above could
be collected at different levels ranging from molecular to cellu-

lar, tissue, or individual levels at different time points. These
properties make standardization and integration very challeng-
ing. The challenges for PD data integration could include the

following three aspects.

Challenge 1: diversity, standardization, and sharing of big PD
biomedical data

The genesis and progression of PD is caused by the complex
interactions between genetics, environmental factors and life-
styles and the PD phenotypes are therefore very diverse and

heterogeneous [54,55]. To understand mechanism of PD at
the systems biological level, the different omics data need to
be integrated and standardized for sharing and modelling.
For the sharing of big PD biomedical data, two issues need

to be considered. The first issue is data privacy preservation
[56-59]. Although many algorithms have been developed for
the protection of patient’s genome information, further efforts

are needed to preserve the patients’ information at the pheno-
type and family levels [60-63]. The second issue is the develop-
ment of ontology for the standardization of PD data, which

could classify and standardize the PD specific concepts and
synonyms and promote the sharing and integration of big
biomedical data on PD.

Challenge 2: databases for big PD biomedical data and
knowledge

A database and a knowledge base for diverse PD data are

needed for the modelling and understanding of the pathogen-
esis and progression of PD. Table 5 lists the existing PD data-
bases. PDGene is a comprehensive online resource of potential
risk loci in PD [64]. After data from all the published articles

and genome-wide association studies (GWAS) were extracted,
deep meta-analyses were performed on millions of polymor-
phisms from different GWAS datasets or PD-related studies.

A total of 11 loci, e.g., GBA, LRRK2, MAPT, PARK16, and
s and big data challenges



Table 5 The currently-available PD databases

Name Description URL PMID

PDGene A comprehensive database 

for collection and 

meta-analysis of   

PD-related risk loci from 

published papers

http://www.pdgene.org/ 22438815

ParkDB A queryable database of 

gene expression in PD

http://www2.cancer.ucl.ac.uk/

Parkinson_Db2/

21593080

PDmutDB A comprehensive database 

of genetic mutations 

associated with PD 

development

http://www.molgen.ua.ac.be/

PDmutDB/

22581678

PDbase A comprehensive database 

of PD-related genes, genetic 

variations, and other 

functional components for 

PD causation understanding

http://bioportal.kobic.re.kr/P

Dbase/

19958497

PPMI An international and 

multi-center study,

Parkinson's Progression 

Markers Initiative

http://www.ppmi-info.org/ 21930184
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SNCA, were significant genome-wide for PD risk evaluation.
ParkDB is another database aimed at recording key molecular
events during PD development [65]. It contains a large number

of re-analysed and annotated microarray datasets, which are
advantageous for screening expression signatures associated
with PD under different biological backgrounds. PDmutDB

is a PD mutation database that comprises information on all
known mutations in the genes associated with PD development
[66]. Through expressed sequenced tags (ESTs) on substantia
nigra tissues from healthy and PD populations, PDbase was

built to capture PD-related genes and genetic variations [67].
In addition, the database integrated several valuable resources
for PD annotation and provides information such as mito-

chondrion proteins, microRNA-gene regulations, structural
variations in PD-related genes, and pathways/networks within
protein–protein interactions to better understand the causes of
Figure 4 Big data model
PD. An international and multi-centre study, PPMI, also col-
lected diverse data from PD patients for future biomarker dis-
covery and personalized PD therapy [68]. Although many

databases have been established, with more digital data from
PD patients and related resources available, we could collect
big PD biomedical data, especially PD-associated phenotype

data, to conduct studies to obtain a holistic description and
mechanism of PD.

Challenge 3: cross-level and dynamic integration of PD

biomedical data

Many levels exist between genotype and PD clinical symptom
phenotype, such as the molecular phenotype and cellular phe-

notype, and physiological signals could also be a type of phe-
notype. Therefore, the relationship between genotype and a
patient’s clinical phenotype is very complex. At present, most
for precision prediction



Table 6 Biological pathways associated with PD pathogenesis and

molecular mechanisms

Pathway Function PMID

Ubiquitin-proteasomal 
pathway

Mutations of mUchL1 and parkin proteins in 

this pathway could cause familial PD
11881748

Glia pathway This pathway protects neurons and provides 

novel therapeutic strategies for PD treatment
16399902

pRb/E2F cell-cycle 
pathway This pathway could medicate cell death in PD 17360686

JNK pathway

This pathway leads to the pathogenesis of 

familial PD by linking the malfunction of 

mutations in DJ-1, PARKIN, PINK1, and 

alpha-SYNUCLEIN to apoptosis

18399358

MAPK signaling
Mutations in LRRK2 causes G2019S 

substitution, which could affect MAPK 

signaling cascades and contribute to PD

17385669

Calpain/cdk5/p25 
pathway

p25/p35 immunoreactivity ratio is increased 

and cdk5/p25 pathway is involved in the 

process of neuronal loss in PD patients

17977053

PI3K/Akt pathway Caffeine prevents SH-SY5Y cells from cell 

death by activating this pathway
18201823

Akt/Nrf2/glutathione 
pathway

DBL prevents the toxicity of PD-related 

neurotoxin 6-hydroxydopamine via this 

pathway 

23959789

Estrogen receptor 
beta-PI3K/Akt
pathway

This pathway is associated with the 

cytoprotective effects of tocotrienol in PD
24768803

Akt/Nrf2 and 
Akt/CREB pathway

In in vitro and in vivo PD models,

11-dehydrosinulariolide prevents 

6 OHDA induced damage on SH SY5Y cell 

via this pathway

27763504

Autophagy-lysosome 
pathway

Alpha-synuclein aggregation or mutation in 

ATP13A2 results in dysfunction of this 

pathway, and impairment of this pathway is 

associated with PD development

18187492

Wnt signaling 
pathway

Key regulators in this pathway, e.g., DVL1-3, 

could interact with LRRK2 and play 
19625296

pathogenic roles in PD

17β-estradiol signaling
This pathway interacts with multiple signaling 

molecules and mediates the neuroprotective 

effects of sex steroids in PD

22387674

Dopaminergic 
neurotransmission 
pathway

Inhibiting COMT in this pathway could 

prevent the metabolism of dopamine, which is 

helpful for PD drug development

22622642

Axonal guidance 
signaling

Polymorphism of genes in this pathway

contributed to PD pathogenesis
17571925

RAGE/TNF-alpha
pathway

S100B is over-expressed in post-mortem 

substantia nigra of PD patients, and ablation of 

S100B prevents MPTP-induced toxicity via 

this pathway

23169921

PINK1/parkin 
pathway

AF-6 is involved in PD pathogenesis by 

modulating this pathway
23393160

Daf-2/Daf-16 insulin 
like signaling pathway

Ida-1 in this pathway is a common modulator 

between PD and diabetes
25469508

p53 pathway
The downregulation of PCNA mediates 

1-methyl-4-phenylpyridinium-induced 

oxidative damage in PD via this pathway

26677001

Phosphatidylcholine 
biosynthesis I and 
PPAR signaling, 
mTOR and CD28 
signaling pathways

These paired pathways could accurately 

classify PD and healthy samples, and hold the 

potential as biomarkers for PD diagnosis and 

treatment

27146810

Note: DBL, 3,4-dihydroxybenzalacetone; MPTP, 1-methyl-4-phenyl-

1,2,4,6,-tetrahydropyridine; 6-OHDA, 6-hydroxydopamine; MPP, 1-

methyl-4-phenylpyridinium.
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of the PD data and information at all these levels are isolated
from each other and need to be interlinked and integrated. In
the time dimension, these data can be ordered based on

pathogenesis and progression. Traditionally, data at these dif-
ferent levels are often statistically averaged and reasoned for
correlation studies; however, these methods often average the

patterns in subgroups of the studied samples. Paired data for
all the levels between the genotype and disease phenotype will
be essential to the precision modelling of the disease systems,

and if the paired data are collected in a time series, then the
PD progression and trajectory could be modelled. The Can-
cer Genome Atlas (TCGA) for cancer research is a typical
paradigm that could be applied to PD data integration in

the future to obtain cross-level and dynamic integration of
PD data.

Big PD data mining and modelling for translational application

As shown in Figure 4, when small data are used for PD mod-
elling, some complex patterns cannot be represented in this

small data space; thus, when a model trained from a small data
set is applied to a big data space, the model will unlikely be
successful. With big PD biomedical data available, we will

have the chance to use these data to model and mine the
knowledge and patterns hidden in these big data, and some
questions that could not be answered before could now be
investigated. The following three modelling challenges are

expected when translating big PD biomedical data to clinical
application.

Challenge 4: holistic and systems-level modelling and
mechanism-based key player identification

Without sufficient data for modelling PD pathogenesis and
progression, we can only partly address the complex PD ‘‘ele-

phant”. Holistic and systems-level characterization of the PD
mechanism is necessary to understand its complexity and
heterogeneity. The systems-level identification of key players,

such as biomarkers for classifying PD and risk factors for
high-risk population screening, will be a challenge for future
PD translational informatics. Compared to traditional

disease-gene recognition, systems-level discovery of genes,
pathways, modules or sub-networks that drive systems to
change from a healthy to a disease state will be the objectives
of big data-based modelling.

Table 6 lists previously reported PD-associated pathways,
as based on our experience in cancer research, it is often easier
to find common pathways for complex diseases than to find

common disease genes [69,70].

Challenge 5: modelling of PD dynamic progression and systems-

level control of PD progression

Since complex PD is the product of a dynamic interaction
between the patient’s genetics, environment and lifestyle, the
cause and course of PD are dynamically changed. With

dynamic information from the human body, such as routine
blood testing and the real-time collection of physiological sig-
nals [12], modelling of the dynamic evolution of PD is possible,

and the identification of the key hubs and connections in these
dynamic systems will be a challenge but opportunity for
rational drug design or lifestyle changes to control the develop-

ment of PD [71,72].
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Challenge 6: general rule discovery for basic research and

prevention of PD

Big data make artificial intelligence, including deep learning
and reinforcement learning, applicable to the analysis of big
data and PD studies [73,74]. Furthermore, knowledge of PD

is accumulating and could be used to improve predictions
[75]. However, the discovery of general rules for the molecular
mechanism of disease is still very necessary to study complex

systems. Our previous study discovered the rich-get-richer rule
for a new gene’s functional evolution [76], and for disease pro-
gression and prevention, the discovery of general rules from
big biomedical data will be a complementary objective to per-

sonalized and precision PD medicine.
We face two additional challenges in the translational appli-

cation of findings from big data to PD clinical management

and healthcare.

Challenge 7: screening of populations at high risk of PD

Integrating genetic susceptibility and environmental and life-

style factors together to build a systems model for the precision
Figure 5 From personalized data to
screening of populations at high risk for PD will be essential
for the early prevention and intervention of PD.

Challenge 8: PD sub-population searching for personalized
treatments

PD patients can be treated with levodopa or other dopamine
replacement drugs, and surgical approaches, including pallido-

tomy and thalamotomy, could be alternatives. The responses
and side effects of these therapies can be personalized to each
patient [77,78]. Big data could also provide a direct search and

mapping method for the clinical decision of which treatment to
use, as shown in Figure 4. However, identifying suitable sub-
populations for efficient treatments is always a challenge for

clinical application.

Perspectives on future translational PD informatics

The driving forces for the translational informatics study of
PD come from technological, scientific and social aspects.
Technically, genome variants, gene expression and epigenetic
systems healthcare of PD patients
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alterations, etc. could be measured by advanced next-
generation sequencing technologies. Clinical laboratory tests
may be easily performed by point-of-care tests in a direct-to-

consumer mode. Physiological signals could be detected in real
time by the combination of wearable sensors, smart phones
and cloud computing, and everyone, including healthy people,

family members, nurses, medical doctors and data analysts,
could be linked via the internet in the cloud to manage the data
in a crowdsourcing model.

Scientifically, the interactions between genetics, lifestyle and
physiological signals as well as the microbiota and the environ-
ment are deepening our knowledge and understanding of PD
(Figure 5). Systems biology and evolutionary medicine-level

modelling of these interactions are becoming the paradigm
to investigate complex diseases such as cancer and NDDs,
including PD. Recent genetic editing methods, findings regard-

ing brain-gut connections and studies on the diverse molecular
mechanisms of PD pathogenesis all accelerate basic PD
research discoveries for clinical applications.

Regarding the social and economic aspects, the ageing soci-
ety and the considerable cost of the clinical management of PD
urgently demand improved prevention and prediction of PD,

and all governments are promoting the market of healthcare,
especially for senile diseases such as AD and PD. By address-
ing the three challenges to PD data integration described
above, translational informatics for PD studies will have con-

siderable opportunities for scientific discovery and healthcare
applications.
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