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Abstract: Organ and tissue shortage are known as a crucially important public health problem
as unfortunately a small percentage of patients receive transplants. In the context of emerging
regenerative medicine, researchers are trying to regenerate and replace different organs and tissues
such as the liver, heart, skin, and kidney. Liver tissue engineering (TE) enables us to reproduce and
restore liver functions, fully or partially, which could be used in the treatment of acute or chronic liver
disorders and/or generate an appropriate functional organ which can be transplanted or employed
as an extracorporeal device. In this regard, a variety of techniques (e.g., fabrication technologies,
cell-based technologies, microfluidic systems and, extracorporeal liver devices) could be applied in
tissue engineering in liver regenerative medicine. Common TE techniques are based on allocating
stem cell-derived hepatocyte-like cells or primary hepatocytes within a three-dimensional structure
which leads to the improvement of their survival rate and functional phenotype. Taken together,
new findings indicated that developing liver tissue engineering-based techniques could pave the way
for better treatment of liver-related disorders. Herein, we summarized novel technologies used in
liver regenerative medicine and their future applications in clinical settings.
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1. Introduction

The liver plays a crucial role in different physiological functions such as protein, carbohydrate,
and lipid metabolism, detoxification of xenobiotics, storage of glycogen and vital biomolecules,
production and excretion of bile and cholesterol compounds, synthesis of albumin and clotting factors,
ammonia detoxification and more [1]. In this regard, failure of liver functions may lead to a wide range
of liver dysfunction conditions with different levels of severity, morbidity or mortality [2]. According
to world health organization (WHO) reports, liver diseases are the 12th cause of mortality globally and
their incidence and prevalence are increasing. Among liver disorders, nonalcoholic steatohepatitis
(NASH) and cirrhosis are common [3].

Hepatocytes are liver parenchymal cells, while cholangiocytes, endothelial cells, tissue-resident
macrophages (Kupffer cells), and stellate cells are known as the liver non-parenchymal cells. An active,
efficient interaction between hepatocytes and the surrounding cells and/or microenvironment is
necessary for their maintenance and proper function [4]. A healthy liver shows excellent regenerative
capacity in response to injury. Such ability can be significantly impaired when the liver faces a severe
acute injury or an extreme chronic disorder which is commonly associated with progressive liver
inflammation and fibrosis [5]. Orthotopic liver transplantation (OLT) is the “gold standard” and the
only established treatment for end-stage liver diseases and acute liver failure. The OLT faces several
limitations and obstacles including the shortage of donated organs, post-operational complications
and high hospitalization costs as well as the need for a life-long immunosuppressive therapy [6,7].
Therefore, due to the aforementioned limitations, alternative therapeutic approaches are necessary
to bridge or replace affected organ. Cell-based therapy is a novel therapeutic approach that was
introduced several years ago for treatment of different hepatic pathologies [8–11], and inherited
metabolic and congenital liver disorders [12,13].

Infusion of mature isolated primary hepatocytes is not the only promising strategy for liver
regeneration. Liver regenerative medicine is an interdisciplinary field that aims to develop novel
platforms for disease modeling and therapeutic approaches for liver diseases in order to regenerate,
repair or replace damaged organs [14]. Recently, by using microfabrication and nanotechnology,
novel in vitro modeling of liver micro-tissues was described; it resulted in better understanding of
cellular and molecular mechanisms of liver regeneration [15].

TE and regenerative medicine are growing side-by-side in medical discipline, deeply interconnected
by progressing research on stem cell biology, gene editing technology, synthesis of bio-functional scaffolds,
nanotechnology and intelligent 3-dimensional (3D) bio-printing devices [16]. Typically, in TE, combination
of live cells and defined matrices with bioactive factors usually form implantable constructs with
physiological functions [16].

In this review, we summarized and highlighted various applications of TE in liver regeneration.
Then we focused on different scaffolds which are used in TE and explained different approaches
in liver TE. Finally, extracorporeal liver devices and in vitro and in vivo models used in liver TE
were discussed.

2. Application of Tissue Engineering in Liver Disease

To restore liver functions using a functional implantable liver tissue, the following three
components are essential: i) bio-compatible scaffolds, ii) functional cells which could be derived
from adult tissues or from pluripotent stem cells [17,18] and iii) standardized growth factors and
active bio-molecules.

The progress in implantable engineered hepatic tissues could be a promising strategy to overcome
the current limitations of cell-based approaches. Limited cellular engraftment and short-term survival
of implanted cells are the major challenges which are yet to be achieved [19]. Diverse methodologies
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can be employed to produce hepatic micro-tissues, such as cell encapsulation, 3D printing, microfluidic
systems and decellularization/recellularization approaches [20]. A schematic representation of liver
diseases, and possible application of technologies used in liver tissue engineering presented in Figure 1.
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Figure 1. Possible applications of TE in treatment of liver diseases. (a) Different diseases that result in
liver failure; the only approved approach for end stage diseases is liver transplantation. (b) Different
engineering approaches are growing to overcome the limitations in treatment of organ failure,
drug screening, and disease modeling. (c) The possible applications which are promising using tissue
engineering approaches. NASH: Nonalcoholic steatohepatitis; OLT: orthotopic liver transplantation.

The progress in implantable engineered hepatic tissues could be a promising strategy to overcome
the current limitations of cell-based approaches.
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3. Different Scaffolds Applied in Liver TE

Biocompatibility was the significant feature of the first-generation biomaterials; however,
second-generation ones are characterized by their bio-interactivity. While the first-generation
biomaterials were passive, second generation components were specifically designed to induce
tissue regeneration. In order to improve the mechanical features of polymers, to use their great
properties and to enhance tissue interaction, ceramics and polymer composites have been proposed [21].
Nowadays, third-generation biomaterials are bio-responsive and capable to activate specific genes
involved in cell differentiation, function and proliferation [22].

3.1. Physical and Biochemical Properties of Scaffolds Used in Liver TE

Safety and biocompatibility are principal features of crucial importance for biosynthetic liver
scaffolds. Cells embedded in bio-artificial scaffolds should be capable to replicate, dig for extra space
or even generate new extra cellular matrix (ECM) [23,24]. Thus, an ideal scaffold should mimic
the physiologic properties of native liver ECM. However, the development of a scaffold, capable to
support cell functions depends on parameters such as the surface features, underlying material, and
characteristics of the selected cell line [23]. Biocompatibility of scaffold permits concurrent generation of
new tissues along with matrix degradation [25]. The biological characteristics of the scaffolds influence
their interactions with target organs and tissues. Furthermore, an optimized scaffold should circumvent
immune system for incorporated cells. The immune-inert biomaterials with characteristic immune
regulatory features (i.e., reduced activity of NK cells as well as B and T cells-mediated immunity) have
been recently proposed [25].

The majority of scaffolds are typically made of hybrid materials, bio-ceramics and polymers,
whether synthetic or natural [26].

In order to achieve better cell attachment and make the surface more similar to the in vivo
conditions, 3D culture systems containing ECM proteins have been proposed.

While hydrogels such as the collagen sandwich or Matrigel consist of almost exclusive ECM
proteins, they are often integrated directly into the scaffold matrix in scaffold-based 3D cultivation
systems, or the scaffold is subsequently coated with them. In addition to the liver-specific ECM
proteins, fibronectin, collagen type I and gelatin are often used [27,28]. Since gelatin is a byproduct of
collagen hydrolysis, it contains the same RGD peptides. Therefore, it is also often used as a component
of the scaffold matrix [29].

Pre-incubation of the scaffold in serum-containing medium, may enhance cell adherence. In order
to achieve optimal cell adherence, a relatively long pre-incubation period of up to 10 days, is sometimes
required [30].

In general, scaffold-based 3D cultivation systems which are commonly used for the cultivation of
liver cells, can be divided into two groups. The first group includes porous scaffold materials such as
Cryogels®, porous natural products, or scaffolds made using electrospinning or a 3D printer [31–33].
In the second group, the live cells are completely enclosed by the scaffold matrix [32]. Among the 3D
culture methods, many systems use hepatocytes on natural sponges or other natural products like silk
fibroin protein [1,30,32,34].
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3.2. Elasticity, Porosity, and Other Physical Properties of Scaffolds in Liver TE

The optimum stiffness and elasticity of a healthy human liver have been estimated between
400 and 600 Pa [35,36]. The liver lobules have no basal membrane and relatively little amount of
extracellular matrix. Together with the numerous fenestrations and gaps within sinusoidal endothelial
cells, this structure allows rapid bidirectional exchange of macromolecules between plasma and
hepatocytes [37]. For a bio-artificial scaffold, at least a porosity of 95% is required to allow the exchange
of nutrients and wastes products. Additionally, a large surface/volume ratio is necessary to promote
hepatocyte attachment and maintenance [28]. The optimal pore size is required to maintain the polarity
of the cells. It seems that cell-cell interactions are also required, which suggests rather larger pores.
In a study carried out on rat hepatocytes, it has been shown that the pore sizes of 10 µm or 80 µm
lead to an improved hepatic function. Moreover, an increase in metabolic function with the 80 µm
pores was observed especially at a high cell concentration, which indicates that an interaction among
the cells [38]. In order to provide a sufficient supply of nutrients and to allow facilitated exchange
among the cells, the scaffold material should be highly permeable. Since there is no blood supply
in vitro, it is necessary to reduce the number of cells particularly in static culture condition compared
to the in vivo conditions. However, it should be considered that a reduction in the cell concentration
also reduces the possibility of cell-cell interactions, which is accompanied by a reduced function of
the cultivation system. In order to ensure that the cells can efficiently migrate through the scaffold,
it is also necessary that the pores should be interconnected. The stiffness of the scaffold also has an
influence on the metabolic activity of the cells. In a recent study, polydimethylsiloxane (PDMS) was
used to generate different levels of rigidity, resulting in cells with superior metabolic activity when
cultured on a substrate with approximate 2 kPa stiffness compared to 50 kPa on polystyrene substrate,
where the stiffness can be approximately 3 GPa [39].

Synthetic hydrogels can be degradable or non-degradable. Compared to natural ones, the advantages
of synthetic hydrogels increased the potential application of synthetic hydrogels in TE approaches.
These hydrogels are reproducible, less immunogenic, mechanically tougher. But these hydrogels are not
popular for liver tissue engineering in clinical application [40].

Table 1 shows some common 3D models which employ scaffold or hydrogel type and their
advantages and disadvantages considering the culture method.
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Table 1. Common types materials used in 3D cultures, and their advantages and disadvantages.

Type of 3D Culture Cultivation Technique/Coating
Material Production Technique Advantages Disadvantages Ref.

Hydrogel based
Scaffold

Collagen Sandwich, Collagen
Gel/Isolated from rat tails

Gel formation by crosslinking
of the water-soaked
collagen–fibers

a) Containing collagen type I
b) Maintenance of hepatocytes
polarity including transporter
activity

a) Reduced exchange of nutrients
and waste products between cells
and medium
b) Dead cells were not removed
within the matrix
C) Disruption of living cells by
proteases released from dead cells

[41]

Matrigel/ECM proteins extracted
from mice
Englebreth-Holm-Swarm tumors

Cold Matrigel is mixed with
medium and plated between 2
and 6 ◦C as fluid solution.
Temperatures ≥ 10 ◦C results in
a solid gel formation

a) Cell polarity preserved
b) Containing various ECM
proteins and growth factors
c) Promotion of cell
differentiation

a) The same disadvantages as
described for collagen
b) The components of the Matrigel
are not well defined

[42,43]

Scaffold

Decellularized Human Liver as a
Natural Scaffold

Tissue was decellularized,
remaining ECM was used as
scaffold for culture

a) Perfectly represents the
structural features as well as the
biochemical components of the
human liver matrix

a) Elaborate production
b) Limited availability of donor
tissue

[44]

Cryogel/PHEMA,
Bis-Acrylamide, Alginate,
Gelatin, Collagen

Monomers are frozen in
aqueous solution with
crosslinking agents. Ice crystals
form, which remains after
polymerization and thawing as
pores in the scaffold matrix

a) Simple preparation
b) Create various pore sizes and
stiffness

a) Difficult standardization of the
manufacturing process
b) Variation in scaffold parameters
possible only in certain range

[27,29]

Electrospinning/Natural or
synthetic polymer solutions

electrostatic fiber formation
which utilizes electrical forces
to produce polymer fibers

a) Relatively high standardizable
b) Using different materials
c) Using different fiber strengths
and degrees of intertwining
adjustable

a) Generating solid tissue structure
during electrospinning intertwined
fibers

[28,45]

3D printing/Natural products like
gelatin and
1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide (EDC) and
N-hydroxy succinimide (NHS)
for crosslinking

Scaffold was printed by using a
3D printer

a) Uniform and reproducible
b) Reduction of user error
c) Precisely adjustable scaffold
pore size
d) interconnectivity and
controlled geometry

a) Requires elaborated equipment
b) High standardization results in
lacking of representation of the
biological variability
c) Generating pores with many
different sizes is difficult

[46]

ECM: extracellular matrix. PHEMA: Poly 2-hydroxyethyl methacrylate.
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4. Different Approaches in Liver TE

4.1. Decellularization/Recellularization Approach

Extracellular matrix plays a key role in cell adherence, polarity, proliferation, differentiation [47,48]
and can promote liver functions such as cytochromes P450 (CYPs) activity in organoids [49].

Due to polymorphic differences that exist between human and other species, the ideal biomaterials
for liver tissue engineering should be human derived. Decellularized organ is a suitable scaffold with
a proper and specific microstructure for the implanted cells of the original organ.

By using the ECM of an acellularized liver, which can be integrated into the scaffold matrix,
the highest similarity with the in vivo conditions can be achieved [50]. During decellularization,
cells and other immunogenic factors are removed and only the natural scaffold of tissue remains.
This approach could provide an alternative source of implantable organs in OLT [51]. Compared to
other techniques, in this method, the original template of the vascular network and biliary system are
maintained, and this is the greatest point that can be noted in liver tissue engineering [51]. In fact,
three important parameters should be considered in recellularization technique including; i) selection
of suitable cell types, ii) route of cell administration, and iii) optimized cell seeding protocols. [20].
In 2015, the first whole organ decellularization protocol was introduced by Ott et al. [52].

This decellularized human livers were later repopulated using hepatic stellate cells (LX2),
hepatocellular carcinoma (Sk-Hep-1) and hepatoblastoma cells (HepG2). Ex vivo preservation was
prolonged for up to 21 days, with excellent cell viability, motility and proliferation and remodeling
of the extracellular matrix [44]. Another study developed a humanized liver by using acellularized
porcine liver and combinations of human fetal hepatocytes and stellate cells. This study demonstrated
that the acellularized matrix could support and induce phenotypic maturation of engrafted human
fetal hepatocytes in a continuously perfused system [53].

An efficient and successful decellularization process, preserves the initial pattern of ECM and
provides a proper niche for seeded cells. After cell homing, the neo-organ should be able to present
some levels of functional maturation in the perfusion bioreactor and subsequently, the new organ could
be transplanted without extreme immunosuppression. In 2010, Uygun et al. published the first study on
recellularization of an acellularized liver that was transplanted in a rat model. The recellularized graft
was maintained in a perfusion chamber for up to 2 weeks before implantation. This was the first report
that supported functionality of the re-seeded hepatocytes which were cultured on a decellularized 3D
ECM scaffold. However, this study highlighted some key questions; for instance, what is the proper
flow rate for recellularization?

At slow flow rate, the reagents do not reach the depth of tissues and at fast flow rates, cell clamps are
produced. Furthermore, during recellularization, intravascular liver thrombosis could be happening,
and the vessels might be blocked [54].

To examine the best method for recellularization of an organ, a study from 2011 described as
a multistep infusion is associated with the most favorable results. The described methods are as
the following: i) direct parenchymal injection, ii) continuous perfusion and iii) multistep infusion.
This study showed that multistep infusion is associated with the most favorable results [55].

In conclusion, different bio-scaffolds can be employed in transplantation and pharmaceutical and
toxicological studies and may act as a reliable tool to study normal organ development as well as liver
basic pathology [56].
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4.2. Cell Encapsulation Techniques in Liver TE

Encapsulation is an advanced technology for immobilization of allogenic or xenogeneic cells
in a semipermeable scaffold in order to escape immune system and deliver biological products
to patients without any immunosuppression [57]. While many advanced technologies are under
development, cell encapsulation is the only approach that currently meets all the essential prerequisites
for a truly translational medicine [58]. An acceptable capsule should be biocompatible, and the
microstructure should provide a suitable niche for cell, survival and proliferation as well as cell
functionality. Furthermore, the implant of bio-materials is usually lodged in tissues where long time
engraftment and lower immunogenicity are required [59].

Researchers showed that intraperitoneal transplantation of alginate-encapsulated “rat hepatocytes”
could provide sufficient metabolic support to rescue an animal models with acute liver failure without
immunosuppression up to 7 days [60]. More recently, human-induced pluripotent stem cell-derived
hepatocyte-like cells (iPSC-HLC) were co-cultured with human stellate cells and encapsulated in
alginate beads. This study showed improved differentiation efficiency of induced pluripotent stem
cells (iPSCs) compared to the 2D monoculture conditions. Furthermore, the mentioned structure was
implanted in immunocompetent mice for 24 days without any immune rejection [61].

In addition, acellularized ECM derived from liver could be used for cell encapsulation too. In fact,
the rich content of growth factors in the ECM is important to provide proper interactions between
the incorporated cells and surrounding ECM. Thus, using specific ECM can cause a remarkable effect
in terms of better maintenance of encapsulated liver cells [62]. Despite recent promising results,
this technology needs more validation for long-term in vitro maintenance and in vivo transplantation
for clinical applications.

The major challenges in cell encapsulation technology are the risk of immunogenicity of the
bio-materials and toxicity of particular components used for crosslinking. However, promotion
of this field needs progress in several aspects, including more research in particular liver disease
models, reduction and modification of fibrogenesis reaction during inflammation, and improvement of
neovascularization through the model structure [47,63].

4.3. 3D Bio-Printing in Liver TE

3D bio-printing technology, as a multidisciplinary approach, benefits from chemistry, material
science and biology [64]. Proper spatio-temporal status and polarity of cells as well as effective cell-cell
and cell-ECM interactions could be provided using 3D bio-printers. 3D bio-printers can use different
materials and structure them based on a computer-aided design (CAD) [65].

3D bio-printing technique aims to fabricate biomimetic self-assembling constructs and can use
micro-tissues (or spheroids) as building blocks. However, solid organs, like the liver, are probably the
most difficult ones to print because of their complex vascularization and innervation pattern [66].

During bio-printing process, live cells are suspended in a hydrogel solution, namely bio-ink.
The bio-ink could be cross-linked during or immediately after the bio-printing process, to shape the
final architecture of the designed construct. The hydrogel-based bio-inks may be made from natural
or synthetic biomaterials, or a combination of both as hybrid materials. Natural biomaterial-based
bio-inks include: alginate, gelatin, collagen, fibrin, fibronectin, gellan gum, hyaluronic acid, agarose,
chitosan, silk, acellularized extracellular matrix, cellulose, etc. The synthetic bio-inks may include:
polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), pluronic polymers [67,68], etc. The ideal
bi-oink should have the proper physiochemical properties, such as suitable mechanical, rheological,
chemical and biological ones [69]. A practical biomaterial for 3D bio-printing is usually a biocompatible
substance, which should be easily manipulated and it could maintain or even enhance cell viability and
functions [70]. Different types of 3D bio-printing technologies have been introduced so far, including
ink-jet-based bio-printing [71], laser-assisted bio-printing [72], extrusion-based bio-printing [73],
stereo-lithography-based bio-printing [74] and microvalve-based bio-printing [75] and many other
novel emerging technologies [76] (Table 2). Among these technologies, probably extrusion-based
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bio-printing has been the most widely used one to construct living 3D tissues and organs [77]. The first
report using bio-printer was launched by Klebe in 1988, in which biomaterials such as collagen and
fibronectin were printed while the hydrogel contained fibroblasts [78].

Later, Chang et al. used alginate as a bio-ink and designed a microchip model for drug metabolism
studies. In this study, they used multi-head deposition system (MHDS) that carried out a layer-by-layer
deposition of HepG2 cells and alginate simultaneously, then, integrated the 3D bio-printed construct
into a microfluidic system [79]. In 2015, gelatin-alginate-fibrinogen-based hydrogel was used as a
representative matrix model for natural liver ECM. The parenchymal and non-parenchymal cells were
successfully embedded in this hydrogel. The results showed increased hepatocyte viability in 3D
co-culture and enhanced drug metabolism [80].

Recently, a novel co-culture system using bio-printed tissue constructs seeded with primary
hepatocyte, hepatic stellate and endothelial cells, has been described that successfully mimics
liver fibrosis condition [81]. In 2016, a 3D microscale hexagonal architecture was printed using
hydrogel in which, hiPSCs-hepatic progenitor cells (HPCs), human umbilical vein endothelial cells
and adipose-derived stromal cells were embedded. This 3D model showed a practical phenotype and
increased the physiologic function of cells over the weeks [74]. In 2017, a study demonstrated a method
for fabricating scalable liver-like tissue by fusing hundreds of liver bud-like spheroids. Such fabricated
liver-like tissue exhibited self-organization ex vivo and was successfully engrafted in rat liver. This was
a new method for transplantation of ex vivo generated organoids [82]. In fact, bio-printing technology
facilitates automated and high-throughput fabrication of sophisticated and controlled 3D structures.
Thus, combining them with bioreactors may lead to the realization of next-generation organ-on-a-chip
platforms [83].

In conclusion, 3D bio-printing is a promising technology in the field of bio-artificial organ
generation, which may overcome various limitations encountered in different models [66] and improve
maturation of hepatocyte like cells (HLCs) [75]. Furthermore, this technology could preserve ex
vivo hepatocyte function and maintenance [71]. Also, thanks to the multi-nozzle 3D bio-printers
and novel biocompatible polymers, the artificial organs could be more similar to the original tissue
compartments [77].
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Table 2. List of studies on liver 3D bio-printing for drug screening and toxicity.

Printing Technique Bioink Cell Type Applications Ref.

Extrusion-based

Alginate HepG2 Drug pharmacokinetic studies [79]

Matrigel
HepG2 and “non-malignant
mammary epithelial cell line

H184b5f5 M10”
Pro-drug conversion [84]

Decellularized matrix-based
bio-inks

PHH, primary human stellate cells,
primary human Kupffer cells Drug and toxicology screening [85]

Gelatin-alginate-fibrinogen
hydrogel

PHH and adipose-derived stromal
cells Drug screening [80]

GelMA (Gelatin methacrylate) HepG2/C3A Toxicity assessment [83]

Alginate Mouse iHep Cell therapies and drug discovery [86]

Stereolithography-based
GelMA/Glycidyl

methacrylate-hyaluronic acid
(GMHA)

hiPSC-HPS/HUVEC/adipose-derived
MSCs

Early personalized drug screening and
liver pathophysiology studies in vitro [74]

Inkjet-based Galactosylated alginate gel
(GA-gel) Mouse primary hepatocyte preservation of functions and polarity in

hepatocytes [71]

Microvalve-based Alginate hPSC
Producing organs or tissues from patient

specific cells for animal-free drug
development and personalized medicine

[75]

PH: primary hepatocyte. PHH: (primary human hepatocyte.), HUVEC: (human umbilical vein endothelial cells.), hPSCs: (human pluripotent stem cells).
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4.4. Microfluidic Systems in Liver TE

Organ-on-a-chip technologies are microfluidic systems that can recapitulate in vivo structures.
These are systems, with or without perfusion, in which lobular or spheroid-based structures mimic a
minimized environment in order to build functional units [87]. This promising point has attracted
attention of many pharmaceutical companies. Up to now, at least 28 organ-on-a-chip companies have
been registered in less than 7 years [88]. Mimicking hepatic structure and complexity is one of the
reliable approaches in this field. Liver-on-a-chip systems have been shown to be able to predict possible
toxicity and improve the sensitivity of certain drugs which are comparable with in vivo data [89].
One study developed an in vitro liver sinusoid chip by integrating four types of primary murine
hepatic cells, including parenchymal and non-parenchymal liver cells, into two adjacent fluid channels
separated by a porous permeable membrane. This microfluidic chip replicated liver physiological
cell composition, microscopic architecture and mechanical microenvironment [90]. Spheroid-based
microfluidic model is another approach that overcomes many problems of static cell culture systems.
In 2016, a model was developed using bio-printing hepatic spheroids encapsulated in a hydrogel
scaffold in a microfluidic device for drug-induced toxicity [91]. In another study, a spheroid-based
model was established using co-cultivation of rat hepatocytes and hepatic stellate cells to prolong
hepatic functions under chip culture condition [92].

A worthy liver-on-chip platform was reported by Lee et al. and it mimics sinusoidal and hepatic
cord-like structures [93]. Some studies used hepatocytes 2D culture in liver-on-chip hepatocytes
cultured in a 2D monolayer on top of a porous membrane sandwiched between two micro-channels.
These systems allow hepatocytes to associate with other cells like endothelial cells [93,94].

In a recent study, researchers designed a very large-scale liver-lobule (VLSLL) on-a-chip device
that provided a micro-physiological niche for hepatocytes [95].

Even though liver-on-a-chip is still in its early phases of development, recent progresses in the
prediction of drug toxicity are highly promising.

5. Extracorporeal Liver Devices: Artificial and Bio-Artificial Devices

Engineered extracorporeal liver devices (ELD) have been designed and developed to improve or replace
lost metabolic liver functions, essential in patients with decompensated liver diseases. This strategy could
significantly increase the chance of receiving a compatible organ for patients stagnating in waiting lists [96].

Since accumulation of toxins is considered the main reason for liver failure, detoxification processes
using biological or non-biological systems could be a promising option.

ELD categorized into two parts: Artificial liver devices (ALDs) and Bioartificial liver devices
(BAL), that explained more in the next sections.

5.1. Artificial Liver Support Systems

Artificial liver devices (ALDs) usually work based on simple principles such as albumin dialysis,
membrane filtration and the use of adsorbent columns to remove toxins [97]. For the first time, in 1988,
charcoal hemoperfusion helped patients with fulminant hepatic failure [98]. Advanced·supporting
systems such as Molecular Adsorbents Recirculating System, (MARS, Gambro, Sweden) developed by
Stange et al. [99] and Fractionated Plasma Separation, Adsorption and Dialysis system (FPAD, Prometheus,
Fresenius Medical Care, Bad Hamburg Germany), have been clinically used to eliminate protein-bounded
bilirubin and bile acids. Single-pass albumin dialysis (SPAD) and selective plasma filtration therapy
(SEPETTM Arbios systems, Allendale, New Jersey, USA) are other examples for advanced liver
supporting systems [100]. MARS and SPAD use dialysis-based techniques in which, blood flow
stream passes through a highly selective/small porosity (<50 kDa), high-flux membrane against an
albumin-containing solution [101]. In contrast, in plasma adsorption techniques, such as Prometheus
system, non-selective membranes (approximately 250 kDa) are used and there is no parallel dialysate
circuit [102]. Treating patients with Prometheus supporting system adjusted serum levels of conjugated
bilirubin, ammonia, creatinine, bile acids, and urea and improved blood pH [97] (Table 3).
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Table 3. Artificial liver support devices.

(A) Non–Albumin-Based Devices

Method Brief Explanation

Hemodialysis
In 1958 Kiley et al. described the symptomatic and clinical improvement in form of improved neurological
status in four of the five patients of ammonia intoxication treated by hemodialysis. However, no benefit was

noted in long-term survival of these patients.

Charcoal hemoperfusion Initially used in the treatment of barbiturate poisoning, charcoal hemoperfusion has been shown to remove
many water-soluble molecules associated with encephalopathy in hepatic failure patients.

Hemodi-absorption
This is a procedure that has the capability of removing toxins of less than 5 kDa. These include aromatic

amino acids, glutamine, mercaptans, benzodiazepine-like substances, false neural transmitters, ammonia,
and manganese.

Plasma exchange TPE (Therapeutic Plasma Exchange)
HVP (High Volume Plasma exchange)

Plasma element is separated from cellular blood components of blood by using a hollow fiber filter made of
cellulose diacetate and polyethylene membrane or other synthetic materials.

Hemodiafiltration

This is a combination of hemodialysis and hemofiltration. Hemodialysis is useful for removing molecules
which are less than 5 kDa and hemofiltration can remove molecules in the 5–10 kDa range. A

high-performance membrane such as a large-pore sized poly methyl methacrylate (PMMA) membrane is
performed.

(B) Albumin-based systems

Company Brief explanation

MARS® (molecular adsorbent recirculating system)
Uses a high-flux hollow-fiber hemodiafilter and albumin as the acceptor molecule for albumin-bound toxins

within the extracorporeal circuit

Prometheus
Based on an albumin-permeable polysulfone membrane, which enables the patient’s albumin fraction to

pass into a secondary circuit in which the direct purification from albumin-bound toxins by different
absorbers (that is, anion exchanger and neutral resin) takes place.

SPAD (single-pass albumin dialysis) It uses a standard continuous renal replacement therapy system without any additional columns or circuits.
Blood is dialyzed against a standard dialysis solution with the addition of 4.4% albumin in the dialysate.

SEPET (selective plasma filtration therapy) Combines aspects of fractionated plasma separation, adsorption and single-pass albumin dialysis. The
fractionated plasma passes through an albumin-permeable size-selective membrane.

BioLogic-DT (later Liver Dialysis System™
[HemoCleanse, Lafayette, IN, USA])

Based on a cellulosic plate dialyzer with a suspension of powdered charcoal and cation exchangers as
dialysates, is no longer marketed.
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5.2. Bio-Artificial Liver (BAL) Support Systems

BAL devices are hybrid systems composed of functional hepatocytes alongside with artificial
membranes, in order to provide active detoxification and biosynthetic hepatic functions [101]. More than
30 cell-based support systems have been launched since 1987, and more than 14 BAL systems have
been used in clinical trials [103] (Table 4).

BAL devices have some advantages over ALD, since they offer active exchange of biomolecules
and detoxification. Widespread application of BALs faced many challenges that eventually limited
their broad application. The main challenges are: i) a reliable cell source, ii) complicated and expensive
technology, and iii) risk of xeno-contamination while using porcine cell lines [104]. BAL devices require
a minimal number of 1010 functional hepatocytes. This number represents almost 10% of total liver mass
in adults [105]. Different cell sources that have been used in BAL devices include: immortalized human
hepatocyte cell lines [106], primary porcine [107] and human hepatocytes [108]. In vitro-generated
HLCs from different pluripotent cells (embryonic stem cells (ESCs), iPSCs), could be other sources.
Because of the low functionality of HLCs compared to primary hepatocytes, porcine hepatocytes are
the most common cells used in BALs. Although the maintenance of porcine hepatocytes is acceptable
in culture condition, the risk of xeno-infection and polymorphic metabolic incompatibility made them
inappropriate cells in BALs [109,110].

Based on device configuration, different types of BALs are available. Hollow fiber devices, packed
beds, flat plate systems and encapsulation-based reactors are common examples of BALs (Figure 2A).
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Hollow fiber systems are the most common BAL in which, hepatocytes are located within a
cartridge. The hepatocytes adhere to hollow fiber membranes which play as an scaffold for cell
attachment and compartmentalization [111]. Up to now, several hollow fiber-based devices have been
developed. Extracorporeal Liver Assist Device (ELAD; Vital Therapies Inc., San Diego, CA, USA) and
HepatAssist® (Alliqua Inc., Langhorne, PA, USA) are two important examples [104].
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Table 4. Commercially available bio-artificial liver devices (BAL).

Bio-artificial Liver Systems

Company Bioactive Functional Cells Explanation

HepatAssist Cryopreserved Porcine hepatocytes (7 × 109

cells)

Plasma is separated from blood cells and then the plasma is circulated
through the bioreactor after first passing through a charcoal filter and an

oxygenator.

ELAD® (Extracorporeal Liver Assist
Device)

Hepatoblastoma cell line HepG2-C3A
(200–400 g)

The cells are isolated from the patient’s plasma by hollow-fiber
membranes. An integrated charcoal absorber, and a membrane oxygenator

supports detoxification and maintains the oxygen supply of the cells.

AMC-BAL (Amsterdam Medical
Center-Bioartifcial Liver device) Porcine hepatocytes (10–14 × 109 cells)

The plasma is in direct contact with the cells, lead to better mass exchange
between cells and the patient’s plasma.

MELS (Modular Extracorporeal Liver
Support) Human hepatocytes (up to 650 g)

The bioreactor is composed of a three-dimensional matrix interwoven
with bundles of hollow fibers. The hollow fibers have a molecular cutoff
weight of 400 kDa and used to perfuse patient’s plasma adjacent to the

functional hepatocytes.

BLSS (Bioartificial Liver Support System) Porcine hepatocytes (70–120 g) Whole blood, rather than plasma, is passed through the fibers after
warming and oxygenation.



Cells 2020, 9, 304 15 of 28

In ELAD, a hollow fiber membrane separates the functional cells from the patient’s plasma and
integrated charcoal absorber and the oxygenator. Human hepatoblastoma cells have been used to
support detoxification and maintain the oxygen supply to the functional cells [112]. Clinical trials
accomplished using the ELAD are limited to a few pilot studies where safety was the only primary
outcome. The efficacy resulted in a limited number of studies results, and no reliable results were
reported in randomized trials [96].

HepatAssist®, as the first device that was applied in a phase II/III clinical trial. It consists of
an extra-capillary compartment of a hollow fiber bioreactor which contains cryopreserved porcine
hepatocytes (Figure 2B), where patient’s plasma is separated and circulated through a charcoal filter
and oxygenator. Several studies reported safety of this device, however positive impact on the survival
rate was not demonstrated [96].

However, designing hollow fiber-based devices faced several challenges, such as, successful
oxygen/nutrients delivery, shear-induced cell damage and clinically-relevant scale-up protocols [113].

Moreover, it has been shown that current ALDs and BALs have potential limitations, and preliminary
data supporting the use of HepatAssist was not promising. In this regard, further research is recommended
to find other functional cell sources, like genetically-modified liver cell lines, humanized pig hepatocytes,
and hepatocyte spheroids [104,114].

6. In Vivo and In Vitro Modeling for TE of Liver Diseases

Technology demonstrated a great promise to mimic in vivo conditions and provide a specific
microenvironment for ex-vivo culture of isolated primary cells. Developing a functional liver-on-a-chip
or micro-platform-based bioreactor could provide controlled and patient-specific microenvironment.
Toxicology studies and drug screening will also benefit from such sophisticated culture conditions [17].
In vitro culture condition can help us to understand the regulations in the establishment of hepatic
metabolic zonation. Substantial advances are developing in metabolic liver zonation to study hepatocyte
functions and zone-specific toxicity [115]. The zonation studies can be performed in microtiter plate in
static cultures [116], bioreactors [117] and microfluidic systems [118].

In the past decades, animal models have been routinely used in biological experiments. The use
of physiologically relevant models is of crucial importance in preclinical development. Among various
experimental animals, rodents have been the best choice for modeling human liver diseases. Liu and
his colleagues divided animal models into two groups to study liver diseases: i) those generally used
for studying mechanisms of liver fibrosis, and ii) those used to mimic specific chronic liver diseases
(CLDs) including autoimmune and cholestatic liver diseases, chronic viral infection, nonalcoholic fatty
liver diseases (NAFLD) and alcoholic liver diseases [119] (Table 5).



Cells 2020, 9, 304 16 of 28

Table 5. Conventional in vivo models used for liver diseases.

Main Models Models in
Specific Diseases Methods/Agent Ref.

Classical Animal
Models

Liver Fibrosis
CCl4 [120]

TAA [121]

DEN and DMN [122]

Experimental
obstructive
cholestasis

Common bile duct ligation [123]

Genetically
engineered mice

TGF-β1 transgenic mice [124]

PDGF transgenic mice [125]

Bcl-xL−/− mice [126]

Animal Models of
specific Liver

Diseases

Primary
Sclerosing

Cholangitis

DDC diet [127]

Abcd4−/− mice [128]

Cftr−/− mice [129]

Primary Biliary
Cholangitis

Spontaneous Mouse Models [130]

Chemical Xenobiotics–Immunized Mice [131]

Autoimmune
Hepatitis

Concanavalin A Hepatitis [132]

BALB/c Strain TGF-β1−/− mice [133]

NTx-PD-1−/− Mice [134]

Alb-HA/CL4-TCR Mice [135]

Ad-2D6–Infected Mice [136]

Alcoholic Liver
Diseases

Acute binge ethanol–feeding model [137]

Liquid diet model [138]

Intragastric ethanol infusion model [139]

Chronic plus binge ethanol feeding model [140]

Nonalcoholic
Fatty Liver

Disease

Genetic models [119]

Dietary models [141]

Hepatitis C Inducible-HCV transgenic mice [142]

Genetically humanized mouse models [143]

Hepatitis B

Animals That Permit HBV Infection and
HBV-Associated Viruses That Infect Animals [144]

HBV Transgenic Mice [145]

Human Hepatocyte Chimeric Mice [146]

CCl4, carbon tetrachloride; TAA, thioacetamide; DEN, diethylnitrosamine; DMN, dimethylnitrosamine; TGF-β1,
transforming growth factor beta; PDGF, platelet-derived growth factor; Cftr, cystic fibrosis transmembrane conductance
regulator; HCV, hepatitis C virus; HBV, hepatitis B virus; DDC, 3,5-diethoxycarboncyl-1,4-dihydrocollidine.
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Using animal models in research faces many challenges, such as time and high costs as well
as ethical concerns [147]. Moreover, the most important challenge in the use of animal models is
that they often fail to predict the clinical efficacy of therapeutics due to different pharmacokinetics,
pharmacodynamics and inter-species genetic and metabolic variations [148,149].

Over the years, various liver-derived in vitro models have been developed to investigate the effects
of drugs and chemicals [150]. Some of these models include 2D cultures [151], spheroid culture [152],
sandwich cultures [43], hollow-fiber bioreactors [153], micro-patterned co-cultures [154], microfluidic
liver biochips [155] and bio-printers [156] as already described in details.

However, traditional 2D cultures cannot maintain drug metabolism gene expression for more
than 24-72 h and have a low sensitivity to drugs [157]. In 2015, researchers designed a micro-pattern
of iPSC-HLC that was in co-cultured with murine embryonic fibroblasts. This system was used as a
model to drug toxicity assays [158] and later upgraded to use primary human hepatocytes in co-culture
with fibroblasts, where in vitro hepatic life cycles for hepatitis B and C viruses and the malaria parasites
Plasmodium falciparum and Plasmodium vivax were recapitulated [154].

In the recent decade, 3D models became popular because of their abilities to mimic in vivo
environment. This feature is essential for drug testing since micro-environmental properties could
affect behaviors and functions of primary cells [159,160]. Landry et al. developed some of the first
spheroid structures [161].

Hepatocyte-ECM interaction provides polarity in hepatocytes and can be modeled as a sandwich
culture by culturing hepatocytes between the two layers of ECM. Such platform has served as a tool
for analysis of long-term hepatocytes function and drug-induced toxicity assays [162–164].

In recent years, a considerable effort has been made to improve 3D human-based microsystems
to organize cells in a controllable manner [148]. In 2016, one scalable 3D PHH spheroid system was
developed to model drug-induced liver injury (DILI) [165].

Besides organoid and spheroid-based culture, there is one main category of dynamic in vitro
models, organ-on-a-chip. These platforms utilize advanced micro-fabrication techniques to create
miniature structures that mimic structure and functions of the organ in vitro [87,166]. Table 6 lists
common in vitro models used in drug toxicity.
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Table 6. Common hepatic in vitro models for drug toxicity studies.

Models Cell Type/Culture
Condition

Applications Advantages Disadvantages Ref.

Hepatocyte sandwich
culture Hepatocytes (PHH) A model to study

hepatobiliary transportation
and cholestasis
(Drug-induced) liver injury

a) Maintenance of cell polarity and
polygonal morphology
b) Formation of functional bile
canaliculi

a) Decreasing metabolic
enzyme activity
b) losing liver functionality,
morphology and phenotype
in long-term cultures

[162,163,167,168]

3D models

HepG2 Drug toxicity a) Providing cell-cell interaction
b) Maintenance of cell polarity
c) Formation of
functional bile canaliculi-like
structures

a) Lack of many phenotypic
and functional
characteristics of the liver
tissue

[169,170]

HepaRG Hepatotoxins screening
A model to study
drug-induced fibrosis

a) Formation of bile canaliculi-like
structures
b) Expression of functional bile acid
transporters
metabolic enzymes

a) Lack of many phenotypic
and functional
characteristics of the liver
tissue

[171–173]

Hepatocytes (PHH) Drug toxicity assessments
A model to chronic drug
assessment

a) Increased CYPs activity
b) Long term functionality

a) No bile canaliculi [165,174,175]

Stem cell-derived
hepatocytes

Drug toxicity testing a) Creating an accessible and
useful model systems for viral and
inherited metabolic disorders

a) Low expression of liver
specific genes in metabolism
b) Limited results regarding
toxicology

[176]

Organ–on a chip
platforms

Co–cultured Micro
patterned cells

Drug toxicity tests a) Preserved zonation
b) Continuous perfusion of medium

Batch-to-batch variation of
ECM substrates

[176–178]

Perfused multiwall plate Drug metabolism and drug
toxicity assays

a) Facilitated nutrient exchange
b) Efficient shear stress

a) Need more functional cells
b) Consuming more culture
media

[179,180]

Microfluidic liver biochips Toxicity assays a) Facilitated nutrient exchange
b) Efficient shear stress
c) Mimicking in vivo environment,
i.e., hexagonal structure

a) Complex system to
establish and maintenance
b) Sampling is difficult

[181,182]

3D bioprinting 3D liver bioprinting Toxicity assays a) Using bioink
b) Sophisticated shaping

a) Complex system to
establish and maintenance

[74,156]

CYPs, cytochromes P450.
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7. Conclusion and Future Remarks

By now, OLT has been known as the only effective treatment in end-stage liver diseases, limited by
the shortage of donated organs. Therefore, replacement of this treatment with accessible, reliable and
applicable methods is urgently needed. Liver TE and regenerative medicine are two modern promising
multi-disciplinary fields to improve liver failure therapies. Technical approaches in liver TE are based on
different methods including organ acellularization, in vitro modeling, artificial liver, cell encapsulation,
3D printing and organ on a chip. A recent breakthrough in technology is 3D bioprinting that has enabled
to print functional artificial liver micro tissues for transplantation instead of real organ transplantation.
A suitable ECM or synthetic components which have appropriate topography and biomechanical
properties can facilitate hepatocytes colonization, migration, differentiation, proliferation and cell
polarity. Primary human and porcine hepatocytes, immortalized cell lines and stem cells and human
cell lines have been proposed in liver TE field. Taken together, different findings proposed that a
suitable cell source that is cultured in 3D platform with acceptable scaffold and using reliable technology
such as 3D printing, could generate a functional liver model for transplantation and aim to other
purposes such as drug screening, diseases modeling, precision medicine and so on.
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