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A B S T R A C T   

Objective: Arrhythmias are prevalent symptoms of cardiovascular disease, necessitating accurate 
and timely detection to mitigate associated risks. Detecting arrhythmias from ECGs quickly and 
accurately holds great significance in preventing heart disease and reducing mortality. This 
research endeavors to outperform previous studies by developing a scientific neural network 
model capable of training and predicting ECG signals for 11 categories of arrhythmias, accounting 
for up to 5 co-existing labels. 
Methods: In this study, we initially address the issue of imbalanced datasets by employing 
Borderline SMOTE and Cluster Centroids techniques during preprocessing. Subsequently, we 
propose a novel SAR model that combines attention and resnet mechanisms. The dataset is 
subjected to a 10-fold validation process to train and evaluate the model. Finally, several metrics 
such as HammingLoss, RankingLoss, F1-score, AUC and Coverage are used to evaluate the model. 
Results: By evaluating the results of the tests, the average Hamming Loss is 1.12 %, the average 
Ranking Loss is 1.17 %, the average Micro F1-score is 98.46 %, the average Micro AUC is 98.76 %, 
and the average Coverage is 3.2762. The results show that the SAR model outperforms previous 
related studies on the task of classifying arrhythmia signals with multiple categories and labels. 
Conclusion: The SAR model demonstrated excellent performance in accurately classifying multi- 
category and multi-label arrhythmia signals, affirming its scientific validity. Compared with 
previous studies, the model achieves a certain improvement in performance, which can help 
cardiologists to achieve scientific and accurate diagnosis of arrhythmia diseases.   
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1. Introduction 

As per the statistics from the World Health Organization (WHO), cardiovascular diseases lead to the maximum number of mor-
talities globally, resulting in over 10 million deaths annually. Arrhythmia, which is a common problem in cardiology, is when the 
heart’s activity becomes too fast, too slow, or irregular, or that the order of its parts becomes disordered. The swift and precise 
diagnosis of arrhythmia is tremendously valuable for the therapy of cardiac diseases and saving lives [1,2]. 

Currently, the identification of arrhythmia primarily depends on the electrocardiogram (ECG) [3,4]. A Surface electrocardiogram is 
the most simple, cheap and accurate method to diagnose arrhythmia. In actual clinical diagnosis, doctors usually collect a long period 
of ECG signals to determine whether patients have related heart diseases, which requires cardiologists to spend a long time analyzing 
patients’ ECG, which brings a huge workload to doctors [5,6]. 

At the same time, the accuracy and speed of arrhythmia detection are very high. Once misdiagnosis or failure to intervene in the 
best treatment time will delay the patient’s condition, which is serious and even life-threatening. Some patients may have more than 
one type of arrhythmia at the same time. Therefore, we need to establish an accurate automatic analysis model of ECG signals to 
identify such multi-category and multi-label ECG signals. The application of analytical models can reduce the difficulty and workload 
of cardiologists, increase the probability of detecting arrhythmia events, and thus improve the survival rate of patients with arrhythmia 
[7,8]. 

In the last decade, rapid progress has been made in finding patterns in images and signals using neural networks [9]. Deep learning, 
an advanced machine learning approach, facilitates the automatic derivation of crucial characteristics via the integration of diverse 
neural networks encompassing multiple convolutional layers, nonlinear variation layers, pooling layers, and fully connected layers. 
Deep learning has accomplished remarkable advancements in image recognition, speech recognition, and natural language processing. 
In ECG analysis, deep learning techniques have exhibited superior classification capabilities over conventional approaches when 
trained with ample data [10–13]. However, there are still some limitations and challenges in analyzing ECG signals using machine 
learning methods, such as Ardeti et al. [14] argued that there is a general problem of low accuracy in ECG signal analysis using 
machine learning methods. 

The most of existing research has concentrated on developing ECG classifiers for single-label arrhythmia detection, aiming to 
categorize individual heartbeats into one of several predefined abnormality types. However, single-label models are ill-equipped to 
handle patients exhibiting multiple concurrent arrhythmia modalities, which is a commonly encountered clinical scenario [15–17]. 
The multi-label classification task, though better representative of real-world complexity, poses added challenges. With the rise in the 
number of arrhythmia types, the quantity of plausible label permutations surges exponentially, posing challenges to model training 
and assessment. Consequently, multi-label ECG classification has received limited attention compared to single-label approaches [18, 
19]. 

In light of the aforementioned challenges, the present study aimed to develop a scientific and accurate solution for multi-label ECG 
arrhythmia detection, building on prior work [15]. We approached ECG abnormality diagnosis as a multi-label classification problem, 
and proposed a self-attention residual network (SAR) model tailored for this task. The key contributions of this research are as follows.  

(1) The proposed SAR model can accurately classify fine-grained ECG morphological features, supporting recognition of 11 
arrhythmia types.  

(2) Our approach can handle multi-label ECG signals with up to 5 concurrent abnormality labels, better resembling real-world 
complexity.  

(3) Innovative use of the SAR model to classify ECG signals with 11 categories and 5 labels, achieving better classification results 
than similar previous studies. 

2. Related work 

ECG signal based arrhythmia detection serves as a vital instrument extensively utilized in medicine for monitoring cardiovascular 
illnesses. Effective and precise identification of anomalous ECG signals has constituted a crucial subject probed by medical academia. 

At present, Resnet is a powerful neural network structure that is widely used in various tasks [20]. It is also a relatively advanced 
deep network, which can be leveraged across diverse data modalities spanning images to time series [21]. It has the advantages of 
improving accuracy easily by increasing depth, being easy to optimize, and superior to other networks. It benefits from a shortcut 
module that enables the network to plunge deeper while preserving a relatively low complexity, thereby making learning easier. Some 
researchers have added attention mechanism. It strives to ascertain weights for the constituents, anticipating pivotal elements to 
possess greater weightage, and non-critical entities hold lower weight. The weight of the components mirrors the respective element’s 
contribution towards the target objective [18]. 

Some researchers have deployed residual networks to ECG prediction, and the arrhythmia detection algorithm derived from one- 
dimensional CNN (1D-CNN) with residual blocks has achieved excellent performance [11,20,22]. Jihye [11], Zhu [23] Wang [24] 
et al. used the resnet model as the basic model of classification, and added one or two extruder blocks and excitation blocks to ordinary 
resnet to improve the performance, and the results showed that the model had a good performance. Wong et al. proposed staged neural 
network architecture for automatic coding to extract heartbeat, embed sequences, and train a multi-layer perceptron for classification 
[25]. Pardasani et al. developed a method based on a 1D-CNN with class-dependent thresholds for identifying arrhythmias from 
12-lead ECG [26]. But all of these studies suffer from low metrics. Other researchers have attempted to combine resnet with other 
algorithmic mechanisms. For example, Rong et al.combined ResNet34 with GRU and simultaneously extracted local and sequence 
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features from ECG for model training [12]. An improved FL function is proposed as a loss function to solve the problem of an un-
balanced data set. But it doesn’t work very well when it comes to predicting outcomes. Borra et al. designed the decoding workflow of 
time series classification based on Inception Time, ResNet, and X ResNet, the three most advanced architectures [27]. However, these 
algorithms have limited interpretability to the learned features. 

In the study of attention mechanism, some scholars have also carried out related research. For example, Nan et al. designed a fine- 
grained multi-label ECG (FM-ECG) framework to detect abnormal cation mechanisms on ECG images through weakly supervised fine- 
grained classification, which can find potential identification sites adaptively [18]. They are fused only with image-level annotations. 
Secondly, a recurrent neural network (RNN) is used to deduce ECG label correlation. Feng et al. developed an open-source deep neural 
network combining ResNet with attention-based model to predict a variety of cardiac abnormalities in 12-lead ECG [21]. Li et al. 
proposed a new neural network structure to achieve the classification of 9 arrhythmias and added a new attention mechanism to the 

Fig. 1. Flow chart of data pre-processing, model training and result evaluation.  
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model, which is meaningful for data symmetry [28]. Liu et al. developed a deep 1D-CNN with a residual block and 
compression-excitation (SE) attention mechanism [29]. Wang et al. proposed a multi-label classification method based on a weighted 
graph attention network [30]. Li et al. proposed a neural network structure 12-lead ECG multi-label classification algorithm based on 
resnet, including data denoising, frame segmentation, data balance, and other pre-processing parts, combined with attention-based 
bidirectional short and long-duration memory (BiLSTM) [31]. Yang et al. adopted the improved stage-based residual network and 
split attention block residual network, but the performance of ECG, each abnormal recognition needs to be further improved [20]. 

By reviewing previous studies, ECG arrhythmia detection is usually categorized as a multi-label classification problem. After 
analyzing the existing literature related to the multi-label classification problem of arrhythmia, We summarized and found the 
following two main problems.  

(1) Classification labels are not detailed enough and rarely cover multiple categories of arrhythmias. For example, in the 
arrhythmia recognition system developed by Liu, Li et al. , seven arrhythmias are classified and detected [32,33]. Sangha et al. 
trained convolutional neural networks to recognize six clinical labels defined by physicians covering rhythm and conduction 
disorders and a hidden gender [34]. Sun et al. proposed a new integrated multi-label classification model that combines seven 
multi-label classification methods to generate a new classifier [7].  

(2) Multi-label classification network performance can be further improved. For example, Ge et al. designed a feature fusion based 
on multi-label correlation guidance of the ECG abnormal event detection model, the accuracy is 81.6 % [3]. Cai et al. created 
and trained a new deep learning architecture to model and capture label correlation of graph convolutional network (GCN) for 
multi-label classification of 12-lead ECG, the final F1-score is 60.3 % [10]. Osnabrugge et al. used a convolutional recurrent 
neural network (CRNN) to identify cardiac abnormalities in 2, 3, 4, 6, and 12 lead electrocardiogram numbers, the accuracy is 
40 % [22]. 

In summary, we propose a novel SAR model according to the actual situation in this research, which can better cope with the 
problem of multi-label ECG analysis and achieve better performance. 

3. Methodology 

As illustrated in Fig. 1, our experiment encompasses three principal components, namely pre-processing, classification, and 
evaluation. 

3.1. Pre-processing 

For the dataset, we employed the MIT-BIH dataset, which is internationally accepted as a standard ECG dataset and is the most 
widely used ECG database in recent years [35,36]. This database is widely employed as experimental data in numerous related studies 
and has gained broad recognition in the academic sphere. Supplied with trustworthy information, meticulous notes, abundant cases 
and diverse ECG signal categories, the database can undergo training and examination through investigative algorithms, thereby 
establishing a robust foundation for detection research. The MIT-BIH dataset was also used to reflect the generalizability of the method 
in this paper and to facilitate comparison with other researchers’ research methods. 

The database contains 43 available samples, each containing labeled two-lead ECG data with each segment lasting 30 min. The 
labeled data underwent meticulous annotation on a per ECG cycle basis, with matching labeling documents furnished. In this dataset, 
11 main representative heart rate categories are included, namely Normal beat (N), Atrial premature beat (A), Aberrated atrial pre-
mature beat (a), Ventricular escape beat (E), Atrial escape beat (e), Fusion of the ventricular and normal beat (F), Nodal (junctional) 
premature beat (J), Nodal (junctional) escape beat (j), Left bundle branch block beat (L), Right bundle branch block beat (R), and 
Premature ventricular contraction (V). In the study, these same 11 representative heart rate categories were selected for study. The 
types and number of each are shown in Table 1. 

It is clear from the characteristics of the dataset that arrhythmias are often comorbid, more than one arrhythmia may be present in a 

Table 1 
Types of arrhythmia and corresponding labels.  

Label Type abbreviation Type Amount of beats 

0 N Normal beat 144847 
1 A Atrial premature beat 1454 
2 a Aberrated atrial premature beat 299 
3 E Ventricular escape beat 105 
4 e Atrial escape beat 31 
5 F Fusion of ventricular and normal beat 1603 
6 J Nodal (junctional) premature beat 163 
7 j Nodal (junctional) escape beat 33 
8 L Left bundle branch block beat 16137 
9 R Right bundle branch block beat 14500 
10 V Premature ventricular contraction 13797  
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given arrhythmia patient. Using the MIT-BIH dataset as an example, we performed a statistical analysis using histograms of marginal 
distributions. 

As shown in Fig. 2, the edge distribution histogram visualizes the types of different heartbeats contained in all 43 available samples 
of the MIT-BIH dataset. The horizontal axis is the sample number and the vertical axis is the label, while the number of beat types 
contained in each sample and the total number of samples corresponding to each beat type are summed below and to the right of the 
scatter plot. For example, Sample 1 (S1) contains three types of beat labels, 0, 1 and 10, which correspond to the three categories of 
Normal beat (N), Atrial premature beat (A), and Premature ventricular contraction (V) in Table 1. In Sample 12 and Sample 18, there is 
only one type of heartbeat, all heartbeats are labeled as 0. While in Samples 6, 11, 20, 22, 23, 26, 29, 31 and 37, as many as five 
different types of labeled heartbeats are included. 

Also, we can see from Fig. 2 that the different categories are extremely unevenly distributed. For example, there are 36 samples 
containing heartbeats with label 0, but only Sample 37 contains heartbeats with label 4. The number of different heartbeats is also 
extremely unbalanced, and the exact number of heartbeats in different categories is shown in Table 1. 

In summary, the target dataset in this study has the following characteristics.  

(1) The data have multiple categories. There are 11 different categories of heartbeats.  
(2) The data have multiple labels. There may be at most 5 labels at the same time and at least 1 label.  
(3) The data of various categories exhibits an extremely skewed distribution.  
(4) The quantities across the diverse data categories manifest severe imbalance. 

To achieve excellent training and testing results, in the research, the following work is carried out to address the above charac-
teristics of the dataset. 

3.1.1. Data segmentation 
We utilize the Wave From Database (WFDB) module to process the database, WFDB is used to read annotation files and find the R 

peak location [2,37], including waveforms, amplitudes, periods, and associated labels, to facilitate the subsequent training. The data 
preprocessing comprises two primary components. First, extraction is performed. We extract the complete heart waves by an indi-
vidual as the original data set. Then, segmentation is performed. In the processing of heartbeats, the features of a segment of heartbeat 
waves are mainly PQRST waves. Accordingly, for heartbeat segmentation, the R-peak constitutes the reference anchor, and a standard 
interval of 0.3s forward and 0.4s backward is used to separate the heartbeat into discrete instances. Such a beat of length 0.7s can 
effectively contain the cardinal traits of the heartbeat wave. Ultimately, the discrete heartbeats were mapped to the respective tags per 
the annotations within the original database. This resulted in several standard heartbeats with labels. 

3.1.2. Data balance 
In this research, we use the Borderline SMOTE and Cluster Centroids method to deal with the uneven distribution and an unbal-

anced number of data sets. Borderline-SMOTE (Borderline-Synthetic Minority Oversampling Technique) is an improved oversampling 
algorithm for SMOTE. The algorithm exclusively leverages the frontier minority instances for fabricating novel examples, thereby 
enhancing sample distribution [38]. 

Fig. 2. Types of arrhythmias contained in different samples.  
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SMOTE represents an approach for interpolating between a limited set of sample categories to generate supplementary examples. 
For a minority class sample A, the nearest neighbor sample B is randomly selected, and A point C is randomly selected as a new 
minority class sample from the concatenation of A and B. Specifically, for a minority class sample xi use the k nearest neighbor method 
(the value of k needs to be specified in advance) to find the k minority class samples that are closest to xi, where the distance is defined 
as the Euclidean distance in the n-dimensional feature space between the samples. Subsequently, one of the k nearest neighbors are 
randomly chosen to generate a novel sample, the formula is depicted in ①. 

xnew = xi +(x̂i − xi) × δ (1)  

Where x̂ is the selected k nearest neighbor and δ is a random quantity, δ ∈[0,1]. 
Border-line SMOTE is an improved version of the SMOTE algorithm, which divides the sample into three categories. "Noise": all k- 

nearest neighbors belong to the majority class; "Danger": more than half of k-nearest neighbors belong to the majority class; "Safe": 
more than half of k-nearest neighbors belong to the minority class. Border-line SMOTE randomly chooses a sample from the "Danger" 
condition, applying the SMOTE algorithm to produce a novel example. The “Danger” state denotes frontier minority instances more 
susceptible to misclassification. Therefore, Border-line SMOTE exclusively synthesizes examples from minority categories adjoining 
the “Border”, whereas SMOTE uniformly handles all minority classes. 

Cluster Centroids is a method to reduce the number of target samples by k-means clustering, as shown in Fig. 3. First, the target 
samples are clustered into different classes by k-means method, and the centroids of the target data are calculated, then, the data 
farthest from the centroids are removed. Finally, the downsampled data are obtained. Therefore, each category will be synthesized 
with the centroids of the k-means method rather than the original examples. Cluster Centroids method provides an efficient way to 
represent the reduction in the number of samples in the data clusters, however, the approach requires the data to be grouped into 
clusters. Moreover, the centroid quantity should be defined to enable the downsampled clusters to represent the original groups. 

3.1.3. Data recombination 
Since in the original sample, there is often one same heartbeat repeated many times in a row, namely there will be a large amount of 

single-label data, which will affect the model training. To improve the adaptability of the model, we need to randomly reorganize the 
heartbeats in all samples in the model after they are completely broken up. Since at most 5 labels appear in the same sample in the 
original sample, we also combine the individual heartbeats in groups of 5 to form the new features. The new features have at least 1 
label and may have at most 5 labels in different combinations. Since we want to identify 11 categories, there will in principle be C1

11 +

C2
11 + C3

11 + C4
11 + C5

11 = 1023 combinations in total. In the meantime, we also transformed the labels of the reorganized data by 
converting multi-category labels to multi-hot labels. In Fig. 4, we show some of the restructured multi-label data features and their 
multi-hot labels. After converting the data labels to multi-hot form, the presence or absence of 11 types of heartbeats in the feature is 
represented by an 11-bit binary number arranged from left to right. For example, in the 1 label, there are only normal heartbeats. 

3.2. Model structure 

In the SAR model construction part, the network model is designed to enable accurate identification of multi-label ECG data, and to 
ensure that all evaluation metrics are optimal while upholding the concept of science and effectiveness, the model structure is shown in 
Fig. 5. 

In the model, the multi-label data are first fed into the GlobalPooling layer to connect the data and the model and reduce the data 
dimensionality, and then, divided into four paths. Path 1, directly connected to SelfAttention Block, which contains one self-attention 
network layer; path 2, directly connected to ResNet Block after ZeroPadding, Convolution, and GlobalPooling layers; path 3, connected 
to SelfAttention Block and ResNet Block, and adding two residual connections; path 4 concatenate directly with the results of path 1, 
path 2 and path 3 without connecting any modules. 

In path 1, given the multi-labeled input data constitute one-dimensional temporal sequences, an effective self-attention archi-
tecture is employed, chiefly enabling the model to concentrate on and derive cardinal traits while discounting less relevant 

Fig. 3. Working principle of Cluster Centroids method. A: Raw data; B: Calculate centroids; C: Select furthest points; D: Resampled data.  
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characteristics. 
In path 2, as the ResNet Block constitutes a deep neural network, the data may acquire an elongated feature vector post the ResNet 

Block layer. To regulate the ultimate vector length, a ZeroPadding layer is set at the beginning of path 2, padding with 0 to govern the 
post-convolution vector length. In the ResNet Block, we set 30 Convolution1D layers to extract the data features, in which several 
short-circuit connections are added to reduce the model complexity to reduce overfitting, and prevent gradient vanishing, as shown in 
Fig. 5. 

When paths 1, 2, 3, and 4 are concatenated, after several Dense, Dropout, and GlobalPooling layers, finally in the Dense layer, a 
Sigmoid activation function is used to predict the probability of each label from 0 to 10, and the prediction results in a probability value 
of 0–1 for each label. 

4. Experiment 

This work operates on a deep learning framework of Keras with Tensorflow as the backend. The workstation used consists of 6144 
MB GPU (NVIDIA GeForce RTX-3070), Intel i7–11700 K processor (3.60 GHz) and 32 GB RAM. 

In the training process, we divided the data set into train set, validation set and test set. The number of data sets in each part is 
shown in Table 2. 

During training, loss is "binary cross-entropy", optimizer is "Adam", learning rate is 0.0001 and batch size is 512. Due to the limited 
computing power of the computer, we train a total of 100 epochs. The training history is shown in Fig. 6. 

To ensure a complete and balanced training of all training data and to evaluate the training effect in real-time, we used the 10-Fold 
cross-validation method. 

After training, we tested the trained model with untrained data from raw data, and selected some representative test results for 
simple visualization in Fig. 7. 

5. Evaluation 

5.1. Evaluation metrics 

To evaluate SAR model’s performance, we use various evaluation methods such as Hamming Loss, Ranking Loss, AUC, Coverage, 

Fig. 4. Recombined multi-label data features and multi-hot labels.  
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Fig. 5. SAR model structure.  

Table 2 
Sample parameters of each part.  

Category Train Validation Test Total 

Amount 11099 2775 3469 17343  
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Precision, Recall, F1-score, etc [7,12,38,39]. The performance of the model is fully evaluated by these evaluation methods.  

(1) Hamming Loss 

Hamming Loss=
1
n
∑n

i=1

1
q

h(xi)ΔYi (2) 

Δ signifies the symmetric variance between two configurations. For instance, the symmetric difference between {1,2,3} and {3,4} 
is {1,2,4}. This index indicates the misclassification of the sample on a single label, namely the absence of relevant labels in the 
predicted label set or the presence of irrelevant labels in the predicted label set.  

(2) Ranking Loss 

Fig. 6. The training and validation curves of the model: Accuracy and Loss.  

Fig. 7. Partial representation of test results.  
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Ranking Loss=
1
n
∑n

i=1

1
|Yi||Yi|

|{(y′, y″)||f(xi, y′)≤ f(xi, y″)| (3)  

Where Yi is the complementary set of Yi in the label space, and (y′,y″) ∈ Yi * Yi. This metric examines sorting mistakes in the category 
label sequences, whereby irrelevant labels precede applicable ones. Lower values indicate enhanced performance, with the optimum 
being 0.  

(3) AUC 

AUC=

∫ 1

0
TPRdFPR =

∫ Pp

P
∗
Np,p+Δp

N
=

1
P ∗ N

∫

Pp ∗ Np,p+Δp =
1

P ∗ N

∫ 1

0
PpdNp (4) 

AUC (Area Under Curve) is the area enclosed by ROC Curve and X coordinate axis. The full name of the ROC Curve is Receiver 
Operating Characteristic Curve. This curve is obtained with TPR(true positive rate) as the ordinate and FPR(false positive rate) as the 
abscissa. 

P∗N represents all the positive and negative sample pairs. The positive and negative sample pairs represented by Pp ∗ Np,Np,p+Δp are 
the sample pairs composed of the positive sample with the predicted probability of [p,1] and the negative sample number with the 
predicted probability of [p, p + Δp]. When [Δp] is small enough, it can be understood as the sample pair composed of the negative 
sample number of [p,p+ Δp] and the prediction probability, and the positive sample predicted value is higher than the sample pair 
composed of the negative sample predicted value. When the negative sample is divided into several segments according to probability, 
the positive and negative sample pairs formed by Pp ∗ Np,Np,p+Δp are integrated, and all sample pairs whose positive sample predicted 
values are higher than the negative sample predicted values are obtained.  

(4) Coverage 

Coverage=
1
n
∑n

i=1
maxy∈Yirankf

(
xi,y

)
− 1 (5) 

Where rankf (⋅,⋅) is the sorting function corresponding to the real-valued function f (⋅,⋅). This index probes the search depth essential 
for encompassing all pertinent labels within the sample’s category label sequence. Lower values indicate superior performance.  

(5) Precision 

Precision(Pre)=
TP

TP + FP
(6) 

Precision is used to evaluate the accuracy rate of the detector based on the detection success. For all positive cases (TP + FP) judged 
by the model, the proportion of real cases (TP) among them.  

(6) Recall 

Recall(Rec)=
TP

TP + FN
(7) 

Recall is used to evaluate the detection coverage of the detector on all targets to be detected. For all positive cases (TP + FN) in the 
dataset, the proportion of positive cases (TP) is correctly judged by the model to all positive cases in the dataset. 

Table 3 
Results of each metrics under 10-fold cross validation.  

Metrics 
Fold 

HammingLoss RankingLoss MicroF1 MacroF1 MacroAUC MicroAUC Average 
Precision 

AverageRecall Coverage 

1 0.0115 0.0126 0.9842 0.9822 0.9858 0.9874 0.9853 0.9851 3.2764 
2 0.0117 0.0119 0.9840 0.9817 0.9859 0.9869 0.9854 0.9845 3.2816 
3 0.0107 0.0107 0.9853 0.9833 0.9868 0.9882 0.9875 0.9851 3.2534 
4 0.0121 0.0116 0.9833 0.9811 0.9855 0.9865 0.9859 0.9828 3.2781 
5 0.0110 0.0109 0.9848 0.9830 0.9867 0.9873 0.9883 0.9831 3.2666 
6 0.0108 0.0119 0.9851 0.9828 0.9864 0.9880 0.9872 0.9849 3.2724 
7 0.0115 0.0112 0.9842 0.9824 0.9860 0.9876 0.9873 0.9830 3.2660 
8 0.0116 0.0132 0.9840 0.9819 0.9852 0.9875 0.9862 0.9839 3.2928 
9 0.0108 0.0116 0.9852 0.9831 0.9865 0.9881 0.9876 0.9843 3.2819 
10 0.0103 0.0118 0.9858 0.9833 0.9868 0.9880 0.9892 0.9837 3.2924 
Average 0.0112 0.0117 0.9846 0.9825 0.9862 0.9876 0.9870 0.9840 3.2762 
Standard 

deviation 
0.0005 0.0007 0.0007 0.0007 0.0005 0.0005 0.0012 0.0008 0.0115  
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(7) F1-Score 

F1= 2 •
Pre • Rec
Pre + Rec

(8) 

True positive (TP) indicates normal events classified as normal, true negative (TN) indicates abnormal events deemed abnormal, 
false positive (FP) represents abnormal events misidentified as normal, and false negative (FN) represents normal events wrongly 
marked as abnormal. 

To better demonstrate the test results, we counted the test results of each fold and average in the 10-fold cross-validation, as shown 
in Table 3. 

At the same time, to show the test situation of each label, and to understand which labels are better classified and which labels are 
average, we took out each category of labels separately for analysis, in which the ROC curve of each category are shown in Fig. 8, and 
the confusion matrix of each category is shown in Fig. 9. 

As can be seen from Figs. 8 and 9, when the effectiveness of each category of tag classification is evaluated separately, the two 
categories of tags with labels "1″ and "5″ are relatively weak among the 11 categories of tags, while the other categories of tags are 
relatively better. 

In addition, we also conducted comparative experiments to compare the variation trends of each metric under different thresholds 
to reflect the robustness of the model, as shown in Table 4 and Fig. 10. 

If all metrics are evaluated only at the threshold of 0.5, it is not enough to fully demonstrate the excellent performance of this 
model. Therefore, we calculate metrics at different thresholds. When the threshold increases from 0.5 to 0.8, all metrics tend to be 
basically stable, and the trend of performance decline is not obvious. When the threshold increases from 0.8 to 0.95, there is a 
relatively significant downward trend in all indicators. When the threshold value increases from 0.95 to 0.99, the indicators have a 
clear downward trend only. From the comparison experiment, it can be seen that the probability values of each label obtained from the 
model test are more accurate, which also reflects the scientific and robust nature of the model. 

Finally, we compared the research contents and results with those of other researchers, as shown in Table 5. In general, more 
categories and labels mean a more difficult task. Taken together, with the number of categories and labels greater than or equal to 
those of previous studies, the method used in our study still achieves superior results. 

6. Discussion 

Our research demonstrates that the SAR model we developed, which integrates attention and ResNet mechanisms, surpasses 
previous studies in the accurate classification of multi-category and multi-label arrhythmia signals. This can assist cardiologists in 
making scientifically sound and automatic diagnoses of arrhythmia diseases. The model is capable of learning and predicting 
arrhythmic ECG signals across 11 categories and up to 5 co-existing labels in the dataset. The testing results were promising, with an 
average HammingLoss of 1.12 %, average RankingLoss of 1.17 %, average Micro F1-score of 98.46 %, average Micro AUC of 98.76 %, 
and average Coverage of 3.2762. These results outperform those of previous research, demonstrating the scientific validity and 
robustness of our model. The SAR model leverages the power of self-attention structures, ResNet Blocks, and other deep learning 
techniques to focus on and extract key features from the ECG data while ignoring less impactful features. This approach allows for 
efficient and effective arrhythmia classification. 

Our research builds upon previous studies in arrhythmia detection and classification. For instance, Zhu et al. (2020) developed a 
CNN-based model for arrhythmia classification, achieving an AUC of 98.3 % and F1-score of 84.5 % [39]. Ge et al. (2021) proposed a 
Multi-Label Correlation guided feature fusion network for abnormal ECG diagnosis, achieving a precision of 81.6 % and F1-score of 

Fig. 8. ROC curve for each label.  
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82.7 % [3]. Our model outperforms these previous models, suggesting that our approach is more effective for arrhythmia classification. 
Our findings reveal certain limitations in the performance of the SAR model, particularly in identifying data with labels 1 and 5. The 

ROC curve and confusion matrix analysis indicate suboptimal results for these specific labels, prompting further investigation into the 
underlying causes, as shown in Figs. 8 and 9. To gain insights, we conducted a detailed analysis by comparing the features and labels of 
the data specifically associated with labels 1 and 5. Given these circumstances, we turned our attention to the possibility of incorrect 
labeling in the dataset. To address this concern, we plan to collaborate with ECG specialists by visiting hospitals and seeking their 
expert opinion. Their insights and expertise will help determine whether this labeling issue is indeed present and, if confirmed, allow 
us to rectify it accordingly. 

The composition of the dataset, specifically the limitations imposed by the MIT-BIH database on the number of labels assigned to 
each sample, was also a factor in our next study. We included data samples with a maximum of 5 labels for training, validation, and 
testing. However, to validate the SAR model in a broader context, we plan to conduct experiments on a larger cohort and with real- 

Fig. 9. Confusion matrix for each label. A–K: lable 0–10.  
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Table 4 
Evaluation metrics under different thresholds.  

Metrics 
Threshold 

HammingLoss RankingLoss MicroF1 MacroF1 MacroAUC MicroAUC AveragePrecision AverageRecall Coverage 

0.5 0.0112 0.0117 0.9846 0.9825 0.9862 0.9876 0.9870 0.9840 3.2762 
0.6 0.0111 0.0118 0.9846 0.9827 0.9870 0.9872 0.9882 0.9829 3.2845 
0.7 0.0111 0.0121 0.9846 0.9827 0.9874 0.9869 0.9893 0.9818 3.3159 
0.8 0.0113 0.0123 0.9843 0.9825 0.9862 0.9864 0.9904 0.9802 3.3290 
0.9 0.0119 0.0133 0.9834 0.9816 0.9853 0.9852 0.9918 0.9769 3.3601 
0.95 0.0127 0.0143 0.9823 0.9805 0.9842 0.9839 0.9932 0.9735 3.3957 
0.99 0.0162 0.0191 0.9772 0.9754 0.9791 0.9786 0.9954 0.9618 3.5345 
Average 0.0122 0.0135 0.9830 0.9811 0.9851 0.9851 0.9908 0.9773 3.3566 
Standard deviation 0.0017 0.0024 0.0025 0.0025 0.0026 0.0029 0.0027 0.0072 0.0822  
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world data. 
By validating the SAR model in a clinical setting and refining its performance based on real data, we aim to make a valuable 

contribution to the field, ultimately improving the accuracy and efficiency of arrhythmia diagnosis. Our future work will involve 
testing the model using actual hospital data and optimizing the model based on the test results. This will help us to further validate the 
effectiveness of our model and make practical contributions to clinical practice. 

7. Conclusions 

Automatic diagnosis of arrhythmia has important research value, which can reduce and effectively improve detection efficiency 
and reduce the workload of clinicians. 

In this research, we innovatively built SAR, a model that can learn and predict arrhythmic ECG signals for 11 categories and up to 5 
co-existing labels in the dataset, through testing, in which the average HammingLoss is 1.12 %, average RankingLoss is 1.17 %, average 
Micro F1-score is 98.46 %, average Micro AUC is 98.76 %, and average Coverage is 3.2762. The results are better than previous 

Fig. 10. Line chart of each evaluation metrics under different thresholds. A: Hamming and ranking loss; B: Micro F1 and AUC, Macro F1 and AUC; 
C: Average precision and recall; D: Coverage. 

Table 5 
Comparison with other researches.  

Authors Year Categories and 
labels 

Model Results 

Zhu et al. 
[39] 

2020 8 categories 5 
labels 

CNN AUC = 98.3 %, Sen = 86.7 %, 
Spe = 99.5 %, F1 = 84.5 % 

Ge et al. [3] 2021 4 categories 4 
labels 

MLC- 
CNN 

Pre = 81.6 %, Sen = 84.5 %, F1 = 82.7 % 

Ours 2022 11categories 
5 labels 

SAR Hamming loss¼1.12 %, 
Ranking Loss¼1.17 %, 
MicroF1¼98.46 %, MacroF1¼98.25 %, 
MicroAUC¼98.76 %, MacroAUC¼98.62 %, AveragePrecision¼98.70 %, 
AverageRecall¼98.40 %, coverage¼3.2762  
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research results, which shows the scientific validity and robustness of the model. In the next step, we will continue to promote 
methodological research, test the model using actual hospital data, and optimize the model based on the test results, in an effort to 
make practical contributions to clinical practice. 
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