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Viruses are increasingly viewed as vital components of the human gut microbiota, while
their roles in health and diseases remain incompletely understood. Here, we first
sequenced and analyzed the 37 metagenomic and 18 host metabolomic samples
related to irritable bowel syndrome (IBS) and found that some shifted viruses between
IBS and controls covaried with shifted bacteria and metabolites. Especially, phages that
infect beneficial lactic acid bacteria depleted in IBS covaried with their hosts. We also
retrieved public whole-genome metagenomic datasets of another four diseases (type 2
diabetes, Crohn’s disease, colorectal cancer, and liver cirrhosis), totaling 438 samples
including IBS, and performed uniform analysis of the gut viruses in diseases. By
constructing disease-specific co-occurrence networks, we found viruses actively
interacting with bacteria, negatively correlated with possible dysbiosis-related and
inflammation-mediating bacteria, increasing the connectivity between bacteria modules,
and contributing to the robustness of the networks. Functional enrichment analysis
showed that phages interact with bacteria through predation or expressing genes
involved in the transporter and secretion system, metabolic enzymes, etc. We further
built a viral database to facilitate systematic functional classification and explored the
functions of viral genes on interacting with bacteria. Our analyses provided a systematic
view of the gut virome in the disease-related microbial community and suggested possible
positive roles of viruses concerning gut health.
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INTRODUCTION

The gut viruses have received increasing attention due to our
recent comprehension that the human gut microbiota is a dense
and taxonomically diverse consortium of microorganisms while
containing all four superkingdoms, Bacteria, Archaea, Eukarya,
and Viruses. Phages, known as viruses of bacteria, have been
found to play notable roles in the predation of bacteria and
horizontal gene transfer (Shkoporov and Hill, 2019). Moreover,
evidence from the experimental study shows that phages
demonstrate cascading effects on microbiota species and can
modulate metabolites, further affecting mammalian hosts (Hsu
et al., 2019). As for eukaryotic viruses, the direct interaction with
bacteria may facilitate viral infection when viruses can infect
humans (Berger and Mainou, 2018). Notably, the eukaryotic
viruses also demonstrated complex interactions with bacteria,
and much of the mechanisms are still unknown (Almand et al.,
2017; Berger and Mainou, 2018).

For the human gut, regardless of the extensively studied
relationships between diseases and bacteria, less attention has
been paid to viruses. Being the total collection of viruses within
the gut microbiota, the gut virome is suggested to infect human
cells as described above, as well as other microbes such as
bacteria. Studies have shown that double-stranded DNA phage,
the Caudovirales order, is the major human gut virus. Single-
stranded phage, theMicroviridae order, is also abundant in some
individuals (Manrique et al., 2016; Shkoporov et al., 2019).
Besides, substantial amounts of gut phages exist in the bacteria
genome in the form of prophages (Silveira and Rohwer, 2016;
Sutton and Hill, 2019). However, the majority of the viruses in
gut microbiota are uncharacterized yet, and their roles in shaping
the gut microbial community and affecting human health remain
poorly understood (Shkoporov et al., 2019). Although many
studies have reported the shifted gut virome in acute and chronic
diseases, such as severe acute malnutrition (Reyes et al., 2015),
irritable bowel syndrome (IBS) (Coughlan et al., 2021;
Mihindukulasuriya et al., 2021), Crohn’s disease (CD) (Pérez-
Brocal et al., 2013; Norman et al., 2015; Clooney et al., 2019),
colorectal cancer (CRC) (Gao et al., 2021), ulcerative colitis, and
type 2 diabetes (T2D) (Norman et al., 2015; Ma et al., 2018;
Clooney et al., 2019), these alterations of viral elements in
individual cases are still insufficient to understand the specific
roles of viruses in diseases systematically. Besides, studies have
shown that altered co-abundance relationships between bacteria
and topological distortion of the network structure occurred in
the disease-related gut microbiome (Baldassano and Bassett,
2016; Chen et al., 2020). However, these studies overlooked
viruses that might push the network changes. At present,
metagenomic sequencing is one of the methods to study
virome (Ma et al., 2018; Garmaeva et al., 2019), which takes
prophages that exist in bacteria genomes into consideration.
Utilizing metagenomes also makes the quantification of viruses
and bacteria on the same scale and thus convenient to construct
interaction networks. To sum up, metagenomic studies that
systematically characterize viruses in diseases and their
relationships with bacteria are still lacking.
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Here, we conducted an exploratory analysis of virome from gut
metagenomic sequencing datasets of five diseases [IBS, T2D, CD,
CRC, and liver cirrhosis (LC)] to get more profound insights into
the roles that viruses play in the gut microbial community of
health and diseases. We started from the analyses of IBS datasets
from the recruited subjects, including 22 cases and 15 healthy
controls (9 of each group have the host serummetabolomics data).
We collected 401 disease-control gut metagenomic public data of
the other four diseases (Qin et al., 2012; Qin et al., 2014; Lewis
et al., 2015; Yu et al., 2017) (438 metagenomic data in total) to
analyze gut viruses in multiple diseases. With a well-designed
metagenomic sequence analysis and viral gene identification
pipeline, we found there were shifts in viral composition, which
showed consistency with the shifts in bacteria and metabolome
between IBS patients and healthy controls. Significantly, the
shifted viruses included phages that infect several lactic acid
bacteria depleted in the IBS group. By further constructing and
analyzing the disease-specific networks, we found that viruses
actively interacted with bacteria in both diseased and healthy
guts. Moreover, viruses showed a significant trend of more
negatively correlating with dysbiosis-related bacteria and
inflammation-related bacteria such as Proteobacteria and
Bacteroidetes in multiple diseases, indicating possible inhibitory
effects against these bacteria. Besides, we found a list of key viruses
that were of high centrality and contributed most to the whole
communication of microbes in the pan-network and shortened
path length among major short-chain fatty acid-producing
bacteria. Lastly, we characterized the functions of viral genes by
manual categorization of family annotations and built a database
named VirGenFunD (gut Viral Genes and Functional
classification Database) for the detected viral sequences
(available at http://cqb.pku.edu.cn/ZhuLab/VirGenFunD/, or
https://yjiang724.github.io/VirGenFunD/). The functional
annotations of VirGenFunD thus doubled the number of the
known function categories. These results presented a landscape of
viruses in the disease-related gut microbial network and provided
insights to a better understanding of the human gut microbiome
and potential treatments of diseases.
MATERIALS AND METHODS

Metagenomic Sample Description
This study includes five metagenomic datasets, including IBS
datasets sequenced from recruited subjects and four other
datasets from the public database. The dataset of 22 IBS patients
and 15 healthy controls have been described in our previous paper
(Xu et al., 2020). Briefly, these subjects were recruited at the
Outpatient Department of Gastroenterology of Peking University
Third Hospital. The studies involving human participants were
reviewed and approved by the Ethics Committee of Peking
University People’s Hospital (No.2017PHB105-01). The
participants provided their written informed consent to
participate in this study. IBS patients should meet the standard
of the Rome III criteria. Exclusion criteria included organic
gastrointestinal or systemic diseases, use of antibiotics or
April 2022 | Volume 12 | Article 846063
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antidepressants within a month, and use of probiotics, laxatives, or
antidiarrheal drugs for more than 3 days during the previous 2
weeks. Among these individuals, nine cases and nine controls have
corresponding metabolomic data (non-targeted metabolomics
profiling on serums). Details of the sample collection, DNA
sequencing, and metabolomic assay are documented in
Supplementary Methods in Supplementary Materials.

Another four metagenomic published datasets were also
obtained from studies related to the following diseases: T2D
(Qin et al., 2012), CD (Lewis et al., 2015), CRC, and LC (Qin
et al., 2014; Yu et al., 2017). The selection of these four diseases
was mainly in consideration of metabolic or bowel dysfunctional
diseases and data availability when we performed the research.
Sample information is included in Table S4. Except for one CD
dataset which is an American cohort, all are Chinese cohorts.

Data Processing
We began with the raw reads and processed them in a uniform
pipeline. Reads were first quality controlled by prinseq-lite, with
arguments -ns_max_p 10 and -min_qual_mean 25. Then,
human sequences were removed by mapping reads to human
reference genome GRCh38 with bowtie2 using the argument
-very-fast (Langmead and Salzberg, 2012). The remaining reads
were considered as clean reads. To assure the quality of these
samples, only samples of clean reads fastq files larger than 2 Gb
and contig N50 lengths longer than 1 kb were included, which
resulted in 27 cases versus 31 controls in the T2D dataset, 148
cases versus 18 controls in the CD dataset, 52 cases versus 51
controls in the CRC dataset, and 40 cases versus 34 controls in
the LC dataset. The 37 sequenced samples in the IBS dataset all
met the sample quality standard.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Viral Gene Identification and Bacteria
Taxonomic Annotation
The overall analysis pipeline is shown in Figure 1A. After quality
control and removing host sequences that mapped to the human
genome, clean reads’ file size ranged from 2 to 28 GB. The
metagenomic reads were then assembled into contigs by
metaSPAdes (contigs longer than 1.5 kb were kept), and genes
were predicted from these contigs by MetaGeneMark (Zhu et al.,
2010; Nurk et al., 2017). We assumed that gene abundance was
approximately proportional to the actual organism abundance.
Thus, these genes were used to estimate the relative abundance of
taxon among viruses and bacteria, respectively. For viral
taxonomic annotation, genes were first aligned against the
NCBI RefSeq non-redundant protein database (O'Leary et al.,
2016) and then to the hidden Markov models of viral protein
families generated from the JGI Earth’s virome project (Paez-
Espino et al., 2016), in which 167,042 protein-coding genes from
2,353 isolated viral genomes were clustered into 14,296 protein
families. To remove false positives that originated from bacteria,
we removed genes that had significant hits to human gut bacteria
contigs published in Forster’s study (Forster et al., 2019) (blastn,
with arguments: -perc_identity 98, -qcov_hsp_perc 90, -evalue
1e-10, -max_target_seqs 1). The remaining union of genes that
had hits against reference viral proteins and viral protein families
were considered viral genes. We benchmarked the viral
identification process by a simulated dataset, which revealed a
specificity (true positive rate in the predicted viral genes) of
98.8% and a recall rate (true positive rate in all viral genes) of
54.0% (see details of benchmark in Supplementary Methods).
Meanwhile, the non-viral genes were annotated with Kaiju
(Menzel et al., 2016), which maps sequences to the
A B

FIGURE 1 | Viruses identified in the IBS and corresponding healthy controls. (A) Workflow of the analysis in this paper. (B) Viral composition in family level of each sample.
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NCBI RefSeq protein database containing bacteria and
archaea proteins.

Taxonomic Abundance Profile Calculation
All our taxonomic classifications were based on predicted genes.
We first evaluated the contig abundances by mapping reads to
contigs and calculated reads per kilobase: ai =

xi
Li
� 1000, where

ai is the abundance of contig i in sample S, xi is the number of
reads mapped to contig i, and Li is the length of contig i. The
gene abundance was calculated after adjusting the corresponding
contig abundance by gene number in that contig: gij =

ai
ni
, where

ni is the number of genes in contig i. The abundance of a
taxonomic unit was then added by the abundance of genes
with the same taxonomic annotations: t = S gi j, t

0 = t

ot , where
t′ is the relative abundance of a taxonomy unit in sample S.

Disease-Specific Co-Occurrence
Network Construction
Based on the abundance matrix constructed by calculating the
abundance of each feature, we used SparCC to measure the
correlation between each pair of features (Friedman and Alm,
2012). One of the major factors that we need to take into
consideration when inferring co-occurrence relationships of
the microbiome is composition bias, which refers to the bias
caused by the relative abundances that sum to 1 so that fractions
tend to be negatively correlated regardless of their true
relationships. SparCC is designed to estimate correlations of
compositional data by the log transformation of pairwise data.
Since SparCC adds a small value to each zero value to perform
log transformation, correlations for elements that appear only in
a few samples may not be reliable, so we removed elements that
appear in less than 20% of the sample within a group.

After constructing networks of each case and control group
by SparCC, the differential interaction between case and control
groups of a cohort was divided into two parts: links that existed
only in the network of the case group and links that existed in
both networks but had significantly different correlation
coefficients [r(sj,sj′)]. To measure the significance of the
difference of r, we calculated the difference (D, absolute value)
of r between the same links that existed both in the network of
case and control and compared it with the bootstrapped
difference of r between cases and 100 shuffled co-abundance
matrixes generated in SparCC. If D was beyond the 95% quantile
of the bootstrapped difference, the interaction represented by this
link was significantly different between cases and controls. The
case-specific networks selected in this way were further filtered
with SpiecEasi to get more reliable links and reduce indirect
interactions (Kurtz et al., 2015).

Pan- (Pooled) and Core- (Shared)
Network Construction
We inferred the pan- and core-networks at the family level, since
the pool of the genus-level networks had too many links to be
visualized. The pan- networks were constructed by the pool of
the links of the five disease-specific networks. The core network
was constructed by the links that appear in four or more of the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
networks. We mapped the nodes in each network to the family
level and then calculated the pan and core of the links. Links with
the same source nodes and target nodes and the interaction type
(positive or negative) were merged. Links with the same source
and target nodes but different interaction types were removed.

Network Topological Feature Computation
To quantify the characteristics of networks, we calculated node
attributes such as degree, importance centrality, betweenness
centrality, and network attributes such as average path length,
modularity index, and scale-free index. The degree, importance
centrality, and scale-free index were calculated with an in-house
R script with the following method.

We denote d(sj) as the node degree, defined as the total edges
that connect to the node sj:

d sj
� �

= o
N

j 0 = 1

j 0 ≠ j

d sj,sj 0
� �

We defined the node importance score (importance
centrality) to denote the importance of a node by modifying
the clustering coefficient (CC). Therefore, the importance score is
defined as:

c sj
� �

=
d sj
� �

d sj
� �

− 1
� �

+ 1

2a sj
� �

+ 1

a(sj) is the number of edges that exist among the neighbor nodes
that directly link to the node sj, not including sj itself. b(sj) is the
maximum number of possible edges among the neighbor nodes
of sj. This definition of CC is as the following:

j sj
� �

=
a sj
� �

b sj
� � =

2a sj
� �

d sj
� �

d sj
� �

− 1
� �

The reason to modify CC is that the numerator and
denominator may be both 0 in j(sj). Moreover, we want CC to
be directly proportional to the importance of a node. That is, the
more neighbor nodes of sj and fewer edges among these neighbor
nodes, which means the more important of node sj, the larger the
c(sj).

Betweenness: the node betweenness is defined by the number
of shortest paths going through the node. It is calculated by the
betweenness function of the “igraph” package in R (Csardi and
Nepusz, 2006).

Scale-free index: if a network has the property where the low-
degree nodes are in the majority and hub nodes of high degree
are in the minority, the network is defined to be scale-free. The
distribution of node degree in a scale-free network follows a
power-law distribution, that is,

P dð Þ ∼ d−Y

Thus, the scale-free index is defined as the fitness (r-square) of
the linear regression model between log(P(d)) and log(d).
April 2022 | Volume 12 | Article 846063
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Modularity index: the modularity is calculated by
cluster_walktrap and modularity function of the “igraph”
package in R (Csardi and Nepusz, 2006), which utilize the
random walk algorithm to cluster nodes in the networks.

Average path length: the average path length of the network is
calculated by themean_distance function of the “igraph” package
in R.

Viral Gene Functional Annotation and
VirGenFunD Database Construction
We first annotated all genes of the microbiome with the KEGG
database and the ALCME database separately (Leplae et al., 2010;
Wang et al., 2015; Kanehisa et al., 2016). Since the KEGG
functional annotation rate for viral genes was low (overall
annotation rate: 46.8%), we used annotation of ALCME in
later analyses (overall annotation rate: 80.1%). However, the
majority of families in ACLAME were without GO or MeGO
annotations, and thus we manually annotated them with the
protein names that appeared most times within that family. After
aggregating the families with the same annotation terms, a total
of 2,162 function items were obtained. Thus, we further grouped
these items into 16 categories manually by reference to COG
(Tatusov et al., 2000). The details of the classification of the 16
categories are described in Supplementary Methods. We further
built a database for the detected viral genes with manually
classified functional annotation named VirGenFunD. Each
sequence was labeled with annotations of taxonomy, KEGG,
ACLAME, and VirGenFunD category and classified into
five classes.

Viral Gene Function Enrichment Analysis
The enrichment analysis was based on Fisher’s exact test. Here,
we use all genes of viruses that take part in a network as the
background. Since genes were both annotated with ACLAME
family information and taxonomic information, the function of
the VirGenFunD category can be retrieved through taxonomic
annotation of genes. We first counted the number of each
VirGenFunD category in the background list of viruses and
then tested each VirGenFunD category for their enrichment in a
subset of the background list by counting the number of a
VirGenFunD category in that subset and performing Fisher’s
exact test with a contingency table (take Category01 as
an example):

Subset of background Background

Number of genes in Category01 N1 N2

Number of genes not in
Category01

N3 N4
Frontiers in Cellular and Infection Microbi
ology | www.frontiersin.org
Statistical Information
Numbers that follow the ± sign in the manuscript indicate
standard deviations. The Mann–Whitney U test was conducted
with the wilcox.test function in R (two-sided), with a significance
level set as p ≤ 0.05 for viruses and bacteria. The Kolmogorov–
Smirnov test was used to test the normality of the distribution for
5

continuous variables. The t-test was conducted with the t.test
function in R (two-sided) for normally distributed continuous
variables, with the significance level set as p ≤ 0.05 for
metabolites. Fisher’s exact test was conducted with the
fisher.test function in R. The networks constructed by SparCC
were filtered with r ≥ R, and FDR-adjusted p ≤ 0.05, where r is the
SparCC correlation coefficient; R was set as 0.6 in the IBS dataset
and 0.4 in the other four datasets. The cutoff is different for the
IBS dataset because the sample size is smaller than the other
datasets. The network constructed is sensitive to sample size, and
to make the network constructed more reliable and get the
network of comparable size from different datasets, we set a
higher cutoff for the IBS dataset. Statistics for disease-specific
network selection were described above.

We used the permutation test to check whether negative or
positive correlations were enriched in the relationships between
viruses and bacterial phyla. For a given network, we first
calculated the number of all bacteria–virus links (n1) and the
number of negative bacteria–virus links (n2). For a given
bacterial phylum (for example, Firmicutes), we calculated the
number of negative Firmicutes–virus links (n3). We sampled n2
links from all the bacteria–virus links (n1) and calculated the
number of Firmicutes–virus links (n4) 100,000 times. p-value was
then calculated as the upper or lower quantile of n3 in the
bootstrapped set of n4. The significance level was set as FDR
p ≤ 0.05.

To test the significance of network structures (modularity,
scale-free index, and average path length), we built networks of
the null models through randomization of preserved number of
nodes and edges. The p-values were calculated based on the 1,000
randomized null networks.

The major codes of our analyses are available at https://
github.com/lkyvirrrr2001/viruses_analyses/.
RESULTS

Consistent Variation of Viruses Along With
Shifts of Bacteria and Metabolites in IBS
The alterations in gut bacteria between IBS and healthy controls
have been reported in our previous work (Liu et al., 2016; Wang
et al., 2019; Xu et al., 2020). Herein, we further explore the roles
of the viral elements using these sequenced metagenomic
samples, including 22 IBS patients (diarrhea-predominant) and
15 healthy controls, and 18 paired host metabolomic samples.
The complete analysis pipeline is shown in Figure 1A and
described in Materials and Methods. Our results demonstrated
that the overall ratio of viral gene abundance to all the genes was
9.6% (±3.6%), with no significant difference between cases and
controls. A total of 291 viral genera and 50 viral families were
detected. Among the annotated viral families, Siphoviridae,
Myoviridae, and Podoviridae, all belonging to the Caudovirales
order, were the most abundant phages (Figure 1B), which are
consistent with the typical composition of the phageome of
human adults (Minot et al., 2011; Manrique et al., 2016; Ma
et al., 2018). For eukaryotic viruses, Megavirales, Pithoviridae,
April 2022 | Volume 12 | Article 846063
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Baculoviridae, Nudiviridae, Nimaviridae , Circoviridae ,
Retroviridae, Togaviridae, etc., were detected but were in the
minor part. These viruses were also common in the human gut
(Table S1) (Mukhopadhya et al., 2019).

The comparison between cases and controls revealed 22 and 6
viral genera depleted and enriched respectively in the IBS group
(Mann–Whitney U test, p ≤ 0.05), detected by MetaComp (Zhai
et al., 2017). In the previous study, the gut bacteria and host
serum metabolites were found to have shifted between IBS and
healthy controls (Xu et al., 2020). To explore whether these
different viruses were related to the shifts of bacteria and
metabolome between IBS and healthy controls, we calculated
the Spearman correlations between different viruses and different
bacteria (Mann–Whitney U test, p ≤ 0.05) as well as metabolites
(t-test, p ≤ 0.05), respectively (Figures 2A, B). IBS-depleted
viruses positively correlated with most of the IBS-depleted
bacteria, and IBS-enriched viruses positively correlated with
IBS-enriched bacteria (Figure 2A), showing a covarying
relationship between shifted viruses and bacteria. Among the
shifted bacteria, three lactic acid bacteria, Lactobacillus,
Lactococcus, and Enterococcus, which are probiotics and
beneficial to human health (Hatti-Kaul et al., 2018), were
depleted in the IBS group (Mann–Whitney U test, p ≤ 0.05,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Table S2). Alongside this shift, C5virus (phage that infects
Lactobacillus), Sk1virus (phage that infects Lactococcus), and
Phifelvirus (phage that infects Enterococcus) were also depleted
in the IBS group (Mann–Whitney U test, p ≤ 0.05) and showed a
significant positive correlation with their host bacteria
(Spearman correlation, FDR p < 0.01), indicating a lysogenic
relationship between the phages and their bacteria hosts.

The host non-targeted metabolomics profiling further
supported the relationship between viruses and the disease. A
total of 77 negative and 59 positive metabolic ions were detected
as significantly different between cases and controls (t-test, p ≤
0.05). These metabolic ions mostly came from lipids, amino
acids, dipeptides, organic acids, disaccharides, benzenoids, etc.
(Table S3), which can significantly separate samples of cases and
controls by a partial least square discriminant analysis (PLS‐DA)
model (Figure S1). Consistency between viruses and
metabolome was observed herein, for IBS-depleted viruses
positively correlated with IBS-depleted metabolic ions and
negatively correlated with IBS-enriched metabolic ions
(Figure S2). We also calculated the correlations between viral
genes (annotated by ACLAME database) and the different
metabolites, and some viral functions significantly correlated
with the shifted metabolites (Figure 2B). Some of the correlated
A B

FIGURE 2 | Correlations among viruses, bacteria, and metabolites. (A) Heatmap of the Spearman correlations between significantly different viruses (column) and
significantly different bacteria (row). There were 22 viruses in genus level depleted and six enriched in the IBS group (Mann–Whitney U test, p ≤ 0.05), 97 bacteria in
genus level depleted, and nine enriched in the IBS group (Mann–Whitney U test, p ≤ 0.05). The significances of correlations were labeled with “*” (FDR p < 0.05) and
“**” (FDR p < 0.01). The same color-labeled names of bacteria or viruses indicate the pairs of infective phages and their bacteria hosts. (B) Heatmap of the
Spearman correlations between significantly different viral gene families (column) and significantly different metabolic ions (row). There were 51 metabolic ions
depleted and 85 enriched in the IBS group (t-test, p ≤ 0.05). The significances of correlations were labelled with “*” (FDR p < 0.05) and “**” (FDR p < 0.01).
April 2022 | Volume 12 | Article 846063
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viral gene functions deal with viral propagation, such as
replication, transcription, and transposition of related
functions and structural proteins; others deal with enzymes
that are important in biological functions for viruses or their
host, such as virally encoded metal-dependent hydrolase, which
catalyzes the hydrolysis of a wide range of biologically important
substrates including carbohydrates, peptides, and nucleotides.
Furthermore, the differential metabolites were involved in 47
metabolic pathways (Table S3), in which 25 overlapped with
pathways found in the metagenomic data, and the differential
viruses had a significant contribution to these pathways (11
pathways out of 25, Fisher’s exact test, p = 1.67 × 10-2). These
results indicated that the changes of viruses accompanied
changes in bacteria and metabolites of the IBS group, and the
genes encoded by the viruses may affect the metabolic pathways
related to human health.

Characterization of the Gut Virome
in Multi-Diseases
To get a better understanding of the gut virome in health and
diseases, we collected metagenomic datasets from four other
diseases, T2D, CD, CRC, and LC, which are typical metabolic or
dysfunctional bowel diseases that are marked with dysbiosis in
gut microbiota (Qin et al., 2012; Qin et al., 2014; Lewis et al.,
2015; Yu et al., 2017). To explore the roles of viruses in a
systematic view of diseases, we also collected published
metagenomic datasets related to the above four diseases. Meta-
data including age and sex of the involved individuals are listed
in Table S4. All the raw data from the 438 gut metagenomic
samples (including 37 samples in the above IBS cohorts) made
up the total 5T size of fastq files which then followed a uniform
analysis pipeline (Figure 1A). In the whole gene repertoire of the
gut microbiome of all samples, viruses contributed 9.4% (±5.6%)
of gene abundance to the total annotated genes (Figure 3A), and
no significant difference in the viral ratio was found between each
group of cases and controls. The compositions of viruses in the
four datasets resembled that in the IBS dataset (Figure 3B), and
identifiable phages occupy 68.5%–73.5% of all the viral
abundance in different groups (Figure S3). In a systematic
perspective of five diseases, there were 106 viral genera
(Table S5) and 20 viral families (Table S6) that showed
different abundances between cases and controls (Mann–
Whitney U test, p ≤ 0.05). However, we found no shared
different genus or family among the five datasets.

Roles of Viruses in the Disease-Specific
Co-Abundance Network of Gut Microbiota
To explore the possible positive or negative roles of viruses in the
human gut with analysis of the disease-related microbiota
samples herein, we thus investigated how phages and
eukaryotic viruses respectively interacted with bacteria in
disease-specific networks. We first constructed the co-
abundance network of the microbes at the genus level within
each case and control group (see bacterial and viral genus
abundance matrixes in Tables S2 and S5). Then, we selected
links that specifically appeared in the case group as the disease-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
specific network (see Materials and Methods). We also
constructed healthy-specific networks relative to each case
group to make comparisons. Metrics to quantify the properties
of the networks were calculated, including mean degree, edge
number, importance centrality, betweenness, modularity, scale-
free index, and average path length.

All the networks showed frequent correlations within and
between bacteria, phages, and eukaryotic viruses, and some of the
viral nodes were of high degree and high importance centrality
(Figure 4A, Figures S4–S7, and Table S7). The family-level pan
(pooled) network and core (shared) network showed that phages,
notably the three most abundant Caudovirales phages
(Siphoviridae, Myoviridae, and Podoviridae families), took
important positions in the network since they had both high
degrees and high importance centralities (Figure 4B and Figures
S8–S10). The construction of the family-level pan (pooled)
network and core (shared) network is described in Materials
and Methods.

In all healthy-specific interaction networks, the mean degrees
of viruses were comparable to those of bacteria. The mean
degrees of eukaryotic viruses were even higher than those of
bacteria in the healthy control group of the T2D dataset (Table
S8, Mann–Whitney U test, W = 8079.5, p = 0.01), while in T2D,
CD, and LC, the mean degrees of phages or eukaryotic viruses
were smaller than those of bacteria which might indicate the
decreased number of relationships of viruses with other microbes
in these disease-specific networks (Table S8).

Analysis of Relationships Between
Viruses and Bacteria Suggested the
Positive Role of Viruses
We then focused on the relationships between viruses and bacteria
in disease-specific interaction networks to find how viruses
impacted different bacteria phyla. Most of the relationships
linked to viruses were from bacteria, indicating that viruses and
bacteria had close and intricate interactions (Figure 4A and Table
S9). Specifically, viruses, including both phages and eukaryotic
viruses, had rarely negative relationships within themselves,
compared to a high negative correlation ratio between viruses
and bacteria (Figure 4C and Table S9, proportion test, FDR p <
0.05). This was also the case when we combined all the groups into
a pan-group (Figure S11). The ratios of negative correlations in
phage–phage correlation, phage–eukaryotic virus correlation, and
eukaryotic virus–eukaryotic virus correlation (14.0%, 5.5%, and
3.1%, respectively) are significantly lower than the ratios of
negative correlations in bacteria–phage correlation, bacteria–
eukaryotic virus correlation, and bacteria–bacteria correlation
(37.1%, 42.4%, and 25.9%, respectively) (proportion test, FDR p
< 0.05). This result suggested that viruses might have restraints on
some bacteria and rarely conflicted within themselves. Firmicutes,
Bacteroidetes, Proteobacteria, and Actinobacteria were four major
bacterial phyla that interacted with viruses, while Firmicutes and
Bacteroidetes had the highest interaction ratio and thus might be
the most impacted by viruses (Figure 4D).

Moreover, viruses showed different preferences in positive or
negative correlations with these four bacteria. Viruses tended to
April 2022 | Volume 12 | Article 846063
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have more positive correlations with Firmicutes and Actinobacteria
and more negative correlations with Proteobacteria and
Bacteroidetes (permutation test, Figure 4E), which are common
dysbiosis-related and inflammation-mediating bacteria, respectively
(Shin et al., 2015; Wassenaar and Zimmermann, 2018). This
phenomenon was even more significant in healthy-specific
networks (Figure S12), indicating a possible positive role of
viruses to inhibit disease-mediating bacteria in both health
and diseases.

Viral Effects on Structures of Disease-
Specific Networks
To further characterize the roles of viruses in the interaction
networks of the disease-related microbiome, we calculated
network structural features including modularity and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
scale-freeness of networks, to explore how viruses impacted the
network structure. Modularity is a measurement of the property
that a network can be divided into individual communities in
which members are densely interconnected and sparsely
connected outside. The modularity of biological networks
makes the subgroups function semi-autonomously (https://
psychology.wikia.org/wiki/Modularity_(biology)). In all
healthy-specific and disease-specific networks, the modularity
indices were significantly higher than those of random network
null models with the same number of nodes and edges of each
network (1,000 times of randomization, p < 0.001) (Figure 5A
and Figures S13–S16). These differences showed that relative
independent communities existed among microbes, in which
viruses interspersed among bacteria rather than grouped into
individual modules. More interestingly, we explored the viral
A

B

FIGURE 3 | Abundance and composition of the gut virome in different groups. (A) Viral gene abundance in different samples. The blue part of each bar is the viral
gene abundance relative to all the predicted genes in that sample and represents the portion of reads from the detected viral genes to reads from all genes in a
sample. (B) Composition of viruses in family and order level. Inner pie chart, viral families. Outer circle, corresponding orders to the families. Microviridae, Inoviridae,
Bicaudaviridae, and families that belong to Caudovirales are bacteriophages. Phycodnaviridae, Mimiviridae, Poxviridae, Marseilleviridae, Iridoviridae, and Ascoviridae
are Megavirales known as nucleocytoplasmic large DNA viruses (eukaryotic viruses). Pithoviridae, Baculoviridae, and Nudiviridae are also eukaryotic viruses.
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effects on the structures of networks by removing the virus nodes
in disease-specific networks and observed that the modularity of
the bacteria network increased in all groups (Figure 5B and
Table S9), meaning that viruses connect between bacteria
modules and contribute to shaping the network structure of
the gut microbiota.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
The scale-free property of networks, in which a few nodes
possess a large number of relationships, and most nodes possess
a small number of relationships, is typical of biological systems
that are robust to random disruptions (Barabási and Albert,
1999). Herein we calculated scale-free indices, defined as the r-
square of the node degree fitting a log-transformed power-law
A B

D

E

C

FIGURE 4 | Characterization of disease-specific co-abundance relationships of viruses. (A) IBS-specific network. (B) Pan-network of five disease-specific networks
in family level. (A, B) The co-abundance networks of the gut microbiome, including bacteria, phages, and eukaryotic viruses. The two ends of each edge represent
two nodes (genus) that have interaction. Three types of annotations are outside the nodes: the outermost circles of the ribbon indicate three classes of the node; the
two circles of the heatmap represent the node importance centrality and the node degree, which is defined as the number of nodes that link to each node. (C)
Histogram of negative correlation ratios within and between three classes of nodes: bacteria, phages, and eukaryotic viruses in each disease-specific network (“*”;
FDR p < 0.05, “**”; FDR p < 0.01, “***”; FDR p < 0.001, “****”; FDR p < 0.0001). (D) Proportion of four bacterial phyla that link to viruses. (E) Ratio of negative
correlations of four bacterial phyla that link to viruses. Points with label “1” denote FDR p > 0.05. The p-values were calculated two-sided, so the negative correlation
ratio close to 0 or 1 and FDR p < 0.05 means the positive correlation ratio or the negative correlation ratio (respectively) was enriched in the relationships between
that bacteria and viruses. The negative link ratio in Proteobacteria and Bacteroidetes and the positive link ratio in Firmicutes and Actinobacteria were significantly
higher than the random ratio (permutation test, FDR p is shown in the figure).
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distribution, of the five disease-specific interaction networks
(Table S9). All the networks showed the characteristics that
low-degree nodes had higher frequencies than high-degree nodes
(Figure 5C, 1,000 times of randomization, p < 0.001), and short
paths existed among different taxa (Table S9), compared to the
average path length of six in random networks (1,000 times of
randomization, p < 0.001) (Watts and Strogatz, 1998; Faust et al.,
2012). This result indicated that the disease-specific networks
had the property of scale-freeness. When comparing the scale-
free indices of the total networks with the ones in which viruses
were not considered (non-viral), we found that the scale-free
indices of all the networks decreased (Table S9, 1,000 times of
randomization, p < 0.001). Although the decrease in scale-free
indices was mainly attributed to the removal of substantial
amounts of low-degree viral nodes, this result indicated that
viruses improved the scale-freeness of the networks and made
the microbial community of gut microbiota more robust.

The network structure analysis illustrated that viruses could
bridge between bacteria, but not all viruses were equally
important. To determine which viruses were more important
in communicating between bacteria, we defined the ones that
could shorten all the bacteria’s average path lengths as key
viruses. By calculating the betweenness centrality of each viral
node and adding them to the bacterial community in decreasing
order, we found lists of such key viruses that minimize the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
average path length in the pan network as well as five disease-
specific networks (Figure 5D and Table S10). These viruses took
significant parts in interacting with short-chain fatty acid-
producing bacteria Firmicutes (121 out of 125 interacting
bacteria, Fisher’s exact test, p = 1.58 × 10-2) and Bacteroidetes
(79 out of 83 interacting bacteria, Fisher’s exact test, p = 6.23 ×
10-2), which implied that in the disease-specific networks, viruses
might take an important part in the gut metabolism, by the
coaction with these bacteria.

Viral Gene Functional Annotation Revealed
Their Roles in Disease-Related
Microbial Community
To further explore how viruses interact with bacteria, we first
investigated the viral gene functions by annotating them with
viral protein families in the ACLAME database. Since only a
small part of protein families are annotated with GO or MeGo,
we reannotated them and categorized them into 16 categories
(Figure 6 and Table S11). Based on the 16 categories, we
performed enrichment tests on gene functions of viruses that
interact with bacteria (see Materials and Methods). The gene set
of key viruses selected in each network described above was
generally enriched in functions of “Transporter activity”, which
mainly includes ATP-binding cassette (ABC) transporter- and
transmembrane transporter-related proteins, “Chaperons and
A B

DC

FIGURE 5 | Structural indices of disease-specific networks. (A) Heatmap showing the modularity of the IBS-specific co-abundance network. (B) Heatmap showing
the modularity of the IBS-specific co-abundance network after removing viral nodes. (C) Log2-transformed node degree distribution. Node degree is the number of
direct links of a node. Degree distribution of a scale-free network follows a power-law distribution, and after log–log transformation, the distribution should fit a linear
relationship. The r-square of each line is defined as the scale-free index. In each subgraph, R1 represents the line of all the nodes, R2 represents the line of nodes
excluding eukaryotic viruses, R3 represents the line of nodes excluding phages, and R4 represents the line of nodes excluding all viruses. (D) Average path lengths
of the pan-disease-specific network in family level. Viruses were added to the bacteria network in the decreasing order of betweenness centrality.
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secretion system”, which mainly includes proteins involved in
type III and type IV secretion system that transport molecules
from bacterial cells to other cells, “Metabolic enzymes”, which
include general enzymes such as oxidoreductase, hydrolase, and
modification-related enzymes, and “Signal transduction”, which
mainly includes a two-component signal transduction system
and response to stress (Table S12, Fisher’s exact test, FDR p <
0.01). These functions are essential biological functions for both
viruses and hosts. Viruses in these ways might affect the
phenotype of bacteria under the condition of diseases.

We further tested the significance of functional enrichment of
phages that negatively and positively interacted with bacteria
(phages that had negative link ratios of 1 and 0 were selected as
representatives, respectively). In comparison with all the
annotated phage genes, functions that were typical of
temperate phages such as “Integration and recombination” and
“Metabolic enzymes”were enriched in both positive and negative
interacting phages with bacteria (Tables S13 and S14, Fisher’s
exact test, FDR p < 0.01), supporting that most phages in the gut
were temperate phages (Toussaint and Rice, 2017). Function
“Transcription and regulation of gene expression” and
“Nucleotide transport and metabolism” were only enriched in
phages that positively interact with bacteria. In contrast, function
“Toxins and detoxification” (this category includes toxins, post-
segregating killing process, and detoxification of mercury ion)
was only enriched in phages that negatively interact with
bacteria. These results indicated the possible mechanisms
underlying the correlations between phages and bacteria, either
through direct predation or lysogeny, or through indirect
interaction between phages and non-host bacteria by affecting
the host gene expression, metabolism, and virulence. We
performed the same analysis in the healthy-specific networks
but found no positive-interaction-specific or negative-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
interaction-specific viral function, indicating a homogeneous
distribution of gene functions in positive and negative
interacting phages with bacteria (Tables S15 and S16). As for
eukaryotic viruses, which were generally ignored in the gut
virome, they interacted with bacteria with the enriched
functions of “Signal transduction”, “Metabolic enzymes”, and
“Transporter activity” (Tables S17 and S18, Fisher’s exact test,
FDR p < 0.01) in both disease- and healthy-specific networks,
giving hints to the potential roles of eukaryotic viruses in the gut.

To provide convenience for further analyses and more
insights into the role of viruses in the human gut, we
summarized our detected viral sequences and annotations
from different sources into a database named VirGenFunD.
Although there are some excellent viral databases like GVD
(Gregory et al., 2020), ACLAME (Leplae et al., 2004), and
pVOGs (Grazziotin et al., 2016), which include large amounts
of viral sequences, they either lack functional annotations or have
sporadic GO annotations. The VirGenFunD database contained
3,351,765 viral gene sequences from five disease-related datasets
and the corresponding healthy controls. The VirGenFunD
annotation thus nearly doubled the number of the known
function categories (Table 1) and provided vital clues for
understanding the functions of viruses in the human gut. The
VirGenFunD database is available at http://cqb.pku.edu.cn/
ZhuLab/VirGenFunD/ , ht tps : / /y j iang724 .g i thub . io/
VirGenFunD/.
DISCUSSION

In this study, we emphasized the importance of the roles of
viruses in the human disease-related gut microbiome. As
revealed in previous studies, gut viruses play important roles in
FIGURE 6 | Composition of 16 categories of viral gene functions based on the VirGenFunD functional annotations. Samples from the same data source were grouped,
and the label “H” stands for healthy controls. Not surprisingly, some conserved backbone functions such as phage integration and transpositional recombination, DNA/
RNA replication, and repair occupied a substantial part of the whole viral functions. Phage lysis, metabolic enzymes, transporter activity, and signal transduction-related
function were also active in viral gene functions. At the same time, accessory gene functions such as toxins and detoxification were also detected.
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maintaining the healthy human gut (Minot et al., 2011;
Manrique et al., 2016). Here, we focused on how viruses
shaped the microbial community in the disease-related gut.
Our results suggested that viral genes accounted for substantial
amounts of genes in the gut microbiome, yet we suspected that
the amounts of viruses were underestimated under our relatively
strict viral gene identification standard. Eukaryotic viruses,
whose roles were rarely studied, also had non-negligible
amounts in the gut microbial community. The phages detected
in our study mainly were Caudovirales. Noticeably,Microviridae,
reported to be one of the dominant phages in some studies
(Norman et al., 2015; Shkoporov et al., 2019), were not very
abundant in our results. This could be caused by the missing of
free ssDNA viruses in the library preparation of metagenomic
sequencing and that Microviridae might be overestimated in
some studies due to the bias to ssDNA viruses during the
multiple displacement amplification of enriched viral DNA
(Kim and Bae, 2011). We also observed that lists of viruses
showed shifted abundance between cases and controls in one or
more diseases of our five datasets. These viruses might relate to
the metabolite changes of the human host, which could be
supported by the metabolomics data of the IBS group and the
reported diversity correlation between phages and bacteria
(Moreno-Gallego et al., 2019).

Our result showed that the majority of shifted gut bacteria
covaried with shifted viruses, which goes with Coughlan’s study
that found virome alterations partially covaried with bacteriome
alterations (Coughlan et al., 2021). Especially, the positive
correlation between the lactic acid bacteria (Lactobacillus,
Lactococcus, and Enterococcus) depleted in IBS and their
phages indicate the mutualistic relationship between phages
and these probiotics, showing a positive role of viruses as well.
It is worth studying whether these probiotics can have better
colonization together with their phages as intake.

The metabolomic analysis of IBS showed that some metabolites
of lipids and amino acids changed in the IBS group. The changes of
metabolites could be related to the pathogenesis of IBS, including
gastrointestinal motility, visceral sensation, intestinal permeability,
and gut microbiota which are among the key factors affecting the
pathogenesis of IBS (Chey et al., 2015; Pimentel and Lembo, 2020).
These correlations observed among viruses, bacteria, and
metabolites indicated a cofactor role of viruses together with
bacteria in IBS. Moreover, shifted viral gene functions
significantly correlated with the shifted serum metabolites. These
viral gene functions included transcriptional regulators, chemotaxis,
and enzymes, through which viruses can interact with bacteria.
These results suggested that viruses might affect the gut physiology
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
by indirectly modulating phenotypes of hosts or producing
metabolic enzymes that can affect the metabolome of the gut.

In the analyses of gut viruses of multiple diseases, although
batch effects should exist in datasets of different studies’
interaction networks, they do not affect the later analysis since
there is no difference comparison between different studies. In
the analyses of co-occurrence networks, we found a complex
interplay between viruses and bacteria, and some viruses were in
the hub position of the disease-specific networks. These results
supported that viruses, which included both phages and
eukaryotic viruses, were not silent in the gut but were actively
interacting with each other and bacteria. Phages have natural
parasitic relationships with bacteria, and it is not surprising that
phages are affected by bacteria or affect bacteria in the
community, through either the lysogenic mutualism or the
proactive lysis with their host bacteria. On the other hand,
eukaryotic viruses also showed substantial relationships with
bacteria, giving us hints that the relationship between
eukaryotic viruses and bacteria might be important in the
microbial community and deserves more attention.

The current study showed a preference for viruses to more
negatively correlate with Proteobacteria and Bacteroidetes in both
healthy and diseased samples. Proteobacteria are usually the
signature of dysbiosis in gut microbiota (Shin et al., 2015), and
Bacteroidetes are lipopolysaccharides-producing and
inflammation-mediating organisms whose overabundance is
associated with diseases such as liver damage, chronic
inflammation of the gut, and diabetes (Wassenaar and
Zimmermann, 2018). Since the abovementioned five diseases
all deal with aberrant immune responses and varying degrees of
inflammation (Brenner et al., 2015; Brennan and Garrett, 2016;
Zuo and Ng, 2018; Sharma and Tripathi, 2019; Pimentel and
Lembo, 2020), this result showed a possible ameliorating effect of
viruses on the disease-related gut. We deemed this hypothesis
highly possible since there is evidence that phages can protect the
mammalian hosts from harmful bacteria (Barr et al., 2013; Barr
et al., 2015). Besides, phages also have recently been used as brief
clinical antimicrobial agents, but their intake as treatment for
inflammation or microbiota dysbiosis is faced with huge
challenges since phages may have a complex effect on the
microbial ecology (Febvre et al., 2019). Our results suggested
that phages that may reduce disease-unfavorable bacteria exist
naturally in the microbiota-disordered gut and may offer helpful
insights to the designing of supplemental phage drugs.

The network structure analysis suggested that viruses bridged
between bacteria and contributed to the robustness of the
networks. The modularity of networks can represent core and
TABLE 1 | Comparison of the number of annotations for viral sequences in VirGenFunD.

Total viral genes (number) Taxonomic annotation KEGG VirGenFunD VirGenFunD increased annotations

IBS 583,659 516,827 276,611 470,880 220,037
T2D 362,294 313,191 166,848 284,793 134,589
CD 671,020 583,808 292,984 530,029 264,582
CRC 1,489,429 1,325,241 722,396 1,205,490 552,547
LC 245,363 210,944 110,729 192,309 92,851
Total 3,351,765 2,950,011 1,569,568 2,683,501 1,264,606
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peripheral specialized metabolic functions of the microbiome
(Vitkup et al., 2006; Kreimer et al., 2008), and our results showed
that the key viruses of high betweenness centrality took
significant parts in interacting with nearly all Firmicutes and
Bacteroidetes, which are the major source of producing short-
chain fatty acids the key viruses interacted with. This result
indicates that viruses may take part in the metabolic networks of
the gut. Besides, the functional enrichment of the key viruses also
suggested the important role of prophages in metabolism and
communication with bacteria through expressing genes that may
modulate the phenotype of hosts, such as transcriptional
regulators, toxins, and enzymes.

The functional enrichment analysis enabled us to view
through what functions the viruses interact with bacteria.
Results showed that viruses interact with bacteria through
predation (suggested by the function of phage lysis), expressing
genes involved in the transporter and secretion system, metabolic
enzymes, etc. However, as has been suggested in the altered
network analyses and addressed in many other studies that
metabolic functions or pathways shifted in diverse diseases
(Greenblum et al., 2012; Heinken et al., 2021), the specific
positive or negative role of viruses on their involvement in
metabolism and on their functional modification to their hosts
in diseases still needs further exploration.

For eukaryotic viruses, more and more studies have shown
that they can interplay with bacteria in various scenarios. For
example, bacteria help enhance virion stability and affect
attachment and infectivity for some viral pathogens to viral
hosts, and bacteria can regulate the intestine immunity to
viruses (Berger and Mainou, 2018). While the mechanism of
how eukaryotic viruses interact with bacteria is still obscure, our
results demonstrated that these viruses were enriched in some
key functions such as “Signal transduction,” “Metabolic
enzymes,” and “Transporter activity.”

Several limitations to our study herein should be pointed
out. First, the viral genes identified in our pipeline are more
reliable than sensitive, which may lead to the missing of some
low-abundance viruses and thus obscuring of some variations
between individuals. However, we believe our conclusions will
not be fluttered by the missed viruses, which the aggregation of
the five diseases can compensate. Second, the identification
of viral genes was largely based on the reference database,
so unknown viruses were not included in part of our
analysis. Therefore, we used genes to evaluate the taxonomic
composition at least at the viral genus level, which can elevate
the annotation rate through homologous genes at the species or
strain level. In fact, there are several excellent viral gene
detection tools which can be used in future analyses (Fang
et al., 2019; Fang et al., 2020). Third, some samples in the CD
case group were treated with antibiotics. This dataset may not
be able to perfectly reflect the bacteria composition of CD, but
we can still infer the roles of viruses by the relationship with
bacteria. Lastly, some results in our study (for example,
differential viruses) may be inconsistent with similar studies
that utilize the viral-like particle (VLP) enrichment virome
sequencing method. That is because the VLP enrichment
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
method only sequences free viral particles, without
considering prophages. Both strategies are important in
virome studies and should be chosen based on different goals
of studies. Thus, the comparisons between our results and these
studies can be difficult.

Altogether, this study provided a landscape of the roles of
viruses in the disease-related gut microbiome. Gut viruses altered
between diseases and controls together with the bacteria.
Although the causative relationship between the change of
viruses and bacteria cannot be determined, positive roles of
viruses have been suggested by our results. For example,
phages of beneficial bacteria that produce lactic acids covaried
with their bacteria hosts, both of whose abundances are depleted
in the IBS group. Besides, viruses showed the potential to inhibit
the unfavorable bacteria in the disease-related gut, thus
maintaining the relative wellbeing of the gut functions. Key
viruses screened in the interaction networks showed their
indispensable role in gut metabolism. The functional analyses
of viral genes also provide vital clues for understanding the
mechanisms of the interactions between viruses and bacteria.
Our study can provide a better understanding of the gut
microbial community and may offer new insights into the
future treatment-related studies of different diseases.
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Pérez-Brocal, V., Garcıá-López, R., Vázquez-Castellanos, J. F., Nos, P., Beltrán, B.,
Latorre, A., et al. (2013). Study of the Viral and Microbial Communities
Associated With Crohn's Disease: A Metagenomic Approach. Clin. Transl.
Gastroenterol. 4, e36. doi: 10.1038/ctg.2013.9

Pimentel, M., and Lembo, A. (2020). Microbiome and its Role in Irritable Bowel
Syndrome. Dig. Dis. Sci. 65, 829–839. doi: 10.1007/s10620-020-06109-5

Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., et al. (2012). A Metagenome-Wide
Association Study of Gut Microbiota in Type 2 Diabetes. Nature 490, 55–60.
doi: 10.1038/nature11450
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 15
Qin, N., Yang, F., Li, A., Prifti, E., Chen, Y., Shao, L., et al. (2014). Alterations of the
Human Gut Microbiome in Liver Cirrhosis. Nature 513, 59–64. doi: 10.1038/
nature13568

Reyes, A., Blanton, L. V., Cao, S., Zhao, G., Manary, M., Trehan, I., et al. (2015). Gut
DNA Viromes of Malawian Twins Discordant for Severe Acute Malnutrition.
Proc. Natl. Acad. Sci. U. S. A. 112, 11941–11946. doi: 10.1073/pnas.1514285112

Sharma, S., and Tripathi, P. (2019). GutMicrobiome andType 2Diabetes:WhereWeAre
and Where to Go? J. Nutr. Biochem. 63, 101–108. doi: 10.1016/j.jnutbio.2018.10.003

Shin, N.-R., Whon, T. W., and Bae, J.-W. (2015). Proteobacteria: Microbial
Signature of Dysbiosis in Gut Microbiota. Trends Biotechnol. 33, 496–503.
doi: 10.1016/j.tibtech.2015.06.011

Shkoporov, A. N., Clooney, A. G., Sutton, T. D., Ryan, F. J., Daly, K. M., Nolan, J.
A., et al. (2019). The Human Gut Virome is Highly Diverse, Stable, and
Individual Specific. Cell Most Microbe 26, 527–541.e525. doi: 10.1016/
j.chom.2019.09.009

Shkoporov, A. N., and Hill, C. (2019). Bacteriophages of the Human Gut: The
"Known Unknown" of the Microbiome. Cell Host Microbe 25, 195–209. doi:
10.1016/j.chom.2019.01.017

Silveira, C. B., and Rohwer, F. L. (2016). Piggyback-the-Winner in host-associated
microbial communities. NPJ Biofilms Microbiomes 2, 1–5. doi: 10.1038/
npjbiofilms.2016.10

Sutton, T. D. S., and Hill, C. (2019). Gut Bacteriophage: Current Understanding
and Challenges. Front. Endocrinol. 10, 784. doi: 10.3389/fendo.2019.00784

Tatusov, R. L., Galperin, M. Y., Natale, D. A., and Koonin, E. V. (2000). The COG
Database: A Tool for Genome-Scale Analysis of Protein Functions and
Evolution. Nucleic Acids Res. 28, 33–36. doi: 10.1093/nar/28.1.33

Toussaint, A., and Rice, P. A. (2017). Transposable Phages, DNA Reorganization
and Transfer. Curr. Opin. Microbiol. 38, 88–94. doi: 10.1016/j.mib.2017.04.009

Vitkup, D., Kharchenko, P., and Wagner, A. (2006). Influence of Metabolic
Network Structure and Function on Enzyme Evolution. Genome Biol. 7, 1–9.
doi: 10.1186/gb-2006-7-5-r39

Wang, X., Wang, Q., Guo, X., Liu, L., Guo, J., Yao, J., et al. (2015). Functional
Genomic Analysis of Hawaii Marine Metagenomes. Sci. Bull. 60, 348–355. doi:
10.1007/s11434-014-0658-y

Wang, Z., Xu, C., Liu, Y., Wang, X., Zhang, L., Li, M., et al. (2019). Characteristic
Dysbiosis of Gut Microbiota of Chinese Patients With Diarrhea-Predominant
Irritable Bowel Syndrome by an Insight Into the Pan-Microbiome. Chin. Med.
J. 132, 889. doi: 10.1097/CM9.0000000000000192

Wassenaar, T. M., and Zimmermann, K. (2018). Lipopolysaccharides in Food,
Food Supplements, and Probiotics: Should We be Worried? Eur. J. Microbiol.
Immunol. 8, 63–69. doi: 10.1556/1886.2018.00017

Watts, D. J., and Strogatz, S. H. (1998). Collective Dynamics of 'Small-World'
Networks. Nature 393, 440–442. doi: 10.1038/30918

Xu, C., Jia, Q., Zhang, L., Wang, Z., Zhu, S., Wang, X., et al. (2020). Multiomics
Study of Gut Bacteria and Host Metabolism in Irritable Bowel Syndrome and
Depression Patients. Front. Cell. Infect. Microbiol. 10. doi: 10.3389/
fcimb.2020.580980

Yu, J., Feng, Q., Wong, S. H., Zhang, D., Liang, Q. Y., Qin, Y., et al. (2017).
Metagenomic Analysis of Faecal Microbiome as a Tool Towards Targeted non-
Invasive Biomarkers for Colorectal Cancer. Gut 66, 70–78. doi: 10.1136/gutjnl-
2015-309800

Zhai, P., Yang, L., Guo, X., Wang, Z., Guo, J., Wang, X., et al. (2017). MetaComp:
Comprehensive Analysis Software for Comparative Meta-Omics Including
Comparative Metagenomics. BMC Bioinf. 18, 1–16. doi: 10.1186/s12859-017-1849-8

Zhu, W., Lomsadze, A., and Borodovsky, M. (2010). Ab Initio Gene Identification
in Metagenomic Sequences. Nucleic Acids Res. 38, e132–e132. doi: 10.1093/nar/
gkq275

Zuo, T., and Ng, S. C. (2018). The Gut Microbiota in the Pathogenesis and
Therapeutics of Inflammatory Bowel Disease. Front. Microbiol. 9, 2247. doi:
10.3389/fmicb.2018.02247

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
April 2022 | Volume 12 | Article 846063

https://doi.org/10.1073/pnas.0712149105
https://doi.org/10.1371/journal.pcbi.1004226
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1093/nar/gkh084
https://doi.org/10.1093/nar/gkp938
https://doi.org/10.1016/j.chom.2015.09.008
https://doi.org/10.1016/j.cgh.2016.05.033
https://doi.org/10.1073/pnas.1601060113
https://doi.org/10.1186/s40168-018-0410-y
https://doi.org/10.1038/ncomms11257
https://doi.org/10.1053/j.gastro.2021.06.077
https://doi.org/10.1101/gr.122705.111
https://doi.org/10.1016/j.chom.2019.01.019
https://doi.org/10.1177/1756284819836620
https://doi.org/10.1016/j.cell.2015.01.002
https://doi.org/10.1101/gr.213959.116
https://doi.org/10.1093/nar/gkv1189
https://doi.org/10.1038/nature19094
https://doi.org/10.1038/ctg.2013.9
https://doi.org/10.1007/s10620-020-06109-5
https://doi.org/10.1038/nature11450
https://doi.org/10.1038/nature13568
https://doi.org/10.1038/nature13568
https://doi.org/10.1073/pnas.1514285112
https://doi.org/10.1016/j.jnutbio.2018.10.003
https://doi.org/10.1016/j.tibtech.2015.06.011
https://doi.org/10.1016/j.chom.2019.09.009
https://doi.org/10.1016/j.chom.2019.09.009
https://doi.org/10.1016/j.chom.2019.01.017
https://doi.org/10.1038/npjbiofilms.2016.10
https://doi.org/10.1038/npjbiofilms.2016.10
https://doi.org/10.3389/fendo.2019.00784
https://doi.org/10.1093/nar/28.1.33
https://doi.org/10.1016/j.mib.2017.04.009
https://doi.org/10.1186/gb-2006-7-5-r39
https://doi.org/10.1007/s11434-014-0658-y
https://doi.org/10.1097/CM9.0000000000000192
https://doi.org/10.1556/1886.2018.00017
https://doi.org/10.1038/30918
https://doi.org/10.3389/fcimb.2020.580980
https://doi.org/10.3389/fcimb.2020.580980
https://doi.org/10.1136/gutjnl-2015-309800
https://doi.org/10.1136/gutjnl-2015-309800
https://doi.org/10.1186/s12859-017-1849-8
https://doi.org/10.1093/nar/gkq275
https://doi.org/10.1093/nar/gkq275
https://doi.org/10.3389/fmicb.2018.02247
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Li et al. Metagenomic Gut Virome Analysis
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Li, Wang, Guo, Xu, Xie, Tan, Wu, Wang, Guo, Fang, Zhu, Duan,
Jiang and Zhu. This is an open-access article distributed under the terms of the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 16
Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
April 2022 | Volume 12 | Article 846063

http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles

	More Positive or More Negative? Metagenomic Analysis Reveals Roles of Virome in Human Disease-Related Gut Microbiome
	Introduction
	Materials and Methods
	Metagenomic Sample Description
	Data Processing
	Viral Gene Identification and Bacteria Taxonomic Annotation
	Taxonomic Abundance Profile Calculation
	Disease-Specific Co-Occurrence Network Construction
	Pan- (Pooled) and Core- (Shared) Network Construction
	Network Topological Feature Computation
	Viral Gene Functional Annotation and VirGenFunD Database Construction
	Viral Gene Function Enrichment Analysis
	Statistical Information

	Results
	Consistent Variation of Viruses Along With Shifts of Bacteria and Metabolites in IBS
	Characterization of the Gut Virome in Multi-Diseases
	Roles of Viruses in the Disease-Specific Co-Abundance Network of Gut Microbiota
	Analysis of Relationships Between Viruses and Bacteria Suggested the Positive Role of Viruses
	Viral Effects on Structures of Disease-Specific Networks
	Viral Gene Functional Annotation Revealed Their Roles in Disease-Related Microbial Community

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


