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Right ventricular (RV) failure is a common consequence of acute and chronic RV overload

of pressure, such as after pulmonary embolism and pulmonary hypertension. It has

been recently realized that symptomatology and survival of patients with pulmonary

hypertension are essentially determined by RV function adaptation to increased afterload.

Therefore, improvement of RV function and reversal of RV failure are treatment goals.

Currently, the pathophysiology and the pathobiology underlying RV failure remain largely

unknown. A better understanding of the pathophysiological processes involved in RV

failure is needed, as there is no proven treatment for this disease at the moment. The

present review aims to summarize the current understanding of the pathogenesis of

RV failure, focusing on inflammation. We attempt to formally emphasize the importance

of inflammation and associated representative inflammatory molecules and cells in the

primum movens and development of RV failure in humans and in experimental models.

We present inflammatory biomarkers and immune mediators involved in RV failure. We

focus on inflammatory mediators and cells which seem to correlate with the deterioration

of RV function and also explain how all these inflammatory mediators and cells might

impact RV function adaptation to increased afterload. Finally, we also discuss the

evidence on potential beneficial effects of targeted anti-inflammatory agents in the setting

of acute and chronic RV failure.

Keywords: right ventricular failure, coupling, pulmonary hypertension, inflammation, cytokines, chemokines,

immune cells

INTRODUCTION

Although the initial insult involves the pulmonary circulation, it has been better realized recently
that symptomatology and poor clinical outcome in patients with pulmonary arterial hypertension
(PAH), are essentially determined by the adaptation of right ventricular (RV) function to increased
afterload (Galiè et al., 2010; Vonk-Noordegraaf et al., 2013; Vonk Noordegraaf et al., 2017;
Friedberg and Redington, 2014), showing the importance to consider the coupling of the RV
to the pulmonary circulation, as a sole functional unit (Naeije et al., 2014). Similarly, after
pulmonary embolism, mortality and morbidity increase dramatically in patients, in presence
of RV dysfunction (Kasper et al., 1997; Ribeiro et al., 1997; Kreit, 2004; Schoepf et al., 2004).
We know that the RV initially adapts to an increase in afterload observed in pulmonary
hypertension (PH) by an increased contractility with preserved dimensions and stroke volume
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(called Anrep’s homeometric adaptation). This systolic function
adaptation eventually fails, resulting in increased RV dimensions
(called Starling’s heterometric adaptation) and decreased stroke
volume (Galiè et al., 2010; Vonk-Noordegraaf et al., 2013;
Vonk Noordegraaf et al., 2017; Friedberg and Redington, 2014).
Cellular and molecular mechanisms underlying the development
of RV dysfunction (from adaptive to maladaptive processes)
remains insufficiently understood (Figure 1). Moreover, specific
pharmacologic therapy that can reverse RV failure is not yet
available and the effects on RV function of available PAH
therapies remain largely elusive.

In recent years, activation of inflammatory processes has
been identified as one of the major pathogenic components
of pulmonary vascular remodeling, contributing to the
development of various forms of pulmonary PH (Humbert
et al., 2004; Rabinovitch, 2012; Voelkel et al., 2016). Additionally,
circulating levels of inflammatory mediators, such as interleukin
(IL)-6, IL-1β, tumor necrosis factor (TNF)-α, and monocyte
chemoattractant protein (MCP)-1, have been shown to be
elevated in PAH and correlated to the severity of the disease
(Humbert et al., 1995; Dolenc et al., 2014). However, the role of
inflammation in the transition from RV adaptation to RV failure
is still poorly understood.

Described in many different cardiovascular diseases (other
than PAH) (Mann, 2002; Frangogiannis, 2014), myocardial
inflammation has progressively emerged as a pathophysiologic
process contributing to cardiac hypertrophy, fibrosis and
dysfunction in heart failure (Frieler and Mortensen, 2015; Mann,
2015). In patients with idiopathic PAH (Overbeek et al., 2008;
Condliffe et al., 2009) or selected forms of congenital heart
diseases, such as Eisenmenger syndrome (Kuhn et al., 2003), RV
failure is less prevalent and occurs later compared to patients
with PAH associated to inflammatory diseases such as systemic
sclerosis (Kawut et al., 2003; Kuhn et al., 2003; Overbeek et al.,
2008; Condliffe et al., 2009). In these patients, RV inflammatory
infiltrates were denser than in patients with idiopathic PAH,
while interstitial fibrosis was similarly present in all the RV
(Overbeek et al., 2010). This strongly suggests that RV failure
is predominant in patients with PH presenting an inflammatory
background. However, the implication of inflammation to RV
dysfunction is suspected in all forms of PH, including both
chronic and acute increase in RV afterload (Iwadate et al., 2003;
Begieneman et al., 2008; Overbeek et al., 2010). In experimental
models of RV failure, myocardial inflammation has also been
described, with increased infiltration of inflammatory cells and
expression of various cytokines and chemokines (Campian et al.,
2010; Rondelet et al., 2012). We also know that, in the heart,
inflammatory processes are inextricably linked to cell death,
oxidative stress, altered cell metabolism and extracellular matrix
remodeling, which all have been incriminated in the pathogenesis
of RV failure (Figures 1, 2; Bogaard et al., 2009a).

In the present review article, we propose an overview of the
multiple players involved in the complex inflammatory response
to acute or chronic increased afterload and its contribution to
subsequent (mal)adaptive remodeling of the RV leading to RV
dysfunction, regarding what’s already known in the left ventricle
(LV) and in heart failure in general.

INFLAMMATION AND RV FAILURE

Inflammation is an essential biological stimulation-response
system provided by the immune system to ensure the survival
after noxious stimuli, such as infection or tissue injury.
Inflammatory responses may, therefore, be considered as a
classic homeostatic system, functioning to maintain normal
organ function. In the heart, activation of inflammatory processes
induced by sterile stressors is largely similar to that observed
during infection, including the release of vasoactive peptides, the
expression of adhesion molecules [e.g., vascular cell adhesion
molecule (VCAM)-1, intercellular adhesion molecule (ICAM)-
1] in cardiac cells (e.g., cardiomyocytes, fibroblasts, endothelial
cells) that promote myocardial recruitment of inflammatory cells
(e.g., neutrophils, macrophages, lymphocytes), the release of
inflammatory cytokines and chemokines, and the activation of
T cell-mediated adaptive immune responses (Chen and Nuñez,
2010; Frieler and Mortensen, 2015; Mann, 2015; Prabhu and
Frangogiannis, 2016). This initial response to harmful stimuli
represent acute inflammation, which probably evolves as an
adaptive response to restore tissue homeostasis and function.
However, when this harmful inflammatory trigger persists, it
can cause dramatic tissue damage eventually leading to cardiac
loss of function (Libby, 2007). This prolonged dysregulated
and maladaptive response of the body is chronic inflammation,
which involves myocardial inflammation, tissue destruction and
attempts to repair tissue damages, leading to altered myocardial
function.

Accumulating evidence suggests that all cardiac cell types
could participate to this inflammatory response by their own and
therefore playing a central vicious role in the maintenance of
these maladaptive processes associated to chronic inflammation
(Van Linthout et al., 2014), leading to heart failure. RV activation
of inflammatory processes is associated with and contributes
to RV adverse remodeling and dysfunction (Campian et al.,
2010; Rondelet et al., 2012; Dewachter et al., 2015). In RV
failure, an elevated expression of cytokines and chemokines
modulate various intracellular signaling pathways in cardiac cells,
leading to cardiomyocyte hypertrophy and death, mitochondrial
dysfunction, endoplasmic reticulum stress, and cardiac fibrosis
characterized by fibroblast proliferation and differentiation and
collagen deposition (Figure 3; Frieler and Mortensen, 2015;
Mann, 2015; Prabhu and Frangogiannis, 2016). In addition,
these inflammatory mediators also alter myocardial metabolic
processes and cardiomyocyte contractile properties.

MEDIATORS AND EFFECTORS OF
INFLAMMATION—CYTOKINES AND
CHEMOKINES

Cytokines play a crucial role in inflammatory response to acute
myocardial injury, mediating the recruitment of inflammatory
and immune cells into the injured area (Seta et al., 1996)
and exerting direct detrimental effects on the heart (Seta
et al., 1996). Released directly by the heart itself (Shimano
et al., 2012), cytokines can also be produced by cardiomyocytes
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FIGURE 1 | Pathophysiology of right ventricular (RV) failure implicating activation of inflammatory and immune processes. Pulmonary arterial hypertension (as well as

acute pulmonary embolism) induces an increased afterload for the RV resulting in RV remodeling. The structural and functional changes during the development of RV

failure can be characterized clinically, as summarized on the left hand. RV dysfunction is also probably due the activation of other pathophysiological mechanisms

(summarized on the right hand) leading to multiple cellular changes, such as oxidative stress, apoptosis, inflammation, fibrosis, and metabolic remodeling. These

factors also contribute to RV dysfunction and subsequent RV failure (characterized by altered coupling between the RV and the pulmonary circulation). The cellular

changes are either the result of chronic RV pressure overload or the effect of circulating factors released from the sick lung circulation. RV, right ventricle; BMPR-2,

bone morphogenetic protein type 2 receptor; ROS, reactive oxygen species; PA, pulmonary artery; LV, left ventricle.

(Kapadia et al., 1995), cardiac endothelial cells (Liu et al.,
2014) and fibroblasts, resident macrophages (Pinto et al.,
2016) and infiltrated inflammatory cells, as well as by extra-
cardiac tissues (e.g., adipose tissue). In PAH patients, increased
levels of circulating pro-inflammatory cytokines (e.g., IL-1β,
TNF-α) have been correlated to the severity of the disease
(Humbert et al., 1995; Dolenc et al., 2014), which also
reinforces the vicious circle between inflammation and RV
failure.

IL-1 Signaling Pathway
In persistent RV failure induced by acute pulmonary artery
banding, IL-1β was overexpressed in the RV, mainly in the
vessels and myocardial infiltrating cells, rather than in cardiac
cells themselves (Dewachter et al., 2015). This was associated
with decreased expression of IL-33, a cardio-protective cytokine
of the IL-1 family, and of ST2, a soluble decoy receptor
regulating negatively the IL-1/IL-33 signaling (Dewachter et al.,
2015). Overexpression of IL-1α and−1β was also reported
in experimental RV failure on chronic systemic-to-pulmonary
shunting in pigs (Rondelet et al., 2012), while IL-33 expression
did not change (Belhaj et al., 2013). Pro-inflammatory cytokines
(such as IL-1β and TNF-α) act as acute-phase mediators after
tissue injury. In the heart, they mediate negative inotropic
effects and promote myocardial hypertrophy and cell death

(Bujak and Frangogiannis, 2009). Mechanistically, IL-1β-induced
negative inotropic effects were mediated by inducible nitric
oxide (NO)-synthase activation and peroxynitrite production,
which can interfere with the excitation-contraction coupling,
leading to a rapid and reversible contractile dysfunction (Finkel
et al., 1992; Van Tassell et al., 2013). In addition, it was
demonstrated that IL-1β (as well as IL-6) were able to reduce
the expression of sarco/endoplasmic reticulum calcium (Ca2+)-
ATPase in cardiomyocytes (Thaik et al., 1995), suggesting
abnormalities of Ca2+ handling underlying these negative
inotropic effects. IL-1β promotes cardiac hypertrophy through
insulin-like growth factor-1 release from cardiac fibroblasts, via
a paracrine mechanism involving signal transducer and activator
of transcription3 (STAT3) activation (Honsho et al., 2009). In
cardiomyocytes, IL-1β-induced apoptosis was reported to be
mediated by the activation of inducible NO-synthase and the
upregulation of Bcl2 homologous antagonist/killer (Bak) and
B-cell lymphoma-extra-large (Bcl-XL) (Ing et al., 1999). In
addition, IL-1β directly induced cardiomyocyte growth in a NO-
independent manner (Thaik et al., 1995). On the other hand, IL-
1β also contributed to fibrotic processes, stimulating the release
of matrix metalloproteinases in cardiac fibroblasts, through the
inhibition of the endoglin signaling and the activation of the
bone morphogenetic protein (BMP) pathway (Saxena et al.,
2013). IL-1β, has also been shown to impair cardiac energy
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FIGURE 2 | Schematic overview of the contribution of immune and inflammatory mediators and cells in the pathogenesis of right ventricular (RV) dysfunction/failure. In

presence of pulmonary arterial hypertension or pulmonary embolism, circulating inflammatory mediators originating from the pulmonary vasculature may trigger or

contribute to local activation of inflammatory processes in the RV. Inflammation in the RV is characterized by activation of immune processes, implying expansion and

activation of different cell types and by up-regulation of cytokines, chemokines, and cell adhesion molecules contributing to chronic inflammatory status. Through this

upregulation of immune and inflammatory processes, mediators contribute to the development of RV failure. RV, right ventricle; HO-1, heme oxygenase-1; NF-κB,

nuclear factor kappa B; IL, interleukin; TNF, tumor necrosis factor; MCP, monocyte chemoattractant protein; ECM, extracellular matrix.

metabolism, increasing myocardial oxygen demand adding to
the detrimental effects of myocardial contractile performance
in a context of oxygen supply limitation (Hofmann et al.,
2007). Therefore, upregulation of IL-1β could contribute to
the pathogenesis of RV failure by decreasing RV contractility,
inducing cardiomyocyte death and altered supply in metabolic
energy.

TNF-α Signaling Pathway
RV failure induced by transient pulmonary artery banding was
associated with a RV increase in TNF-α expression, whereas
circulating serum levels of TNF-α remained undetectable after
pulmonary artery banding (Dewachter et al., 2010), suggesting
local early expression of this pro-inflammatory cytokine in
this experimental model. A local increased expression of TNF-
α was also observed in experimental brain death-induced
RV dysfunction (Belhaj et al., 2016) and tightly correlated
to the prediction to develop RV failure early after heart
transplantation (Birks et al., 2000). Expression of TNF-α
was increased in the failing RV after 6-month systemic-to-
pulmonary shunting in pigs, together with increased circulating
serum TNF-α levels (Rondelet et al., 2012). Early activation
of inflammatory processes, characterized by an increase in
TNF-α and myeloperoxidase expression, was also observed

in RV dysfunction in rats developing severe PH induced by
monocrotaline injection (Campian et al., 2010). In patients
with advanced heart failure, myocardial expression of TNF-α
was abundantly increased (Torre-Amione et al., 1996), probably
contributing to maladaptive mechanisms implicated in the
development of cardiac hypertrophy and dysfunction (Frieler
and Mortensen, 2015; Mann, 2015; Prabhu and Frangogiannis,
2016). In these patients, high circulating TNF-α levels were
tightly correlated to myocardial fibrosis, inflammation, as
well as ventricular dilatation and mortality (Kubota et al.,
2000b). This is consistent with experimental data showing
that TNF-α contributes to substantial cardiac remodeling. In
cardiomyocytes, TNF-α induced the activation of apoptosis
(Chandrasekar et al., 2004), through the activation of nuclear
factor-κB (NF-κB) signaling (Glezeva and Baugh, 2014). TNF-
α induced cardiomyocyte hypertrophy, through mechanisms
dependent on the interaction between cell integrin and the
extracellular matrix (Yokoyama et al., 1997) and the activation of
AKT/NF-κB and JNK pathways (Higuchi et al., 2006). In cardiac
fibroblasts, TNF-α induced proliferation and collagen production
through the suppression of miR-29 (Venkatachalam et al., 2009).
Experimentally, TNF-α has been shown to contribute to systolic
and diastolic dysfunction (Kubota et al., 2000a; Dibbs et al.,
2003) and increased arrhythmogenesis (Lee et al., 2007). In mice,
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FIGURE 3 | Hypothetical schematic cellular and molecular insights of immune cells and inflammatory mediators on the pathogenesis of right ventricular failure, more

precisely on cardiomyocyte hypertrophy and death, as well as on fibrosis. Immune and inflammatory cells are myocardial resident cells or are coming from the blood

stream, adhere to endothelial cells and invade the myocardium. Cytokines (e.g., IL-1β, IL-6, and TNF-α), chemokines (e.g., MCP-1), and enzymes (e.g.,

metalloproteinases and proteases, such as chymase) released by these cells promote cardiomyocyte hypertrophy, fibroblast differentiation/activation, deposition of

extracellular matrix and cardiomyocyte apoptosis. Acute-phase inflammatory and immune mediators are represented in red, while late-phase mediators after

myocardial injury are represent in blue. ROS, reactive oxygen species; IL, interleukin; TNF, tumor necrosis factor.

cardiomyocyte-specific overexpression of TNF-α induced dilated
cardiomyopathy characterized by ventricular hypertrophy and
dilatation, myocardial infiltration of inflammatory cells, fibrosis
and cardiomyocyte apoptosis, together with reduced ejection
fraction (Kubota et al., 1997). In contrast, TNF-α-deficient
mice subjected to pressure overload were protected against
cardiac hypertrophy, fibrosis and dysfunction (Sun et al., 2007).
Interestingly, TNF-α (as well as IL-1β) downregulated the
expression of Ca2+-regulating genes, including sarcoplasmic
reticulum Ca2+ ATPase (Wu et al., 2011) and Ca2+-release
channels (Thaik et al., 1995), responsible for direct negative
inotropic effects (Yokoyama et al., 1993; Duncan et al., 2007).
This shows the contribution of inflammation in Ca2+ imbalance
and cardiac remodeling, leading to a vicious circle observed
in heart failure (Tschöpe and Lam, 2012). Moreover, TNF-α
also altered the activity of β-adrenergic receptors, leading to
the uncoupling of these receptors from the adenylyl cyclase
(Gulick et al., 1989; Chung et al., 1990). In RV failure,
TNF-α could, therefore, contribute to altered RV contractility
and remodeling, through a Ca2+ imbalance responsible for
ventriculo-arterial uncoupling. Moreover, it has been suggested
that estrogen could alter inflammatory cell-induced synthesis
of TNF-α, preventing the induction of cardiac fibroblasts
that leads to adverse remodeling of the extracellular matrix
(McLarty et al., 2013). This could, at least partly, explain why
estrogen contributes to RV function improvement in different
experimental models of PH (Frump et al., 2015; Liu et al.,
2017).

IL-6 Signaling Pathway
In experimental RV failure, increased expression of IL-6 in the RV
was inversely correlated to RV adaptation to increased afterload
[assessed by the ratio between the pulmonary arterial elastance
(Ea) and the end-systolic elastance (Ees)], while RV expressions
of binding- (IL-6R) and signal transducing (gp130)-subunits of
the IL-6 receptor remained unchanged (Dewachter et al., 2015).
This is well-known that IL-1 and TNF-α are able to induce IL-6
release in different cell types (Zhang et al., 1990), which suggests
that IL-6 has direct negative inotropic effects (Yu et al., 2005), but
can also potentate these of IL-1 and TNF-α (Maass et al., 2002).
Therefore, increased RV expression in IL-6, IL-1β, and TNF-
α could contribute to the amplified activation of inflammatory
processes in the setting of RV failure. Circulating IL-6 levels
were increased in RV failure on acutely increased afterload
(Dewachter et al., 2015), which also probably contributes to the
perpetuation of the inflammatory state and to the acceleration
of the progression of global heart failure (as already described
in the setting of LV failure). High circulating levels of CRP and
IL-6 were independently associated to increased RV mass and
volume (Harhay et al., 2013). High circulating levels of IL-6 have
been reported in patients with severe PAH (Humbert et al., 1995),
predicting negatively their survival and outcome (Soon et al.,
2010). In contrast, RV expression of IL-6 did not change in RV
failure induced by 6-month systemic-to-pulmonary shunting in
pigs (Rondelet et al., 2012). Therefore, IL-6 could play a role in
the transition from acute to chronic inflammation in RV failure.
Moreover, IL-6 has also been incriminated in the pathogenesis
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of cardiac hypertrophy and dysfunction (Frieler and Mortensen,
2015; Mann, 2015; Prabhu and Frangogiannis, 2016), through
the activation of the Ca2+/calmodulin-dependent protein kinase
II and STAT3 pathways (Kunisada et al., 1996). Experimentally,
infusion of IL-6 in rats was able to induce cardiac hypertrophy,
inflammation, fibrosis and diastolic dysfunction (Meléndez et al.,
2010), whereas IL-6 genetic deletion ameliorated angiotensin
II- (Coles et al., 2007; Ma et al., 2012) and norepinephrine-
induced cardiac hypertrophy and fibrosis (Meier et al., 2009).
Downregulation of IL-6 expression reduced inflammation and
reversed altered glucose metabolism induced by high fat diet
in mice, through the inhibition of suppressor of cytokine
signaling-3 signaling and the upregulation of insulin receptor
substrate-1 signaling (Ko et al., 2009). This suggests that chronic
inflammation may contribute to cardiac dysfunction through
metabolic perturbations that can impair cardiac energetic
production in response to metabolic stress. Overexpression of
the signal transducer gp130 was shown to be sufficient to
induce cardiomyocyte hypertrophy and to mediate IL-6 effects
(Ancey et al., 2003), through the activation of STAT3 signaling
(Kunisada et al., 1998) and the GRB2-associated-binding protein
1-Src homology 2 domain-containing phosphatase2 interaction
(Nakaoka et al., 2003). Therefore, IL-6 could also be implicated in
the development of RV remodeling in RV failure, but its precise
role should be confirmed for the RV.

IL-10 Signaling Pathway
In RV failure on acutely increased afterload, the pro-
inflammatory status (described above) is reinforced by the
downregulation of anti-inflammatory cytokine IL-10 (Dewachter
et al., 2015), leading to increased pro-inflammatory ratio of
IL-6/IL-10 both in the RV and in the serum. Macrophages
are the major source of IL-10, a cytokine that mediates its
anti-inflammatory effects, through the inhibition of the synthesis
of various inflammatory molecules such as interferon–γ, IL-1,
IL-6, and TNF-α (Anker and von Haehling, 2004). Therefore,
IL-10 is usually called a neutralizer of inflammation and a
tissue protective cytokine. However, expression of IL-10 did not
change in the failing RV in an experimental model of systemic-to
pulmonary shunting in pigs (Rondelet et al., 2012), suggesting
a role mainly in the acute phase of inflammation. The role of
IL-10 in heart failure is not well established. In experimental
myocardial infarction, myocardial IL-10 expression was
decreased (Kaur et al., 2006). Circulating IL-10 levels were
diminished in patients with heart failure (Stumpf et al., 2003),
while it has been reported that elevated levels of IL-10 and
TNF-α was associated with an increased risk of mortality (Amir
et al., 2010). These data are conflicting. Nevertheless, IL-10 is
considered as a cardio-protective cytokine and increased levels of
IL-10 in heart failure may be seen as a compensatory mechanism
to counter deleterious effects of cytokines, such as TNF-α or
IL-6.

MCP-1 (Endothelium-Derived CC
Chemokine Ligand 2; CCL-2) Signaling
Pathway
Expressions of MCP-1 and its receptor CCR2 were increased
in the failing RV in two experimental models of RV failure

on acute increase in afterload (Watts et al., 2006; Dewachter
et al., 2015). Increased expression of MCP-1 (as well as other
chemokines) has been described in the pressure-overloaded
RV following pulmonary artery banding and linked to altered
expression of small leucine-rich proteoglycans by cardiac cells
(e.g., fibroblasts), probably contributing to matrix remodeling
(Waehre et al., 1985) and inflammation regulation (Iozzo and
Schaefer, 2010; Moreth et al., 2010). Circulating levels of MCP-
1 were increased in patients with PAH (Sanchez et al., 2007)
and with heart failure (Kohno et al., 2008). However, the precise
mechanistic role played by MCP-1 in heart failure remains
elusive. We know that chemokines are, at least, able to promote
myocardial infiltration and activation of leukocytes in the failing
heart. Via its receptor CCR2, MCP-1 induced cardiomyocyte
apoptosis, therefore contributing to ventricular dysfunction
(Zhou et al., 2006). Interestingly, myocardial expression of MCP-
1 increased during the early phases of myocardial infarction
(Maekawa et al., 2004; Hayasaki et al., 2006) and inhibition of
MCP-1 prevents ventricular remodeling after myocardial infarct
(Hayashidani et al., 2003). Moreover, targeted deletion of MCP-1
in mice was shown to improve survival, attenuate LV dilatation
and reduce contractile dysfunction after coronary occlusion
(Hayashidani et al., 2003). In contrast, myocardial overexpression
of MCP-1 was associated with altered contractile function
associated with myocardial infiltration of leukocytes, mainly
macrophages (Kolattukudy et al., 1998). Moreover, MCP-1 also
induced the release of pro-inflammatory cytokines (Wrigley
et al., 2011), such as IL-1β and IL-6, participating to a “cytokine
cascade” leading to the amplification of inflammatory processes
in RV failure.

CELLULAR REGULATORS OF
INFLAMMATION

Heme Oxygenase (HO)-1
Expression of HO-1 was decreased in the failing RV following
acute (Dewachter et al., 2015) and chronic increase in afterload
(Belhaj et al., 2013), with a tight correlation between RV
expression of HO-1 and RV-pulmonary artery coupling (assessed
by the Ees/Ea ratio) (Belhaj et al., 2013; Dewachter et al.,
2015), suggesting a functional role of HO-1 in maintaining
RV systolic function. This stress-inducible enzyme plays crucial
roles in the control of inflammation and cytoprotective
processes (Otterbein et al., 1999). Indeed, HO-1 catalyzes
heme degradation into carbon monoxide, biliverdin and iron
(Tenhunen et al., 1968). Through the biological activities of
its metabolite products, activation of HO-1 contributes to
cell defense, through reduced oxidative stress and inhibition
of the activation of inflammatory and apoptotic processes.
Moreover, carbon monoxide is an effective vasodilator which
is also able to inhibit platelet aggregation, reduce leucocyte
adhesion, cellular apoptosis, and pro-inflammatory cytokine
production. Therefore, a decrease in HO-1 expression may
lead to an increase in pro-inflammatory cytokine expression
(Constantin et al., 2012) in the failing RV. Moreover, there were
inverse relations between HO-1 expression and RV neutrophil
and macrophage infiltration, as well as with RV pro-apoptotic
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Bax/Bcl-2 ratio (Dewachter et al., 2015), which strongly suggests
a potential mechanistic link between downregulated HO-1
expression and inflammation and apoptosis in RV failure. In
chronic hypoxia-exposed mice, administration of mesenchymal
cells overexpressing HO-1 was associated with reduced RV
hypertrophy, limited infarcted zones and decreased RV systolic
pressure to normal values (Liang et al., 2011). In contrast, in
the same experimental PH model, downregulation of HO-1 was
shown to induce severe RV dilatation and dysfunction, together
with cardiac inflammation, fibrosis, and apoptosis (Yet et al.,
1999). However, expression of HO-1 was respectively increased
and decreased in the RV of experimental models of RV pressure
overload (Katayose et al., 1993) and RV failure (Bogaard et al.,
2009b). This suggests variable HO-1 expression depending on
the stress-induced cardiomyocyte damage and the progression of
RV failure. In RV failure, we could speculate that downregulated
HO-1 expression could impair its physiological implication in
the control of inflammation activation in RV failure. However
further studies are necessary to confirm that.

NF-κB
In an inflammatory experimental model of PH, cardiac specific
inhibition of the major inflammatory transcription factor
NF-κB, prevented RV hypertrophy and remodeling, despite
the presence of PH, mainly through the restored expression
of BMP signaling members, and the reduced inflammatory
phenotype (including reduced expression of IL-6 and cell
adhesion molecules) (Kumar et al., 2012). Activation of NF-
κB signaling also plays regulates cardiomyocyte hypertrophy,
promoting cardiomyocyte growth and expression of fetal
sarcomeric genes, whereas its inhibition reduces cardiac growth
in vivo (Kawano et al., 2005; Zelarayan et al., 2009; Liu et al.,
2012).Mechanistically, the cross-talk betweenNF-κB and nuclear
factor of activated T-cells (NFAT) seems to be critical to
promote cardiomyocyte growth (Liu et al., 2012). In addition,
cardiac expression of peroxisome proliferator-activated receptor
gamma coactivator-1α, a master regulator of mitochondrial
function (Shah et al., 2016), has been shown to be inhibited by
chronic inflammatory activation, through a NF-κB-dependent
mechanism, suggesting that chronic activation also impairs
mitochondrial metabolic regulation. However, the precise role
of NF-κB in the progression of RV failure remains unknown.
Activation of NF-κB has been associated to the development
of heart failure in both humans and experimental models.
Myocardial levels of NF-κB were increased in patients with
advanced heart failure (Frantz et al., 2003). In contrast, in
patients with advanced heart failure with LV assist device, the
number of NF-κB immune-positive myocardial cells decreased
(Grabellus et al., 2002), suggesting that activation of NF-κB
signaling seems to involve a complex cellular response to heart
failure.

Cellular Mechanosensing
In heart failure, wall stress increases, exposing cardiac cells to
increasing biomechanical strain. Mechanosensitive adhesion
proteins, including integrins, and cadherins, transduce
these mechanical signals, and can stimulate inflammation

(Schroer and Merryman, 2015). It has been described, in
stretched cardiomyocytes and in hemodynamic-overloaded
myocardium, increased secretion of TNF-α and IL-6, together
with increased expression of atrial natriuretic peptide (Yoshida
et al., 2014). Upon mechanical stretch, cardiac fibroblasts,
rather than cardiomyocytes themselves, can be activated,
secreting more chemokines and inflammatory cytokines
(such as IL-1β), but also extracellular matrix components
(Lindner et al., 2014). This contributes to recruit further
monocytes by allowing transendothelial migration into
cardiac tissue (Lindner et al., 2014). Mechanical strain
induce in macrophages the activation of inflammatory
processes, leading to increased expression of TNF-α, IL-6,
and metalloproteinases acting on the extracellular matrix
(Pugin et al., 1998) and increased expression of scavenger
receptors (Sakamoto et al., 2001). Moreover, macrophages
submitted to mechanical strain are more prone to entry
the cell cycle (Sager et al., 2016), suggesting increased wall
tension observed in right heart failure could participate to local
macrophage proliferation. Strong similarities suggest that all
these phenomena could be of importance in RV failure, but still
remain unexplored.

INFLAMMATORY AND IMMUNE CELLS

In heart failure, the inflammatory/immune component includes
infiltrated neutrophils/monocytes, macrophages, dendritic cells,
and lymphocytes, but also cardiac resident cells such as
cardiomyocytes, fibroblasts, and endothelial cells (Figure 2). All
these cells are responsible for local cardiac expression and release
of inflammatory mediators (Figure 3).

After injury, circulating immune cells, which come from
lymphoid organs (spleen and bone marrow), are directed to sites
of injury, adhere (or come close) to endothelial cells, invade the
myocardium and release a variety of inflammatory molecules
(e.g., cytokines and chemokines), acting locally, and promoting
chemotaxis of other inflammatory cells. These released cytokines
induce the activation of inflammatory processes, mediating
multiple interactions between circulating and cardiac cells (Kim
et al., 2014). These complex communications result in cardiac
remodeling through matrix deposition (mainly collagen) and
remodeling, cardiomyocyte apoptosis and differentiation. In
addition, we know that inflammatory cells activate cardiac
fibroblasts leading to adverse deposition of extracellular matrix,
which contributes to the pathobiology of heart failure.

Innate Immune Cells
Dendritic Cells
Acting as sentinels, immature dendritic cells patrol the
blood and peripheral tissue to detect foreign and pathogenic
antigens, as well as tissue damage and inflammation. This
leads to antigen phagocytosis by dendritic cells, which then
expresses the maturation marker CD83 and class I and II
major histocompatibility complexes. Mature antigen-presenting
dendritic cells migrate to secondary lymphoid tissue, where
they present antigens to naïve helper and cytotoxic T-cells
and prime them (Banchereau et al., 2000). According to their
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hematopoietic origin, dendritic cells can be divided into myeloid
and plasmacytoid dendritic cells, inducing a Th1 and Th2-
biased immune response respectively. Furthermore, specialized
cardiac dendritic cells have been found in the human heart
(Zhang et al., 1993; Yokoyama et al., 2000), and further
characterized as a subtype of dendritic cells expressing human
leukocyte antigen-DR (but not S100, CD1a, CD21, CD23, and
CD35) (Yokoyama et al., 2000). This different surface marker
profile compared to ordinary dendritic cells has led to the
hypothesis that dendritic cells could change their phenotype
depending on the local environment. In various cardiovascular
diseases (as well as in hypoxic conditions), dendritic cells play
a central role in mediating immunological effects (Yilmaz et al.,
2009; Kretzschmar et al., 2015; Rohm et al., 2016). In end-
stage heart failure, elevated numbers of dendritic cells have
been identified, with a marked increase in myeloid dendritic
cells and a concomitant decrease in plasmacytoid dendritic
cells (Athanassopoulos et al., 2004, 2009). This suggests a
systemic Th1 polarization in these patients. In contrast, lower
circulating myeloid and plasmacytoid dendritic cell counts have
been described in decompensated heart failure (Sugi et al.,
2011). In idiopathic PAH patients, decreased percentage of
monocyte-derived dendritic cells has been observed in the
peripheral blood, suggesting a Th1 reaction in these patients
(Wang et al., 2009). However, the presence and the potential
role of dendritic cells have not been considered yet in RV
failure.

Mast Cells
Mast cells are granulocytes that develop in the bone marrow
and migrate, with the blood stream, to different tissue, where
they differentiate and mature. Upon inflammatory stimuli,
cardiac mast cells degranulate, releasing a broad spectrum of
mediators, including histamine, leukotrienes, growth factors,
vasoactive substances, proteases, and cytokines (i.e., IL-1, TNF-
α). The secretion of mast cell content is responsible for local
inflammation. During the last decade, the possible role of
cardiac mast cells has emerged in the pathogenesis of various
cardiovascular diseases (Levick et al., 2011). Indeed, increased
number of mast cells has been documented in hypertensive
and failing LV (Batlle et al., 2006) and described as playing
an important role in LV fibrosis, hypertrophy and failure
(Stewart et al., 2003; Levick et al., 2008; Zhang et al., 2011).
Therapy with mast cell stabilizer reduced fibrosis and preserved
LV wall mass in experimental fulminant myocarditis in rats
(Mina et al., 2013). Prolonged pressure overload on the RV
induced by pulmonary artery banding was associated with
increased mast cell density in the RV (Olivetti et al., 1989).
This probably results from proliferation and maturation of
resident immature cardiac mast cells (Forman et al., 2006;
Li et al., 2012), as well as from recruitment of mast cell
progenitors followed by further maturation and differentiation
in the RV (Frangogiannis et al., 1998; Ngkelo et al., 2016).
Despite the presence of RV hypertrophy, mast cell density
was not affected in the RV of 3-month-old rats born at high
altitude (Rakusan et al., 1990). Mast cells also contribute to
cardiac hypertrophy and fibrosis by synthesizing and secreting

pro-hypertrophic and pro-fibrotic cytokines (e.g., TNF-α and
IL-6) and growth factors [e.g., transforming growth factor
(TGF)-β and basic fibroblast growth factor] (Gordon and Galli,
1990; Gordon et al., 1990; Shiota et al., 2003; Sun et al.,
2007; Meléndez et al., 2010). In addition, mast cells can also
promote tissue fibrosis, stimulating proliferation, maturation
and synthesis of collagen in cardiac fibroblasts (Liao et al.,
2010). Upon their degranulation, masts cells release very high
levels of proteases (e.g., chymases and tryptases) which can
activate the proliferation and the synthesis of matrix protein in
fibroblasts (Cairns andWalls, 1997; Akers et al., 2000). Inhibition
of these proteases was shown to prevent the development of
cardiac fibrosis and improve LV dysfunction in experimental
models of LV disease (Matsumoto et al., 2003; Kanemitsu
et al., 2006). Therefore, inhibition of mast cell proteases might
be an original strategy to manage cardiac function. In the
hypertrophied RV induced by pressure overload, the expressions
of mast cell proteases (i.e., chymases-2,-4,-5,-6 and exopeptidase
CPA3) were upregulated (Luitel et al., 2017). Moreover, a mast
cell stabilizing compound was tested in chronic hypoxia exposed
rats, showing significant reduced RV hypertrophy and lung mast
cell hyperplasia (Kay et al., 1981). This should be further explored
in RV failure.

Neutrophils/Monocytes and Macrophages
Upon tissue damage, monocytes massively leave the blood stream
to differentiate into macrophages in tissues. There, they patrol
to eliminate dead cells or pathogens, using phagocytosis and
destroying foreign bodies by enzymatic digestion. Macrophages
also reside in many healthy tissues, with a substantial tissue-
specific heterogeneity among each macrophage population. In
the heart, 6–8% of non-cardiomyocytes are cardiac resident
macrophages (Pinto et al., 2016), with a dynamic balance
between classically-activated macrophages (M1-like cells) and
alternatively-activated macrophages (M2-like cells) depending
on the activation stimulus.M1macrophages are known to display
a cytotoxic and pro-inflammatory phenotype characterized by
strong pathogen and debris clearance and pro-inflammatory
cytokine (i.e., IL-6, TNF-α, IL-1β, IL-12, and IL-23) secretion. In
contrast, M2 macrophages suppress immune and inflammatory
responses (through the release of anti-inflammatory IL-10 and
TGF-β), and participate in tissue remodeling and scar formation
(Frantz and Nahrendorf, 2014). Deriving from local cardiac
progenitors, M2 macrophages have been shown to be the major
steady-state cardiac macrophage population, even if their specific
functions remain largely unknown. However, these cells may
have typical tissue resident macrophage roles, including guarding
against infection/insult, but also probably regulating cardiac
metabolism, contraction, extracellular matrix deposition, and
survival of cardiomyocytes (Frantz and Nahrendorf, 2014). In
experimental models of myocardial infarction (Swirski et al.,
2009) and chronic heart failure (Ismahil et al., 2014), activation
and migration of monocytes to the heart have been described
and tightly linked to the activity of angiotensin II (Leuschner
et al., 2010). In the early inflammatory steps after myocardial
injury, M1macrophages are predominantly present, while during
the later remodeling phase, M2 macrophages are mostly present.
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M1 macrophages probably act to clear debris, dead cardiac
cells and neutrophils in order to allow tissue regeneration. This
initial phase is followed by a proliferation phase during which
M2 macrophages participate to myocardial mechanical stability
through the regulation of angiogenesis andmyofibroblast activity
(Nahrendorf et al., 2007). The presence of sequential biphasic
M1/M2 macrophage response seems to be crucial for wound
healing and for a stable myocardial scar after cardiac injury
(van Amerongen et al., 2007; Frantz et al., 2013). However,
overabundant pro-inflammatory macrophages are also harmful.
Indeed, massive recruitment of macrophages to the heart
in response to cardiac injury has a prominent role in the
development ofmyocardial remodeling, hypertrophy and fibrosis
(Zhang et al., 2011; Frieler and Mortensen, 2015; Mann, 2015;
Prabhu and Frangogiannis, 2016). During the progression of
the pulmonary hypertensive disease, the role, dynamics and
composition of M1/M2 macrophage populations in the RV are
currently largely undefined. Most data are descriptive and come
from post-mortem histological analysis of RV obtained after fatal
pulmonary thromboembolism. They showed RV inflammatory
infiltrate predominantly comprised of macrophages, T cells
(Begieneman et al., 2008; Orde et al., 2011), neutrophils and
macrophages (Iwadate et al., 2003). In experimental pulmonary
embolism in rats, early and acute RV damage was associated
with infiltration of mononuclear cells with characteristics of
M1 phenotype. In the later phase, RV contractile function
was reduced together with RV infiltration of mononuclear
cells with M2 phenotype and collagen deposition beginning
scar formation. This strongly suggests that neutrophil response
corresponds to the early acute phase of inflammatory events,
while macrophages are present during the proliferative phase
and extracellular matrix deposition, changing from M1 to M2
phenotype (Watts et al., 2008). In an experimental model
of persistent RV failure on acute increase in afterload, RV
extravascular macrophage number was increased and tightly
correlated to the coupling of the RV to the pulmonary circulation
(assessed by the Ees/Ea ratio) (Dewachter et al., 2015), suggesting
a potential mechanistic link between RV macrophage infiltration
and RV dysfunction. Ischemia, which can be present in RV
failure, induces the recruitment of macrophages (through MCP-
1 release) (Kai et al., 2005). This could, at least partly, explain
why RV dysfunction after pulmonary embolism was associated
with increased expression of MCP-1 and C-C motif chemokine
ligand 3 (CCL3 or MIP-1α), as well as RV infiltration with
neutrophil and monocyte/macrophage (Watts et al., 2006).
In the hypertrophied RV, increased number of activated
macrophages contributes to the release of a variety of pro-
inflammatory cytokines (e.g., MCP1 and metalloproteinases),
that contribute to the pathogenesis of RV failure. To date, cardiac
macrophages have never been therapeutically targeted. Crucial to
maintain the steady sate and defending against infection, specific
population of macrophages should be targeted to avoid collateral
damage. During inflammatory processes, monocyte recruitment,
which is tightly regulated by interaction between CCL2 and
CCR2, could be reduced using silencing of the chemokine
CCR2 with nanoparticles, as already experimentally tested
in experimental myocardial infarction (Majmudar et al., 2013).

It should be interesting to evaluate this further in RV
failure.

Adaptive Immune Cells
B-Lymphocytes
B-lymphocytes are able to differentiate into antibody-producing
plasma B-cells, which play crucial roles in cell-mediated
immune regulation through antigen presentation, cytokine
release, differentiation of T-effector cells, and collaboration with
antigen-presenting dendritic cells. In PAH patients, a distinct
gene expression profile of their peripheral blood B-lymphocytes
has been identified (Ulrich et al., 2008b), suggesting activation
of B-cells in these patients. Moreover, antibodies directed against
pulmonary endothelial cells and fibroblasts have been found in
PAH, suggesting a role of B-cells in the pathogenesis of PAH
(Tamby et al., 2005, 2006). However, the role played by these cells
in the pathogenesis of RV failure remains unknown.

T-Lymphocytes
T-lymphocytes play a central role in cell-mediated immunity
and include different types regarding their activity. T helper
cells type 1 (Th1) are mainly pro-inflammatory and induce
macrophage activation, while T helper cells type 2 (Th2) are
predominantly anti-inflammatory through the release of multiple
anti-inflammatory cytokines, such as IL-4,-10,-13. Treg cells
control the balance between Th1 and Th2 responses, and are
implicated in the control of autoimmunity. Tregs not only
control other T-cells but also regulate monocytes, macrophages,
dendritic cells, natural killer cells and B-cells. In heart failure, the
presence of circulating CD4+ T-cells (expressing inflammatory
cytokines) tightly correlates with altered LV function (Satoh
et al., 2006; Fukunaga et al., 2007), and probably contributes
to the transition from cardiac adaptation to heart failure. B-
and T-lymphocyte-deficient mice submitted to chronic pressure
overload had preserved systolic function, reduced myocardial
fibrosis and macrophage infiltration (Laroumanie et al., 2014).
In contrast, increased number of CD4+ T-cells have been
reported early after coronary occlusion in mice (Hofmann
et al., 2012), probably contributing to wound healing just
after ischemic injury. Moreover, CD4+ T-cell deficient mice
presented impaired wound healing with extracellular matrix
disorganization in the ischemic zone (Hofmann et al., 2012).
This strongly suggests protective adaptive immune responses
early after myocardial insult, which seem to be detrimental
at latter stages. Altered Treg function has been identified in
patients with PAH (Tamosiuniene et al., 2011; Huertas et al.,
2012) and in patients with PAH associated to HIV, systemic
sclerosis, systemic lupus erythematosus, Hashimoto’s thyroiditis,
Sjögren’s syndrome, and the anti-phospholipid syndrome (Speich
et al., 1991; Covas et al., 1992; Mandl et al., 2004; Bonelli
et al., 2009; Radstake et al., 2009). Moreover, higher numbers
of circulating Treg cells have been shown in PAH patients,
suggesting altered immune control by CD4+ T-lymphocytes
(Ulrich et al., 2008a). However, the proportion of these cells in
the hypertrophied/failing RV remains to be investigated in PAH,
as well as their role in the pathogenesis of RV failure.
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Resident Cardiac Cells
Endothelial Cells
In cardiac endothelial cells, pro-inflammatory cytokines induce
the expression of adhesion molecules (Tamaru et al., 1998),
promote subsequent endothelial binding of immune cells and
platelets (Zakrzewicz et al., 1997) and transendothelial migration
(Woodfin et al., 2009). In an experimental model of RV failure
induced by transient pulmonary artery banding, RV expression
of VCAM-1 increased, while expression of ICAM-1 did not
change (Dewachter et al., 2015). This was associated to increased
RV expression of cytokines and chemokines, together with RV
infiltration of neutrophils and macrophages, indicating an early
immune response. RV dysfunction associated to brain death
was also associated to increased expression of ICAM-1,-2, and
VCAM-1 in the RV (Stoica et al., 2005; Belhaj et al., 2016),
suggesting endothelial activation, which persists in the post-
operative period, even in the absence of acute rejection. On the
other hand, we also know that cytokines induce the apoptosis
of cardiac endothelial cells and increase endothelial generation
of reactive oxygen species (ROS), which induce the production
of plasminogen activator inhibition-1 and of collagen by cardiac
endothelial cells (Chandrasekar et al., 2004).

INFLAMMATION AS POTENTIAL
THERAPEUTIC TARGET IN RIGHT HEART
FAILURE

Even if inflammatory processes are activated in RV failure, the
precise role of inflammation is yet to be deciphered in thismorbid
condition. Indeed, it remains unknown if inflammation in the
RV could be a key transition step from RV adaptation to failure
or if RV activation of inflammatory processes could be a mere
bystander and a normal consequence to the primary processes
involved in the pathogenesis of RV failure. In addition, whether
a myocardial inflammatory process is exclusively maladaptive or
whether it may be protective in allowing the heart to properly
respond to metabolic stress remains elusive in RV failure.
It was previously demonstrated that after acute myocardial
injury, an acute inflammatory phase is important to remove
damaged tissue and to induce the repair mechanisms that lead
to scar formation (Frieler and Mortensen, 2015; Mann, 2015;
Prabhu and Frangogiannis, 2016). Suppression of this acute
inflammatory phase was proven to be detrimental and to impair
post-infarction remodeling (van Amerongen et al., 2007; Frantz
et al., 2013). Therefore, further studies should be focused on
elucidating the various phases implicated in the pathogenesis of
RV inflammation, and trying to dissect the mediators and cellular
components that are important in each of these phases. On the
other hand, we also know that clinical trials evaluating specific
anti-inflammatory treatment in heart failure, despite a strong
pathobiological background also present in this condition, were,
so far, quite disappointing (Glezeva and Baugh, 2014; Hartman
et al., 2018), which makes one wonder if the appropriate signals
are being targeted.

While the activation of inflammatory processes has been
obviously identified in RV failure secondary to PH, targeting

some of them may prove ineffective or offer an unacceptable
risk-to-benefit ratio. For example, while TNF-α appears to be
clearly implicated in the pathogenesis of RV failure, as well as of
PAH, antagonizing this cytokine was not convincing with mixed
pre-clinical results (Henriques-Coelho et al., 2008; Wang et al.,
2013) and it is known to predispose patients to severe infectious
complications such as tuberculosis. In PAH patients, clinical
studies targeting such inflammatory mediator and evaluating the
effects on RV function have not yet been performed. Moreover,
we know that currently approved drugs used to treat PAH
patients, which did not primarily target inflammation, have been
shown to present some anti-inflammatory effects in pre-clinical
and clinical studies (Stasch et al., 2011; Stitham et al., 2011;
Fontoura et al., 2014; Dewachter et al., 2015). However, there
is a paucity of data evaluating the effects of these drugs on the
RV per se. Therefore, this is really difficult to discriminate the
potential beneficial RV effects of these drugs vs. those observed
in the pulmonary circulation. In an experimental model of acute
RV failure on pulmonary embolism, selective anti-inflammatory
therapy targeted at neutrophil chemoatractants present beneficial
effects on RV function, reducing RV inflammation and damage
(Zagorski et al., 2007).

Right heart failure is associated with an increase in
sympathetic nervous system tone and an activation of the renin-
angiotensin-aldosterone system, both resulting in fluid retention
and vascular and myocardial remodeling. In patients with severe
PAH, we also know that neuro-humoral activation is associated
with a decreased survival (Ciarka et al., 2010; de Man et al.,
2013a,b). The activation of the adrenergic nervous system and
the regulation of the production of cytokines are tightly linked.
Indeed, the activation of β2-receptors reduced TNF-α expression,
while its increased anti-inflammatory IL-10 production (Ng and
Toews, 2016). Conversely, α1,2- adrenergic stimulation increased
expression of TNF-α and reduced in IL-10 (Spengler et al., 1990).
We could therefore speculate that blocking the renin-angiotensin
system may induce anti- inflammatory effects and may therefore
result in reduced structural and functional alterations in the RV.

CONCLUSIONS AND FUTURE
PERSPECTIVES

In conclusion, the role of inflammation in the development of
RV failure appears to be significant. This is true for both RV
failure on acute and chronic increase in afterload. However,
more effort is needed to understand the mechanisms promoting
this pathologic process and how to modulate it in order to
develop new therapeutic interventions aiming at the reduction
of RV failure and mortality in PAH patients. Moreover, it seems
that inflammation and RV failure are strongly interconnected
and mutually reinforce each other. Therefore, the inflammatory
processes should be counteracted at early stages to stop the
vicious circle existing between inflammation and heart failure. As
illustrated in Figure 1, it may be that RV failure is not a uniform
disease but a clinical syndrome, where different pathways play
different important roles. More frequent RV failure in patients
with PAH due to chronic inflammatory disorders compared to
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patients with idiopathic PAH, might be a potential RV affection
secondary to systemic inflammation. But if so, the question arises
why the LV becomes not altered under these conditions.

Based on the results of experimental and translational studies
presented here, we could speculate that a better understanding
of the pathogenesis of RV failure will open the door for new
therapeutic targets. Probably, different stimuli at various stages
in the development of RV failure trigger inflammation, ROS
generation, mitochondrial metabolism alteration and induction
of cell death. Therefore, it is important to point out key regulators
of these signaling pathways. Inflammation and ROS generation
may not necessarily be harmful in RV failure, and may even

play a protective role depending on the trigger (acute or chronic
increase in afterload) and the context. However, uncontrolled
or excessive exposure of tissues to intense inflammatory signals
may be detrimental. The relevance in the control of inflammation
warrants further investigation in RV failure to evaluate if the use
of anti-inflammatory therapy to improve RV function might be
useful.
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