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ABSTRACT

Single-cell transcriptomics offers unprecedented op-
portunities to infer the ligand–receptor (LR) interac-
tions underlying cellular networks. We introduce a
new, curated LR database and a novel regularized
score to perform such inferences. For the first time,
we try to assess the confidence in predicted LR in-
teractions and show that our regularized score out-
performs other scoring schemes while controlling
false positives. SingleCellSignalR is implemented
as an open-access R package accessible to entry-
level users and available from https://github.com/
SCA-IRCM. Analysis results come in a variety of tab-
ular and graphical formats. For instance, we provide
a unique network view integrating all the intercel-
lular interactions, and a function relating receptors
to expressed intracellular pathways. A detailed com-
parison of related tools is conducted. Among vari-
ous examples, we demonstrate SingleCellSignalR on
mouse epidermis data and discover an oriented com-
munication structure from external to basal layers.

INTRODUCTION

In multicellular organisms, cells engage in a large number
of interactions with adjacent or remote partners. They do
so to coordinate their fate and behavior from early devel-
opmental stages to mature tissues (1–4), in healthy and dis-
eased (5) conditions. Although other mechanisms may play
a role such as tunneling nanotubes, secreted vesicles or ion
fluxes, a significant part of cellular communications is car-
ried over by secreted ligand and cell surface receptor physi-
cal interactions (6). In the particular case of tumors, can-
cer cells can reprogram their micro-environment through
secreted factors, turning neutral or anti-tumor cells into tu-
mor supportive elements (7,8). The emergence of single-cell
RNA sequencing (scRNA-seq) technologies (9–11) has pro-

vided researchers with powerful means of learning which
cells compose specific tissues. The different cell populations
present in a sample can be determined by applying unsuper-
vised clustering (12). Further tools exist to infer intracellu-
lar pathway activity (13–15), i.e. internal cell states. While
such compositional descriptions are essential, deciphering
individual cell contributions in tissues requires the unravel-
ing of cellular interactions. Recent scRNA-seq-based stud-
ies illustrated how ligand-receptor (LR) interaction map-
ping might provide a better insight in tissue development
and homeostasis or tumor biology. For instance, Puram
et al. (16) studied head and neck squamous cell carcino-
mas. They were able to identify an LR interaction, TGFB3-
TGFBR2, involved in the communication between cancer
cells undergoing (partial) epithelial to mesenchymal transi-
tion, at the leading edge of the tumor and cancer-associated
fibroblasts. The latter interaction was shown to be necessary
for invasiveness. Additional examples illustrating the dis-
covery potential of LR maps can be found in the literature
(17–21). Those results highlight the need for a systems biol-
ogy tool that would assist investigators in portraying cellu-
lar networks by inferring confident putative LR interactions
for follow-up validation.

SingleCellSignalR is the first such tool available in R. It
relies on a comprehensive database of known LR interac-
tions, which we called LRdb. It also introduces a new regu-
larized product score aimed at adapting to variable levels of
depth in single-cell datasets, i.e. the prevalence of censored
read counts or dropouts. LRdb is the result of integrating
and curating existing sources plus manual additions; to the
best of our knowledge, it is the largest database of this kind.
The new scoring approach has the advantage of facilitat-
ing the use of stable thresholds on LR interaction scores to
control false positives (FPs) and not only rank LR interac-
tions. SingleSignalR can start from raw read count matrices
and use integrated data normalization, clustering and cell-
type calling solutions before inferring LR interactions be-
tween cell populations, i.e. cell clusters. Alternatively, those
preliminary steps can be substituted by any other tools or
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framework, and SingleSignalR used for LR interaction in-
ference only, its primary purpose. In order to facilitate the
interpretation of LR interactions and put them in context, a
range of visualization and complementary analysis tools are
provided, e.g. the inference of intracellular networks rooted
at the receptors––or ligands––expressed by a particular cell
type. LRdb contains human genes, but we can accommo-
date murine datasets by translating murine genes to their
human orthologs. An application example illustrates this
functionality on mouse skin data.

Several authors proposed tools for mapping LR interac-
tions (18,22–26) from scRNA-seq data. They exploited dif-
ferent reference lists of potential LR interactions and LR
interaction scoring schemes to rank those interactions. A
systematic comparison of scoring sensitivity and selectivity,
and tool features is presented.

MATERIALS AND METHODS

LRdb––a curated database of ligand–receptor interactions

We decided to favor interpretable inferences that are sup-
ported by the literature or experimental data. Accordingly,
we compiled the content of existing databases that con-
tain such LR pairs: FANTOM5 (6), HPRD (27), HPMR
(28), the IUPHAR/BPS Guide to Pharmacology (29) and
UniProtKB/Swissprot (30) annotations related to families
of ligands or receptors covered in the previous databases.
We also extracted LR pairs, with respective participants an-
notated as ligand or receptor in GO (31), from Reactome
(32) pathways. We required GO Cellular Compartment
(GOCC) annotation ‘receptor complex’ (GO:0043235) for
receptors, and ‘extracellular space’ (GO:0005615) or ‘extra-
cellular region’ (GO:0005576) for ligands. Reactome path-
ways were downloaded from Pathway Commons (33). That
yielded 3191 pairs. Inspection of the latter revealed 106 du-
bious cases, i.e. ligand–ligand or receptor–receptor, or non-
secreted gene products. After elimination, we obtained 3085
reliable LR pairs, which we extended with 166 pairs ex-
tracted from cellsignaling.com maps and related literature
manually to reach 3251 LR pairs (Figure 1A and B). All the
gene symbols were converted into the latest HUGO version
as part of the curation process.

A proper comparison of SingleCellSignalR with existing
tools is presented in ‘Results and Discussion’ section. At
this stage, it is nonetheless interesting to note that some
tools (23,24) relied on LR pairs deduced from STRING
with principles analogous to what we did with Reactome.
That yielded a large number of reference LR pairs, >30 000
typically, but the overlap with LRdb extensive collection of
known LR interactions remained modest (50.2%) (Figure
1C). Although that approach might provide additional dis-
covery potential, we decided to stay with literature-derived
LR interactions.

SingleCellSignalR implementation

The software package was implemented in R, following Bio-
conductor standards. Basic usage examples are provided
in Supplementary Material and the package documenta-
tion. In principle, we encourage users to apply advanced
data normalization, clustering and cell-type calling tools

(12,34), and to submit preprocessed count matrices to Sin-
gleCellSignalR to perform LR interaction inference and vi-
sualization. For convenience, we implemented simple data
preparation steps enabling users to start from a raw read
count matrix. We normalize individual cell transcriptomes
according to their 99th read count percentile. In case a cell
has its 99th percentile equal to zero, it is discarded. Normal-
ized read counts (+1 to avoid zeros) are log-transformed.
Clustering can be obtained either by chaining principal
component analysis for dimension reduction and K-means
(35), or by using the advanced SIMLR model (36). Cell-type
calling is implemented based on a list of gene signatures fol-
lowing a format identical to PanglaoDB (37) exports such
that users can easily add cell types from this rich source
or provide their own. Our algorithm computes the average
gene signature expression across all the cells and for all the
signatures to obtain a signature × cell matrix. This matrix
is normalized and a threshold is iteratively adjusted to max-
imize the number of cells assigned to a single cell type. Full
details and an example are in Supplementary Material.

It is possible to infer paracrine or autocrine only inter-
actions, or both types (Supplementary Figure S1); details
in Supplementary Material. For annotation purposes, dif-
ferentially expressed genes between each cluster and all the
other clusters pooled, are successively searched with edgeR
functions glmFit and glmRT (38). LR interactions with
both the ligand and the receptor significantly enriched in
their respective cell types are labeled ‘specific’ (Supplemen-
tary Figure S1).

In order to relate receptors to intracellular signaling,
we make use of Reactome and KEGG (39) interactions
downloaded from Pathway Commons. Interactions are
assigned to several types that we simplified to facilitate the
display of networks afterward. Interaction types ‘interacts-
with’ and ‘in-complex-with’ were assigned to the simplified
type ‘complex.’ The interaction types ‘chemical-affects,’
‘consumption-controlled-by,’ ‘controls-expression-of,’
‘controls-phosphorylation-of,’ ‘controls-production-of,’
‘controls-state-change-of,’ ‘controls-transport-of’ and
‘controls-transport-of-chemical’ were simplified as ‘con-
trol.’ The interaction types ‘catalysis-precedes,’ ‘reacts-with’
and ‘used-to-produce’ were simplified as ‘reaction.’ The
simplified type ‘control’ was considered directional whereas
‘complex,’ and ‘reaction’ were considered undirected.

Datasets

Different single-cell datasets were used to illustrate
and benchmark SingleCellSignalR. MELANOMA is a
metastatic melanoma dataset covering several patients
(40), SMART-Seq2 protocol, GEO GSE72056. 10xPBMC
is a peripheral blood monoclonal cell dataset from healthy
donor (41), Chromium 2 protocol. 10×T is a pan T-cell
dataset from healthy donor (42), Chromium 2 protocol.
10×PBMC and 10×T were downloaded from 10× Ge-
nomics web site. HNSCC is a head and neck squamous
cell carcinoma (primary and metastatic) dataset (16),
SMART-Seq2 protocol, GEO GSE103322. PBMC is a
second, deeper peripheral blood monoclonal cell dataset
(43), SCRB-seq protocol, GEO GSE103568.
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Figure 1. SingleCellSignalR databases and workflow. (A) LRdb sources. (B) Approximate overlap of sources. (C) Overlap (50.2%) of LRdb with an
example of LRdb derived from STRING (here the database of scTensor). (D) SingleCellSignalR general workflow with input transcript expression matrix
both normalized and clustered by either independent tools or by SingleCellSignalR basic built-in algorithms.

Mouse skin immunolabeling

Fresh adult mouse skin samples were embedded in OCT
(Sakura) and cryosectioned. Immunolabeling was per-
formed on unfixed 10 �m cryosections using the following
antibodies: anti-PSEN1 (SAB4502423, Sigma) and CD44
(MA1-10225, ThermoFisher). For IF, we used anti-rat con-
jugated 488 (A-11006, ThermoFisher) and anti-rabbit con-
jugated 594 (A-21207, ThermoFisher) antibodies.

RESULTS AND DISCUSSION

Workflow overview

Independent of the chosen scRNA-seq platform, data come
as a table of read or unique molecule identifier (UMI)
counts, one column per individual cell and one row per
gene. The prediction of LR interactions between cells re-
quires that scRNA-seq data are normalized and clustered,
with each cluster corresponding to a cell type (12). Ideally,
the cell types should be called, e.g. using gene signatures,
to facilitate the interpretation of the LR interactions. The
design of SingleCellSignalR is such that those preliminary
steps can be accomplished within the package, using built-
in or integrated solutions or realized with other tools ac-
cording to the user preference. The latter option is prefer-
able to benefit from the latest or most advanced techniques.
Once data have been prepared, the inference of LR inter-
actions is performed by successively considering each pos-

sible cell type––or cluster––couple, e.g. CD8+ T cells ver-
sus macrophages (Figure 1D). The reality of each poten-
tial LR pair according to LRdb is estimated by the com-
putation of a score based on gene expression in the respec-
tive cell types. It is also possible to infer autocrine interac-
tions. The output interaction lists are provided in various
formats (tables, different plots and networks), and comple-
mentary functions were designed to help to interpret these
lists, e.g. linking receptors to intracellular signaling path-
ways from Reactome and KEGG.

Scoring ligand–receptor pairs

To infer LR interactions between cell types A and B, we in-
terrogate LRdb and score each LR pair found with average
ligand expression l > 0 in A, and average receptor expres-
sion r > 0 in B or vice versa. Existing tools often consider
the product lr and sometimes the average l+r

2 . Alone, such
scores can rank candidate LR pairs, but users are left with-
out any clue where to cut off likely FPs. The computation
of a score should hence be accompanied by a procedure to
determine a threshold below which scores are deemed unre-
liable. A common choice is to shuffle cell-type assignments
multiple times and to obtain a score null distribution to es-
timate score P-values. Although intuitive and statistically
sound, this solution does not address the real question. It
rather identifies LR pairs that are significantly specific to a
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given couple of cell types. That should imply that the inter-
action is likely to exist but it might result in poor P-values
for real LR interactions that are shared by many couples of
cell types. For instance, in tumors, it is common that many
immune cell populations express immune checkpoints and
their ligands, e.g. PD-1/PD-L1, forming an immunosup-
pressive micro-environment. In such a case, many combi-
nations of cell types would involve the PD-1/PD-L1 inter-
action resulting in bad P-values if an insufficient number
of other cell populations, not expressing these molecules,
would be present in the dataset. To address the points above,
we introduced a regularized product score:

LRscore =
√

lr

μ + √
lr

,

where μ = mean(C) and C is the normalized read count
matrix. In this empirical score, the mean μ acts as a scaling
factor, and the square roots are meant to keep the lr prod-
ucts and μ on the same scale. The LRscore is bounded by 0
and 1, independent of the dataset depth.

Now, to define a score threshold is not a simple task
since, by essence, all LR pairs listed in LRdb are correct
in a particular context, i.e. defining false LR interactions
must rely on external knowledge specific to the couple of
cell types considered each time. Ideally, single-cell transcrip-
tomes would be available for a tissue where all possible
LR pairs would have been tested experimentally, e.g. by
immunofluorescence, eventually including functional evi-
dence. Such data are obviously not available.

To estimate an appropriate LRscore threshold and to
compare LRscore to other scoring schemes nonetheless, we
decided to use an ad hoc benchmark that would be unbi-
ased regarding the scoring schemes and accurate enough bi-
ologically. A first opportunity was provided by Ramilowski
et al. (6) data, which are part of FANTOM5 and included
a table reporting the expression (in TPM) of many ligands
and receptors over 144 primary cell types. This table, which
we denote Tref , was obtained by sequencing techniques that
were much deeper than scRNA-seq, i.e. virtually devoid of
dropout for our purpose. The authors considered that ex-
pression above 10 TPM could be taken as a conservative
gene expression basal limit. We thus designed an evaluation
where candidate LRdb pairs, restricted to ligands, recep-
tors and cell types covered in Tref , could be considered cor-
rect if both the ligand and the receptor TPM were above 10.
If both were below 10 TPM, the pair was deemed false, and
mixed cases (one >10 and the other ≤10) were ignored. Ad-
mittedly, ligand and receptor concomitant expression does
not guarantee a functional interaction, but since those lig-
ands and receptors are known to interact for at least one
combination of cell types, we considered the benchmark
above sufficiently accurate for our purpose. A second op-
portunity was provided by a proteomics study of 28 primary
human hematopoietic cell populations in steady and acti-
vated states (44), which enabled a similar benchmark relat-
ing censored scRNA-seq data to their proteomics counter-
part. Namely, each cell population was measured in quadru-
plicate and we stored the average peptide counts in a table
Pref (similar to Tref ). This second evaluation was conducted

as above with a threshold of an average spectral counts ≥ 2
for an LR pair to be true.

We used ROC curves to compare methods and determine
score thresholds at 5% FPs. We already mentioned LR pair
scores equal to the product lr or the mean l+r

2 as well as
their P-values. A further proposed scheme was to select in
each cell type, those genes whose expression was specific.
Subsequently, whether the reference database would con-
tain pairs of such genes was checked (22,24). In the case of
Zhou et al. (22), gene selection relied on a z-score calcula-
tion. To obtain a ROC curve, we varied the coefficient ap-
plied to the standard deviation at that gene selection stage.
Another selection-based tool (24) did not report any score.
It is thus not included here but covered in the tool compar-
ison below only. scTensor (23) applied non-negative Tucker
decomposition to model ligand and receptor read counts
as sums over the many LR pairs they might contribute to.
Despite considerable efforts, we could not use it beyond its
pre-packaged example. It is therefore absent from the pre-
sented comparison.

We applied the two benchmarks above to five datasets
covering several cell types in Tref and in Pref (‘Materials
and Methods’ section). Every couple of cell types, both in
Tref or Pref , yielded ROC curves such as the example fea-
tured in Figure 2A for 10×PBMC data against Tref . Areas
under the curves (AUCs) over all the datasets and all the
cell-type couples represented in Tref are presented in Figure
2B; individual curves and dataset-specific AUCs are in Sup-
plementary Figures S2–6. We see that the best AUCs were
achieved by LRscore, the product, and the average. As ex-
pected, P-value calculations yielded inferior performance.
Zhou et al. selection mechanism was also inferior to the
best scores. We next asked how variable a threshold aimed at
cutting at a certain FP rate would be; we imposed 5% FPs
(Figure 2C and Supplementary Figures S2–6 for dataset-
specific plots). Naturally, due to its design, LRscore thresh-
olds turned out to be much more stable. In Figure 2D, we
show how a threshold common to all the single-cell datasets
could be determined, imposing <5% FPs in 75% of all the
ROC curves of all the five datasets. We found LRscore >
0.4. Repeating the analysis for the proteomics reference Pref
gave the results in Figure 2E and F (and Supplementary
Figures S7–11) that are very similar. The computation of
a common threshold to achieve <5% FPs in 75% of the
ROC curves resulted in LRscore > 0.6 (Supplementary Fig-
ure S12). This more stringent threshold can be explained by
a potential lower sensitivity (∼10 000 proteins) compared
to FANTOM5 transcriptomics and by the obvious differ-
ences between transcriptome and proteome. These consid-
erations indicate that a universal threshold that would guar-
antee, e.g. 5% FPs cannot be determined, but score regular-
ization is already a major step toward more rigorous cut-
offs. To illustrate this, we imposed LRscore > 0.5 to all the
datasets against both Tref and Pref . From Figure 2G, we see
that we managed to maintain the FPs in a reasonable range,
and, most importantly, the variability of the FP rate within
each dataset is modest. That is, a threshold can be set and
FP rates on LR interactions between any combinations of
two cell types remain comparable. Repeating this analysis
with the product score and common threshold 10−2 found
as above, we note large discrepancies between datasets.
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Figure 2. Statistical analysis. (A) Representative ROC curve. (B) AUCs over all the ROC curves of the five datasets; transcriptomics reference. (C) Relative
variability (with respect to the median value) of the thresholds required to achieve 5% FPs in each ROC curve (all couples of cell types, all the datasets).
(D) FP rate upon various LRscore thresholds. A small box plot is featured for each threshold value and the figure inset shows all the ROC curves. LRscore
threshold (blue dashed line) such that 75% of the ROC curves would yield FPs below 5%. (E and F) Same as B and C, but for the proteomics reference.
(G) FP rates (±sd) on each dataset against the transcriptomic and the proteomic references when imposing a consensus LRscore threshold of 0.5. Same
results for an equivalent product score threshold consensus in the two right-most columns.
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Representing ligand–receptor interactions

After scoring and application of a threshold, Single-
CellSignalR outputs LR interactions in various formats.
10×PBMC raw UMI counts were submitted to our de-
fault pipeline, which clustered cells in six populations: B
cells, T cells, regulatory T cells (Tregs), neutrophils, cyto-
toxic cells and macrophages (Figure 3A). A summary chord
diagram can be generated that indicate the number of LR
interactions between each cell population couple (Figure
3B). Chord diagrams for individual interactions between
two populations are possible as well (Figure 3C). Inspection
of the expression of the ligand and the receptor involved in
a LR interaction is implemented in mixed or dual 2D pro-
jections (Figure 3D–E).

Chord diagrams are convenient for looking at specific
couples of cell types but not to account for the whole
dataset. We hence implemented two integrated views as ei-
ther a tabular plot (Figure 3F) or a network exported in
graphML format. The latter can be imported in tools such
as Cytoscape (45). We exemplify the network view with
MELANOMA patient 89 data. In Figure 3G, we picture
an overview of the intercellular network (full details in Sup-
plementary Figure S13). The complexity and partial re-
dundancy of this network are particularly noteworthy, with
multiple cell types expressing the same ligands or receptors.
That is typical of immunosuppressive TMEs.

Putting ligand–receptor interactions in context

To help to understand the functional consequences of LR
interactions, we relate the receptors in each cell type with
downstream biological pathways (Figure 3H). This requires
a global reference of all possible pathways, including links
from the receptors and a method to generate receptor-
related, intracellular regulatory networks that are restricted
to each cell type. We decided to use KEGG (39) and Re-
actome (32) pathways taken from Pathway Commons (33)
as a global reference. This choice guaranteed interpretable,
literature-supported network interactions. Surprisingly, we
found 100 receptors in LRdb that were devoid of down-
stream interactions in this pathway ensemble. By manually
checking their respective UniProtKB/Swissprot entries, we
found 1–12 known interactions for 61 of them, which were
added along with literature references (176 interactions in
total).

Construction of a ligand-related internal network for
each cell type was obtained by the following algorithm.
Given a list of receptors, e.g. all the receptors involved in
LR interactions for the cell type at hand or a subset, we
first identify all the pathways including these receptors. The
union of all such pathways is intersected with the set of
genes expressed by the cell type. That gene list is obtained
by selecting the genes expressed by more than a propor-
tion p of the individual cells after normalization of the raw
read count matrix, that is matrix C (p default is 20%; it can
be adjusted by the user). To the intersected pathways, we
add direct receptor/expressed gene interaction that would
not be included in Reactome or KEGG, which are those
we manually added. The functionality can be applied to lig-
ands as well to obtain information about their pathways of

origin. In every case, the resulting network edges are anno-
tated with Reactome/KEGG data plus a simplified interac-
tion typology that is convenient for visualization (‘Materials
and Methods’ section).

The neutral and straightforward procedure above for call-
ing expressed genes was retained to be independent of the
cell population size, on the one hand, and to avoid interfer-
ence with raw read count preprocessing, on the other hand.
In particular, users could apply imputation strategies (46) to
reduce dropouts and/or advanced data normalization and
regularization (12,47).

Mouse interfollicular epidermis application

Mouse interfollicular epidermis (IFE) is a multilayered ep-
ithelium in which proliferating cells reside in the basal layer
(IFE B), where they undergo regulated cell division. Their
daughter cells move upward into the suprabasal layers while
further differentiating until they reach the outermost layer
(IFE K2) (Figure 4A). In this application, we demonstrate
SingleCellSignalR mouse data functionality, which is im-
plemented by internally mapping mouse genes to their hu-
man orthologs according to Ensembl (48) to exploit LRdb.
Murine gene names are preserved in the different outputs.

From Joost et al. data (49), we selected IFE cells exclu-
sively (658 cells, Figure 4B and C). To confront these data
with our FP analysis above, we considered LR interactions
between the keratinized layer (IFE K2 and K1 cells pooled)
and the suprabasal layer (IFE D1 and D2 cells pooled).
The pooling was motivated by minor differences between
cells and a facilitated comparison with human epidermis
(see below). We found 248 LR interactions with LRscore >
0.5 (Supplementary Table S1). Among the top-ranked inter-
actions, several cases involved Presenilin-1 (Psen1). Based
on novelty and specific antibody availability, we decided
to validate in mouse epidermis the interactions Presenilin-
1/CD44, which is likely involved in cell differentiation and
tissue organization. From Figure 4D, we observe correct lo-
calization of those two proteins in the IFE layers (left and
middle pictures), Presenilin-1 being both cytoplasmic and
secreted in agreement with the literature. In the merged pic-
ture (right), we see an overlap between the diffusive, extra-
cellular Presenilin-1 signal and suprabasal cell plasma mem-
branes harboring CD44 in some regions, e.g. at the two loca-
tions indicated by white asterisks. Using the Human Protein
Atlas (HPA) (50) as a systematic resource to search human
orthologs expression in the corresponding epidermis layers,
literature (51–53) and the above experimental validation, we
confirmed 158 out of the 176 inferred LR interactions for
which we had data (Supplementary Table S1). That is 10.2%
FPs, in line with our ROC curve analyses above compared
to the proteomics reference.

Top layer IFE K2 cells supposedly maintain elementary
activities only, which was supported by the limited num-
ber of expressed genes found in those cells (Figure 4E).
The number of expressed genes coding for ligands or recep-
tors was directly correlated with the total number of genes
in Figure 4E, reflecting the proportion they occupy in the
mouse genome. This configuration changed considering lig-
ands and receptors that were involved in reliable LR inter-
actions only (LRScore > 0.5). The largest numbers of lig-
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Figure 3. Graphical representations. (A) 10×PBMC data with SIMLR clusters. (B) Summary chord diagram of the paracrine interactions; largest num-
ber of interactions from regulatory T cells toward macrophages and neutrophils. (C) Paracrine interactions from neutrophils toward cytotoxic cells. (D
and E) Joined, and separated expression plots over the t-SNE map to assess LR interaction specificity and prevalence. (F) Integrated tabular view of the
N most variable LR pairs with LRscore > 0.5 in one cell-type couple at least. (G) Integrated network of MELANOMA data patient 89 intercellular inter-
actions. Overview and chosen interactions. The full network is in Supplementary Figure S13. (H) Example of intracellular signaling downstream CTLA-4
in T cells. Node sizes represent the gene expression level (arbitrary scale).
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Figure 4. Mouse IFE. (A) Schematics of the IFE (arrow = axis of differentiation). (B) t-SNE plot of the IFE cells with the underlying black arrow
representing the axis of differentiation. Some incompletely differentiated non IFE B cells lie among the IFE B subpopulation. (C) Cell type calling with
actual subpopulations in the top color band. (D) Presenilin-1 (left panel) and CD44 (middle panel) immunostainings of mouse skin sections. Sections
were counterstained with DAPI (epi = epidermis, * = co-localization). (E) Number of genes with average expression different from 0 in each IFE layer.
(F) Number of ligands and receptors involved in LRscore > 0.5 interactions. (G) Flow diagram representing the number of interactions between the cell
subpopulations. (H and I) Chord diagrams of adjacent and remote IFE K2 cell–cell interactions. (J) Immune marker gene expression. Il18 is expressed by
macrophages, Ifi30 by antigen-presenting cells and Prdm1 by T cells (genecards.org).
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ands were found in upper layers and the receptors followed
a reversed pattern (Figure 4F). The overall LR interactions
are quantified in Figure 4G, which shows an IFE K2 layer
sending most signals and receiving the least. The number of
LR interactions with a ligand contribution diminish from
the outer layer to the most basal one. That is, the applica-
tion of SingleCellSignalR unraveled upper IFE layer cells
that produce much information but receive little. The basal
layers behaved anti-symmetrically. LR interactions between
IFE K2 and K1 and more remotely between IFE K2 and D1
are reported in Figure 4H and I. Pathway analysis showed
that the interactions issued from IFE K2 cells were mostly
involved in growth (e.g. GAB1 signalosome, or signaling by
EGFR) and differentiation (EPH-ephrin mediated repul-
sion of cells, or Ephrin signaling). That illustrates the notion
of a tight long-distance connection between outer and basal
layers, which might be of particular interest in understand-
ing the regulation of the epidermis constant self-renewal.

Interestingly, we noticed that LR pairs involved in wound
healing regulation (54) were expressed by IFE K2 and D1
(Figure 4I). That suggests a mechanism for rapid reaction
upon wounding, bringing K2 and D1 cells in contact. Al-
though we excluded the immune cells present in Joost et al.
data, we found 146 genes associated with immune cells. Se-
lected genes with a clear pattern, as well as the average of
all immune-related genes, are reported in Figure 4J. IL18
and PRDM1 were found with epidermis keratinocyte ex-
pression in human skin according to HPA (Supplementary
Figure S14). This striking observation strengthens the po-
tential for an immune function of the epidermis (55,56) and
may have essential implications in inflammatory skin dis-
eases such as psoriasis or atopic dermatitis.

Comparison with other tools

The general characteristics of SingleCellSignalR and re-
lated tools appear in Table 1. iTALK (25) infers LR pairs
from a compilation of public LR databases using a prod-
uct score limited to the most abundantly expressed genes. It
requires a read count matrix, where cell type calling was per-
formed beforehand. iTALK includes a feature to deal with
multiple datasets (time course, different conditions) such
that variability and trends in ligand and receptor expression
across datasets can be added to the LR plots. CellPhoneDB
(26) is both an online tool and a Python package that can be
downloaded. It scores LR pairs after P-values of the mean
score. A modification is operated in case of a multimeric re-
ceptor and/or ligand, requiring that all the subunits are ex-
pressed. This unique and biologically sound feature might
cause false negatives due to dropouts in scRNA-seq data.
Kumar et al. (18) employed a product score. Instead of sim-
ple data shuffling, they applied a statistical test (Wilcoxon)
to assess that over several tumors, the score was significantly
different from zero. That procedure cannot be reproduced
when analyzing a single dataset. Zhou et al. (22) proposed
to select LR pairs based on specific expression of the lig-
and and the receptor in two cell subpopulations, referring
to a database of known LR pairs. Specific gene expression
was tested, requiring that the average expression of a gene,
in a subpopulation, was above its mean expression over the
whole count matrix plus three standard deviations. scTen-

sor (23) aims at inferring LR pairs through non-negative
Tucker decomposition, explaining the observed ligand and
receptor read counts as sums of the contributions of all the
interactions they would engage in. It exploits a database of
potential LR pairs generated from STRING interactions
and Swissprot annotations (secreted/membrane) automat-
ically, which yields a considerable number of putative LR
pairs and does not cover many known interactions (Fig-
ure 1C). One attractive scTensor feature is the LR reference
available for multiple organisms. PyMINEr (24) is a Python
program that can perform k-means plus clustering based on
log-transformed and normalized data. Cell-type calling is
based on subpopulation specific gene pathway enrichment;
application of characteristic gene signatures is not available.
By contrast, SingleCellSignalR relies on gene signatures to
perform cell-type calling (see Supplementary Methods for
details and Supplementary Figure S15 and Table S7 for an
illustration). It is possible to prepare and cluster data exter-
nally with PyMINEr. LR pairs between two cell subpopu-
lations are inferred from pairs of genes found to be specific
to each subpopulation, in interaction in STRING (57), and
respectively classified as receptor and ligand in GO. There
is no scoring per se, only this selection process. PyMINEr
further infers a so-called co-expression graph, linking genes
correlated over the whole read count matrix. This graph can
be exploited to project different data such as the expres-
sion of genes in one specific subpopulation. Like scTensor,
PyMINEr relies on automatically generated LR references
from STRING.

As explained above, we could not use scTensor beyond
its prepackaged example dataset (58) despite considerable
efforts. We nonetheless tried to obtain some elements of
comparison by processing the same data with SingleCellSig-
nalR. We found two reliable LR pairs whereas scTensor re-
turned 14 pairs, none in common, see Supplementary Ta-
ble S2. Not being able to test scTensor on more exam-
ples did not allow us to perform a real comparison. We
analyzed 10×PBMC data with PyMINEr and observed a
substantial discrepancy with our results. Without impos-
ing any threshold on PyMINEr output (no guidance pro-
vided by the authors), PyMINEr typically retrieves 10–20
times more paracrine interactions, and twice the number of
pooled paracrine and autocrine interactions, with little in-
teractions with our LRscore > 0.5 results (Supplementary
Tables S3 and 4). The ROC curve analysis we conducted and
such enormous lists of interactions inferred by PyMINEr
suggest contamination with FPs. Obviously, PyMINEr out-
put should be imposed a threshold in practice, which would
reduce the FPs but would not improve the overlap with the
known interactions in LRdb. We next submitted the same
10×PBMC data to CellPhoneDB website. The smaller LR
reference database, strict rules regarding multimeric ligands
or receptors, and the impact of a re-shuffling-based P-value
calculation caused reduced sensitivity compared to our so-
lution by a factor 8.5 on average (Supplementary Table S5).
Inspection of CellPhoneDB output showed that the inter-
actions we missed were absent from LRdb and imported in
CellPhoneDB from sources that we did not consider, such
as InnateDB, MINT, IntAct, MatrixDB or manual cura-
tion. At last, we installed iTALK R package and applied
it to 10×PBMC data as downloaded from iTALK GitHub
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Table 1. Software tool comparison

SingleCellSignalR iTALK PyMINER CellPhoneDB scTensor Zhou et al.a Kumar et al.

LR database size 3251 2648 65 910b 1396 34 449 2558 1800
Complete pipeline Y N N N N N N
Accept
pre-processed data

Y Y Y Y Y Y Y

Multiple samples N Y N N N N N
Intracellular
signaling

Y N Y N N N N

Scoring approach regularized product product selection modifiedc mean
P-value

linear
decomposition

selection productd

Export types
Tables Y Y Y Y Y NA Y
Circular plots Y Y N N N NA N
graphML or

equiv.
Y N Y N N NA N

Num. species 2 1 238 1 12 1 2
Platform/language R R Python website or Python R NA MATLAB

aNot available as a software package.
bThis number may vary since the reference interaction list is generated from STRING automatically.
cIn case a complex is considered, all subunits must be selected in a significant interaction with the partner.
dThe authors added a Wilcoxon test to assess that the LR pair score was different from zero in multiple tumors.

repository. As for PyMINEr, iTALK scores and orders the
LR interactions but does not propose any cutoff. Contrary
to PyMINEr, iTALK relies on a selective database of LR
pairs. We hence decided to consider the 118 top-scoring
pairs of its output since LRscore > 0.5 gave us an aver-
age of 118 selections. Results are in Supplementary Table
S6 and we observe a good overlap with our larger selec-
tions. Dissecting the data showed that all of iTALK unique
LR interactions were caused by LR pairs with deprecated
HUGO gene symbols; they were present in LRdb with the
current symbols. For CellPhoneDB and iTALK, it was not
possible to clearly separate paracrine from autocrine, and
we hence compared results on the pooled paracrine and au-
tocrine predictions. Overall, we found significant discrepan-
cies with PyMINEr and scTensor, while CellPhoneDB and
iTALK were more comparable with our tool. In the latter
two cases, differences originated from reference databases
and scoring.

CONCLUSION

In the nascent topic of intercellular network mapping, Sin-
gleCellSignalR is an R software package that facilitates the
transformation of complex data into higher-order informa-
tion. The package comes with a large variety of graphical
representations and export formats to accommodate users
and to support the downstream analysis of data. Of partic-
ular note are the abilities to represent a complete intercellu-
lar network and to import the latter in systems biology tools
such as Cytoscape, and to explore receptor downstream sig-
naling by integrating Reactome and KEGG pathways.

For the first time, we discussed the question of the sig-
nificance of inferred LR interactions. We showed that Sin-
gleCellSignalR regularized score achieves better control of
the FP compared to other solutions, independent of the re-
tained single-cell platform. That is an important feature to
explore intercellular communication networks, where each
cell type might be involved in a different number of inter-
actions. It allowed us to evidence cells that emit more sig-

nals than they receive in mouse IFE (Figure 4). The estima-
tion of false/true positive rates entailed the construction of
a benchmark relying on cell line deep RNA-seq and pro-
teomic data to compensate for the absence of an ideal and
systematic functional validation of LR interactions in spe-
cific tissues. Results obtained in mouse IFE supported those
estimations.

A detailed comparison with existing tools revealed the
specific features contributed by each solution. The particu-
lar design choices we made, e.g. to rely on well-documented
sources of interaction data and to control false inferences,
clearly produced more or more reliable information. Sin-
gleCellSignalR is open to other software packages; UMI
or read count matrices prepared with other tools can be
imported, or preparatory steps can be accomplished with
SingleCellSignalR built-in procedures. Although Single-
CellSignalR was designed for scRNA-seq data, it could be
used with emerging single-cell proteomics technologies such
as CyTOF (59) or SCoPE-MS (60). At last, our R library
does not require advanced R skills from users.
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