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Abstract: This paper investigated the influence of recycled ceramics and grazed hollow beads on
the mechanical, thermal conductivity and material properties of concrete. The results showed that
the concentration of recycled ceramics and grazed hollow beads has significant optimization on the
workability and thermal properties of the concrete. However, the superabundant concentration can
reduce the hydration degree of the concrete, which results in the suppressed production of C-S-H gel
and the increase of material defects. In summary, considering the coordinated development of key
factors such as thermal insulation properties, mechanical properties and microstructure, 10% RCE
and 60% GHB are the optimal material system design methods.

Keywords: recycled ceramics (RCE); grazed hollow beads (GHB); recycled thermal insulation con-
crete (RTIC); mechanical properties; thermal conductivity; materials properties

1. Introduction

Environmental pollution and resource and energy shortages have become the main
problems hindering the development of industrialization and urban construction [1–5].
With the continual improvement of industrialization processes, the accumulated storage
volume of industrial waste has rapidly increased, causing irreversible environmental
damage, such as soil erosion, air pollution, landscape destruction, deterioration of wildlife
habitat and serious personal and property losses [6–8]. As the largest consumption carrier
of industrial waste, concrete is gradually being recognized by government departments
and the public for its role in the sustainable development of green ecology. Simultaneously,
with the supersaturated population growth rate and the development of urbanization, the
demand for concrete still maintains a relatively high volume. Recycling waste materials
into concrete may be a necessary means for solving the above problems. On the one
hand, it absorbs recyclable industrial waste to prepare new green building materials.
On the other hand, it saves the non-renewable raw materials consumed in the traditional
concrete preparation process [9–16]. As the world’s largest ceramic producer and consumer,
Foshan had produced more than 9 million tons of ceramics with a scrap rate of 5–25% by
2020 [17–20]. However, China’s disposal of waste ceramics is still in the stage of centralized
burial, which has largely caused a waste of resources and environmental pollution. The
resource utilization methods and methods of waste ceramic disposal have become the
hotspots and key points in the current research in the field. In recent years, many scholars
have carried out research on recycled ceramic aggregate concrete. The research results can
be summarized as: (1) Due to the effect of the characteristics of ceramic aggregates, the
replacement of natural coarse aggregates with ceramic coarse aggregates will lead to a
decrease in the relative volume and fluidity of the mortar in the concrete. (2) Simultaneously,
the compressive strength decreases as the replacement rate of ceramic coarse aggregate
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increases. (3) The flexural strength of recycled ceramic coarse aggregate concrete decreases
with the increase of the ceramic coarse aggregate replacement rate because the crushing
index of ceramic coarse aggregate is higher than that of natural coarse aggregate [21–25].

Based on the characteristics that the mechanical properties of recycled ceramic coarse
aggregate concrete are lower than ordinary concrete, recycled ceramic concrete is more
widely used in the preparation of enclosure structures. The engineering application of the
envelope structure with heat preservation and heat insulation properties can effectively
alleviate the problem of energy shortage in China which conforms to the fundamental
national policy of energy saving and emission reduction [26–30]. Based on ceramic coarse
aggregates, lightweight thermal insulation concrete structures can be prepared. However,
due to the complex material properties of ceramic coarse aggregates, thermal insulation
concrete has the disadvantages of uneven temperature distribution and high thermal
conductivity. At present, the preparation of thermal insulation concrete structures with
ceramic coarse aggregates is still unable to fully meet engineering needs. How to improve
the thermal insulation performance of recycled ceramic coarse aggregate concrete and
meet the needs of engineering applications is still an urgent problem to be solved. In
recent years, as a new type of lightweight aggregate, grazed hollow beads (GHB) have
the characteristics of a porous inner surface and a glass-like outer surface, and have the
function of a micro pump, which is easy to combine with cementitious materials. At the
same time, the concrete prepared with GHB as lightweight aggregate has good mechanical
and thermal insulation properties [16,31–38]. However, the research on the mechanical
properties, thermal conductivity and material properties of cement-based material systems
prepared by combining GHB and ceramic coarse aggregates is insufficient, and it is still
necessary to enrich the mechanism research of the basic material system to support its
engineering applications.

The goal of this study is to fill these research gaps by investigating the mechanical
properties, thermal conductivity and material characteristics of recycled thermal insulation
concrete (RTIC) that incorporates grazed hollow beads and recycled ceramics as replace-
ment fine and coarse aggregates. Slump, density, splitting strength, compressive strength,
axial compressive strength, elastic modulus and thermal conductivity were measured to
evaluate the impact of grazed hollow beads and recycled ceramics on the macroperfor-
mance. Material morphology, hydration products and functional groups were investigated
to determine the mesoscopic properties of recycled thermal insulation concrete. In sum-
mary, based on the above research results, new ideas are provided for the actual use of
lightweight thermal insulation cement-based materials in civil engineering, such as the
construction of thermal insulation structural floor slabs and the preparation of special
concrete structures.

2. Materials and Methods
2.1. Raw Materials and Mixing Proportions

Ordinary Portland Cement (P.O. 42.5 N), local nature sand (NSD), grazed hollow
beads (GHB), recycled ceramics (RCE) and nature stone (NSE) were used throughout the
experiment. The mechanical properties of cement and chemical composition of cement are
shown in Tables 1 and 2. The particle size distribution curves of nature sand and nature
stone are shown in Figures 1 and 2. The physical properties of local nature sand, grazed
hollow beads, recycled ceramics and nature stone are shown in Table 3. In this paper, the
grazed hollow beads were used for replacing nature sand in different volume ratios as 0, 20,
40, 60% and the recycled ceramics were used for replacing nature stone in different mass
ratios as 0, 10, 20, 30%. The replacement methods for grazed hollow beads and recycled
ceramics are shown in Figure 3. The water-to-cement ratio (w/c) was 0.5 and the mixing
proportions of the concrete mixtures are listed in Table 4. In the process of preparing
concrete, the use of traditional mixing preparation methods caused the concrete slump
to fail to meet the specification requirements due to the high water absorption of RCE
and GHB. In order to solve this problem, the RCE was pre-wetted during the preparation
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process, and then the GHB was pretreated by the free water-cement ratio method, and the
moisture required to be absorbed by the GHB was calculated. Finally, the actual water
demand during concrete preparation was calculated for final mixing preparation.

Table 1. Mechanical properties of Portland cement (MPa).

Flexural Strength (MPa) Compressive Strength (MPa) Fineness Setting Time (min)

3 days 28 days 3 days 28 days 1.2 Initial setting Final setting
4.2 ± 0.2 7.5 ± 0.5 23.5 ± 0.8 43.2 ± 0.4 186 252

Table 2. Chemical properties of Portland cement (%).

Compounds SiO2 Al2O3 Fe2O3 CaO MgO SO3 Loss

Content 22.53 4.42 2.06 61.71 4.55 2.23 2.86
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Figure 1. The particle size distribution curves of nature sand. Figure 1. The particle size distribution curves of nature sand.
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Table 3. Properties of nature sand, grazed hollow beads, nature stone and recycled ceramic.

Physical Properties Fine Aggregate Coarse Aggregate

Type NSD GHB NSE RCE
Accumulation density (kg/m3) 2050 99.52 1389 972

Apparent density (kg/m3) 2512 174.7 3045 1819
Water content (%) 0.81 0.5 0.12 2.51

Mass water absorption (%) 7.58 246 0.16 15.47
Crushing value (%) - - 5.32 15.95

Thermal conductivity (W/m·K) - 0.072 - -

Note: The crushing value is the ultimate compressive strength of the coarse aggregate used in the concrete preparation process. It is one of
the required attributes in raw material performance research.
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Table 4. Mixing proportions of concrete mixtures (kg/m3).

W/C = 0.5 Cement Water NSD NSE RCE GHB SP

RCE0 GHB0 370 185 628 1218 0 0 1.9
RCE0 GHB20 370 202.8 628 1218 0 19.9 1.9
RCE0 GHB40 370 220.5 628 1218 0 39.8 1.9
RCE0 GHB60 370 238.3 628 1218 0 59.7 1.9
RCE10 GHB0 370 185 628 1096 122 0 1.9
RCE10 GHB20 370 202.8 628 1096 122 19.9 1.9
RCE10 GHB40 370 220.5 628 1096 122 39.8 1.9
RCE10 GHB60 370 238.3 628 1096 122 59.7 1.9
RCE20 GHB0 370 185 628 974 244 0 1.9
RCE20 GHB20 370 202.8 628 974 244 19.9 1.9
RCE20 GHB40 370 220.5 628 974 244 39.8 1.9
RCE20 GHB60 370 238.3 628 974 244 59.7 1.9
RCE30 GHB0 370 185 628 853 365 0 1.9
RCE30 GHB20 370 202.8 628 853 365 19.9 1.9
RCE30 GHB40 370 220.5 628 853 365 39.8 1.9
RCE30 GHB60 370 238.3 628 853 365 59.7 1.9

Note: SP is the high-efficiency polycarboxylic acid water reducer.

2.2. Specimen Casting and Curing Conditions

The recycled thermal insulation concrete (RTIC) specimens had dimensions of 150 mm
× 150 mm × 150 mm (144 pieces) and 300 mm × 300 mm × 30 mm (72 pieces) according
to the Chinese standard GB/T 50081-2002 [39] and GB/T 10294-2008 [40]. All experimental
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specimens were demolded after 24 h and maintained for 28 days in a steam curing room
with a temperature of 20 ± 2 ◦C and a relative humidity of 95%.

2.3. Experimental Methods
2.3.1. Workability Properties Test

The workability of recycled thermal insulation concrete based on the coupling in-
fluence between GHB and RCE was determined and conducted through the slump and
density test according to Chinese standard GB/T50080-2016 [41] and GB/T50080-2002 [42].

2.3.2. Mechanical Properties Test

A total of 144 RTIC specimens (150 mm × 150 mm × 150 mm) were prepared for
series experiments of compressive strength (72 pieces) and splitting strength (72 pieces)
according to Chinese standard GB/T50081-2002 [39].

2.3.3. Thermal Insulation Properties Test

The thermal insulation property of concrete is usually reflected by thermal conductiv-
ity. In this paper, a total of 72 specimens (300 mm × 300 mm × 30 mm) were prepared to
determine the thermal conductivity of concrete specimens based on the steady-state and
double-plate method (shown in Figure 4).
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2.3.4. Materials Characterization Tests

To further explore the effect of RCE and GHB on the mechanical properties and
thermal conductivity early performance of recycled thermal insulation concrete, several
macro-experimental methods were conducted. A total of 80 experimental samples were
subjected to scanning electron microscopy (Hitachi, Shenzhen, China) (SEM, 33 samples),
X-ray diffraction (Haoyuan, Dandong, China) (XRD, 24 samples), and Fourier-transform
infrared spectroscopy (BRUKER, Shanghai, China) (FTIR, 24 samples) to analyze the
changes in the micromorphology, hydration products, and chemical bonding or molecules.
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The preparation and drying conditions of these samples were following Chinese standard
GB/T 16594-2008 [43], GB/T 30904-2014 [44], and ISO 19618-2017 [45]. In summary, the
experimental flowcharts in this paper are shown in Figure 5.
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3. Results and Discussion
3.1. Coupled Influence of RCE and GHB on Macroscopic Comprehensive Characteristics of RTIC

In this section, the macroscopic comprehensive performance of RTIC is studied. This
section mainly explores the influence of GHB and RCE on the working performance,
lightweight performance, mechanical properties and thermal conductivity of RTIC under
the coupling effects of different doping amounts.

3.1.1. Workability and Density Properties of RTIC

The experimental results and changes of slump subjected to the coupling influence
between GHB and RCE on fresh concrete are shown in Figure 6a,b. The results showed that,
(1) when the content of RCE was constant, the slump degree of concrete increased with
the increase of GHB content. Compared with RCE0GHB0 (45 mm), RCE0GHB20 (80 mm),
RCE0GHB40 (110 mm) and RCE0GHB60 (115 mm) increased by 77.8, 144.4 and 115.6%,
respectively. (2) However, when the content of GHB was constant, the influence of RCE on
the slump properties of concrete was not obvious. Compared with the reference concrete,
the change of collapse degree was 11.1, 1.0 and −11.1% within the content range of RCE
from 10 to 30%. (3) Similarly, the combined effect of GHB and RCE could better improve
the workability performance of RTIC. When the blending contents were RCE0GHB60
(115 mm) and RCE30GHB60 (115 mm), the material system could obtain the best slump
value. (4) The improved workability performance of RTIC was mainly attributed to the
influence of GHB. This is because GHB has good water retention properties and can reduce
the friction between the aggregates, which can eventually lead to provide the required
water phase during the material preparation process. Nevertheless, RCE also has good
water absorption, it has little effect on the workability of concrete. This is mainly because
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RCE needs to be pre-wetted in advance to reach saturation, which reduces the effect of
improving flow performance. Figure 7a,b show the experimental results and changes of
density subject to the coupling influence between GHB and RCE on concrete. The results
show that: (1) compared with RCE0GHB0, the density of the concrete with the increasing
single incorporation of RCE (10~30%) and GHB (20~60%) decreased by 1.6, 3.7, 5.3 and
0.8, 1.6, 2.5%, respectively. (2) RCE has a significant effect on reducing the density of the
concrete. Although the density of GHB is much lower than that of natural sand, it absorbs a
lot of water during the concrete preparation process, which is not obvious for the reduction
of concrete density. (3) In the compound incorporation of GHB and RCE, the negative
density change of RCE10GHB20 was the smallest, which had the best combined effect on
reducing the density of concrete.
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Figure 6. The experimental results and changes of slump subjected to the coupling influence between
GHB and RCE on fresh concrete. (a) The experimental results of slump on fresh concrete; (b) the
changes of slump on fresh concrete.
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3.1.2. Analysis of the Compressive Strength of RTIC

The experimental results and changes of compressive strength are shown in Figure 8a,b.
It can be seen that, (1) GHB had a decisive influence on the compressive strength of concrete.
Compared with RCE0GHB0, the compressive strength of RCE0GHB20, RCE0GHB40 and
RCE0GHB60 decreased by 5.7, 15.6 and 22.7%, respectively. With the increase of GHB
content, the compressive strength of concrete was further reduced. That is because GHB
is a brittle material, which is prone to brittle fracture and decomposition due to stress
concentration under the action of load, thereby forming more pore defects in the con-
crete [46,47]. In summary, GHB has no significant contribution to the compressive strength
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development of concrete. (2) Furthermore, incorporating ceramic waste aggregate as a
partial replacement of natural coarse aggregate also reduced the compressive strength. The
compressive strength reduction of RCE10GHB0, RCE20GHB0 and RCE30GHB0 was 5.9,
11.1 and 13.3% compared with RCE0GHB0. The concrete prepared with RCE was prone to
through cracks due to aggregate damage in the process of compressive load failure due
to low crush value and porous brittle material properties [7,48,49]. (3) The coupling of
GHB and RCE had no positive effect on the compressive strength of RTIC. Comprehensive
comparison of the change in compressive strength, RCE30GHB60 had the largest decrease
in compressive strength, while RCE10GHB20 had the smallest decrease.
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3.1.3. Analysis on Splitting Tensile Strength of RTIC

Figure 9a,b shows the experimental results and changes of splitting tensile strength
of RTIC. Splitting tensile strength decreased significantly with the increase of the incor-
poration of GHB and RCE. In the process of splitting failure, the GHB and RCE in the
concrete deteriorated (even powdery failure) before the natural aggregates. At the same
time, the pore structure and micro cracks in the concrete will increase and form more
mechanically weak areas, which will eventually lead to a negative impact on the splitting
performance of concrete based on the coupling influence between GHB and RCE. In addi-
tion, RCE30GHB60 had the largest reduction in split tensile strength (−1.06 MPa), while
RCE10GHB20 had the smallest reduction in split tensile strength (−0.68 MPa), which is the
best ratio to ensure split tensile performance.
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3.1.4. Insulation Properties of RTIC

The experimental results and changes of thermal conductivity and insulation property
values of RTIC subject to the coupling influence between GHB and RCE are shown in
Figure 10a–c. The results show that, (1) the thermal conductivity decreased as the content of
GHB increased. When the GHB content was 60%, RTIC had lower thermal conductivity and
performance. The significant decrease in thermal conductivity was mainly attributed to the
good thermal insulation properties of GHB. When GHB is distributed in concrete, the pore
structure and internal spaces are filled with foam material, which hinders the conduction
and dispersion of heat, thereby reducing the thermal conductivity of the concrete. (2)
However, the thermal conductivity decreased slightly with the increase of RCE, but when
RCE and GHB were coupled, the thermal conductivity did not change significantly. This
is because the thermal conductivity of ceramics is not significantly different from that
of natural coarse aggregates. Compared with natural coarse aggregate, ceramic coarse
aggregate has more microcracks, and the porosity of ceramic coarse aggregate is greater
than that of ordinary concrete. These factors have a limited influence on reducing the
thermal conductivity of concrete. (3) In summary, GHB played a decisive role in reducing
the thermal conductivity and improving the thermal insulation performance of RTIC.
Considering the mechanical properties and thermal insulation properties of concrete, the
mixing amount of RCE is 10–20%, and the mixing amount of GHB is 40–60%.

3.2. Coupled Influence of RCE and GHB on Material Properties of RTIC

In order to further explore the modification mechanism of RTIC on the comprehensive
properties of concrete, a set of meso-experimental methods to explore the coupled effects of
GHB and RCE on RTIC’s microstructure, material morphology and key hydration products
are discussed in this section.
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Figure 10. The experimental results and changes of thermal conductivity and insulation property
values of RTIC subject to the coupling influence between GHB and RCE. (a) The experimental results
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property values of RTIC.

3.2.1. Material Morphology Analysis of RTIC

The analysis of the material morphology of RTIC is shown in Figure 11. Compared
with RCE0GHB0, RCE affected the cured form of C-S-H gel in concrete. As the content
of RCE increased, more flocculent C-S-H gels were formed and attached to the surface
of the unhydrated cement stone. At the same time, RCE affected the internal spatial
distribution of the concrete and caused more microcracks or an increase in obvious pores,
which explained why the mechanical properties of the concrete decreased due to the RCE
aggregate. In addition, GHB caused unhydrated cement particles to adhere to the surface of
C-S-H. With the increase in the amount of GHB, the volume and pore size of the pores in the
cement stone increased significantly, thereby improving the thermal insulation properties
of the concrete, but impairing the mechanical properties.
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mechanical properties. (3) Further analysis found that GHB had a promoting effect on the 
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Figure 11. The analysis of the material morphology of RTIC based on SEM (2.0 k to
10.0 k). (a) RCE0GHB0; (b) RCE10GHB0; (c) RCE20GHB0; (d) RCE30GHB0; (e) RCE10GHB20;
(f) RCE10GHB40; (g) RCE10GHB60.

3.2.2. Hydration Products Analysis of RTIC

The experimental results of the crystal composition and hydration products of RTIC
are shown in Figure 12. The results show that, (1) with the increase of RCE and GHB, the
characteristic peak intensity of hydration products CH and C-S-H decreased. The increase
of RCE and GHB inhibited the formation of the main hydration products in the concrete,
which was not conducive to the development of mechanical properties. (2) RCE and
GHB had a significant effect on the formation of CaCO3. The increase of CaCO3 leads to
premature calcification or aging of concrete, which is very unfavorable to the development
of mechanical properties. (3) Further analysis found that GHB had a promoting effect on the
formation of Tobermorite. With the increase of GHB, the characteristic peak intensity and
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crystal yield of Tobermorite increased. Tobermorite is a kind of hydrated calcium silicate
with high crystallinity. It has strong thermal insulation performance and can improve
the thermal insulation performance of concrete. Therefore, with the increase of GHB, the
thermal insulation performance of concrete is also enhanced.
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Tobermorite (RCE0GHB0, RCE10GHB0, RCE20GHB0, RCE30GHB0); (c) the crystal composition and hydration products
of RTIC (RCE10GHB0, RCE10GHB20, RCE10GHB40, RCE10GHB60); (d) CH, C-S-H, CaCO3, Tobermorite (RCE10GHB0,
RCE10GHB20, RCE10GHB40, RCE10GHB60).



Materials 2021, 14, 4695 17 of 22

3.2.3. Functional Group Changes of RCTIC

The effect of RCE and GHB on the functional groups of concrete hydration products is
shown in Figure 13. The shrinkage vibration of H-O-H (3400) functional group and the
bending vibration of H-O-H (1640) significantly changed with the increasing content of
RCE and GHB. H-O-H (3400) functional group had a more pronounced oscillation range,
because RCE and GHB have high water absorption and can store a large amount of water
phase. At the same time, the shrinkage vibration of the -OH (3637) functional group in CH
increased significantly with the content of RCE and GHB based on the influence of CaCO3
production in concrete.
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Figure 13. The effect of RCE and GHB on the functional groups of concrete hydration products. (a) The functional groups 
of RTIC (RCE0GHB0, RCE10GHB0, RCE20GHB0, RCE30GHB0); (b) the functional groups of RTIC (RCE10GHB0, 
RCE10GHB20, RCE10GHB40, RCE10GHB60). 

  

Figure 13. The effect of RCE and GHB on the functional groups of concrete hydration products. (a) The functional
groups of RTIC (RCE0GHB0, RCE10GHB0, RCE20GHB0, RCE30GHB0); (b) the functional groups of RTIC (RCE10GHB0,
RCE10GHB20, RCE10GHB40, RCE10GHB60).
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3.3. Mathematical Representation of the Coupled Influence of RCE and GHB

The effects of RCE and GHB on RTIC workability, compressive strength, splitting ten-
sile strength and insulation properties can be quantitatively determined by the correlation
principle. The interaction between these two parameters is determined as follows:

k1 =
Slump[Combined RCE and GHB Content]

Slump[Control Group]
(1)

k2 =
Compressive strength[Combined RCE and GHB Content]

Compressive strength[Control Group]
(2)

k3 =
Splitting tensile strength[Combined RCE and GHB Content]

Splitting tensile strength[Control Group]
(3)

k4 =
Insulation properties[Combined RCE and GHB Content]

Insulation properties[Control Group]
(4)

K = <1k1 +<2k2 +<3k3 +<4k4 (5)

where k1 is the coefficient of the influence on liquidity, k2 is the coefficient of influence on
compressive strength, k3 is the coefficient of influence on splitting tensile strength, k4 is
the coefficient of influence on insulation, < is the correlation parameter between RCE and
GHB content, K is the quantitative characterization of the coupled effects of RCE and GHB
content on concrete comprehensive characteristics.

The calculation results of the influence coefficient of RCE and GHB on concrete
performance are shown in Figure 14. The following conclusions can be reached. (1)
Considering the mechanical properties and thermal insulation properties of concrete, the
best content of RTIC is RCE10GHB60. (2) The allowable content of GHB used for general
engineering needs can be relaxed in order to improve thermal insulation performance
while ensuring the quality of the concrete. (3) The content of RCE needs to be strictly
controlled, and its reasonable replacement rate should not exceed 20% of the natural coarse
aggregate.

Materials 2021, 14, x FOR PEER REVIEW 20 of 23 
 

 

RCE0 G
HB0

RCE0 G
HB20

RCE0 G
HB40

RCE0 G
HB60

RCE10
 G

HB0

RCE10
 G

HB20

RCE10
 G

HB40

RCE10
 G

HB60

RCE20
 G

HB0

RCE20
 G

HB20

RCE20
 G

HB40

RCE20
 G

HB60

RCE30
 G

HB0

RCE30
 G

HB20

RCE30
 G

HB40

RCE30
 G

HB60
0.5

1.0

1.5

2.0

2.5

3.0

R
el

at
iv

e 
co

ef
fic

ie
nt

, K
1

 K Value
 Plain cement paste

RCE0 G
HB0

RCE0 G
HB20

RCE0 G
HB40

RCE0 G
HB60

RCE10
 G

HB0

RCE10
 G

HB20

RCE10
 G

HB40

RCE10
 G

HB60

RCE20
 G

HB0

RCE20
 G

HB20

RCE20
 G

HB40

RCE20
 G

HB60

RCE30
 G

HB0

RCE30
 G

HB20

RCE30
 G

HB40

RCE30
 G

HB60
0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

R
el

at
iv

e 
co

ef
fic

ie
nt

, K
2

 K Value
 Plain cement paste

 

RCE0 G
HB0

RCE0 G
HB20

RCE0 G
HB40

RCE0 G
HB60

RCE10
 G

HB0

RCE10
 G

HB20

RCE10
 G

HB40

RCE10
 G

HB60

RCE20
 G

HB0

RCE20
 G

HB20

RCE20
 G

HB40

RCE20
 G

HB60

RCE30
 G

HB0

RCE30
 G

HB20

RCE30
 G

HB40

RCE30
 G

HB60
0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

R
el

at
iv

e 
co

ef
fic

ie
nt

, K
3

 K Value
 Plain cement paste

RCE0 G
HB0

RCE0 G
HB20

RCE0 G
HB40

RCE0 G
HB60

RCE10
 G

HB0

RCE10
 G

HB20

RCE10
 G

HB40

RCE10
 G

HB60

RCE20
 G

HB0

RCE20
 G

HB20

RCE20
 G

HB40

RCE20
 G

HB60

RCE30
 G

HB0

RCE30
 G

HB20

RCE30
 G

HB40

RCE30
 G

HB60
0.5

1.0

1.5

2.0

2.5

R
el

at
iv

e 
co

ef
fic

ie
nt

, K
4

 K Value
 Plain cement paste

 

(a) 

Figure 14. Cont.



Materials 2021, 14, 4695 19 of 22

Materials 2021, 14, x FOR PEER REVIEW 20 of 23 
 

 

RCE0 G
HB0

RCE0 G
HB20

RCE0 G
HB40

RCE0 G
HB60

RCE10
 G

HB0

RCE10
 G

HB20

RCE10
 G

HB40

RCE10
 G

HB60

RCE20
 G

HB0

RCE20
 G

HB20

RCE20
 G

HB40

RCE20
 G

HB60

RCE30
 G

HB0

RCE30
 G

HB20

RCE30
 G

HB40

RCE30
 G

HB60
0.5

1.0

1.5

2.0

2.5

3.0

R
el

at
iv

e 
co

ef
fic

ie
nt

, K
1

 K Value
 Plain cement paste

RCE0 G
HB0

RCE0 G
HB20

RCE0 G
HB40

RCE0 G
HB60

RCE10
 G

HB0

RCE10
 G

HB20

RCE10
 G

HB40

RCE10
 G

HB60

RCE20
 G

HB0

RCE20
 G

HB20

RCE20
 G

HB40

RCE20
 G

HB60

RCE30
 G

HB0

RCE30
 G

HB20

RCE30
 G

HB40

RCE30
 G

HB60
0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

R
el

at
iv

e 
co

ef
fic

ie
nt

, K
2

 K Value
 Plain cement paste

 

RCE0 G
HB0

RCE0 G
HB20

RCE0 G
HB40

RCE0 G
HB60

RCE10
 G

HB0

RCE10
 G

HB20

RCE10
 G

HB40

RCE10
 G

HB60

RCE20
 G

HB0

RCE20
 G

HB20

RCE20
 G

HB40

RCE20
 G

HB60

RCE30
 G

HB0

RCE30
 G

HB20

RCE30
 G

HB40

RCE30
 G

HB60
0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

R
el

at
iv

e 
co

ef
fic

ie
nt

, K
3

 K Value
 Plain cement paste

RCE0 G
HB0

RCE0 G
HB20

RCE0 G
HB40

RCE0 G
HB60

RCE10
 G

HB0

RCE10
 G

HB20

RCE10
 G

HB40

RCE10
 G

HB60

RCE20
 G

HB0

RCE20
 G

HB20

RCE20
 G

HB40

RCE20
 G

HB60

RCE30
 G

HB0

RCE30
 G

HB20

RCE30
 G

HB40

RCE30
 G

HB60
0.5

1.0

1.5

2.0

2.5

R
el

at
iv

e 
co

ef
fic

ie
nt

, K
4

 K Value
 Plain cement paste

 

(a) 

Materials 2021, 14, x FOR PEER REVIEW 21 of 23 
 

 

RCE0 G
HB0

RCE0 G
HB20

RCE0 G
HB40

RCE0 G
HB60

RCE10
 G

HB0

RCE10
 G

HB20

RCE10
 G

HB40

RCE10
 G

HB60

RCE20
 G

HB0

RCE20
 G

HB20

RCE20
 G

HB40

RCE20
 G

HB60

RCE30
 G

HB0

RCE30
 G

HB20

RCE30
 G

HB40

RCE30
 G

HB60
0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 K

 
(b) 

Figure 14. The calculation results of the influence coefficient of RCE and GHB on concrete perfor-
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4. Conclusions

This paper investigated the influence of RCE and GHB on the mechanical, thermal
conductivity and material properties of concrete, and the following conclusions can be
drawn:
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1. RCE can inhibit the density and mechanical properties of RTIC, but it has little ef-
fect on the working and thermal insulation properties of RTIC. GHB can improve
the workability and insulation properties of RTIC (155.6 and 91.9% maximum in-
crease), but decreases the density and mechanical properties (9.9 and 33.9% maximum
decrease).

2. The incorporation of GHB and RCE inhibited the formation of CH and C-S-H and
promoted the increase of CaCO3, which was detrimental to the macroscopic mechan-
ical properties of RTIC. Meanwhile, the increase in GHB led to an increase in the
production of Tobermorite, which largely improves the insulation properties of RTIC.

3. GHB and RCE can be used to prepare regenerated thermal insulation concrete due
to the synergistic development of mechanical properties and thermal insulation
properties. It is considered that 10% RCE and 60% GHB are the best doping amounts.
The new thermal insulation concrete material prepared based on this material design
system can be used in practical projects such as prefabricated roof structures in civil
engineering, special transportation pipelines, and link bridges in equipment and
accessory buildings.

4. GHB and RCE can be used to prepare regenerated thermal insulation concrete due
to the synergistic development of mechanical properties and thermal insulation
properties. It is considered that 10% RCE and 60% GHB are the best doping amounts.
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