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Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease affecting multi-
ple organ systems. Many investigational agents have failed or shown only mod-
est effects when added to standard of care (SoC) therapy in placebo- controlled 
trials, and only two therapies have been approved for SLE in the last 60 years. 
Clinical trial outcomes have shown discordance in drug effects between clini-
cal endpoints. Herein, we characterized longitudinal disease activity in the SLE 
population and the sources of variability by developing a latent disease trajectory 
model for SLE component endpoints (Systemic Lupus Erythematosus Disease 
Activity Index [SLEDAI], Physician's Global Assessment [PGA], British Isles 
Lupus Assessment Group Index [BILAG]) and composite endpoints (Systemic 
Lupus Erythematosus Responder Index [SRI], BILAG- based Composite Lupus 
Assessment [BICLA], and Lupus Low Disease Activity State [LLDAS]) using 
patient- level historical SoC data from nine phase II and III studies. Across all 
endpoints, in predictions up to 52 weeks from the final disease trajectory model, 
the following baseline covariates were associated with a greater decrease in SLE 
disease activity and higher response to placebo + SoC: Hispanic ethnicity from 
Central/South America, absence of hypocomplementemia, recent SLE diag-
nosis, and high baseline disease activity score using SLEDAI and BILAG sepa-
rately. No discernible differences were observed in the trajectory of response to 
placebo + SoC across different SoC medications (antimalarial and immunosup-
pressant such as mycophenolate, methotrexate, and azathioprine). Across all 
endpoints, disease trajectory showed no difference in Asian versus non- Asian 
patients, supporting Asia- inclusive global SLE drug development. These results 
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INTRODUCTION

Systemic lupus erythematosus (SLE) is an autoimmune 
disease that affects multiple organ systems, with fluctuat-
ing disease activity, including flares. Disease prevalence 
varies with race and ethnicity, and SLE is more common 
in women, with onset typically occurring during their 
childbearing years. Patients with moderate to severe SLE 
are chronically exposed to medications with significant 
side effects, such as corticosteroids and other immunosup-
pressive agents, and consider their health- related quality 
of life to be poor.

In clinical trials, SLE disease activity is assessed by 
several instruments like component or composite scores. 
Commonly used SLE instruments and component scores 
include:

• Systemic Lupus Erythematosus Disease Activity Index 
(SLEDAI), which measures presence/absence of 24 dis-
ease features, from which a weighted total score can be 
derived.1

• British Isles Lupus Assessment Group (BILAG) index, 
which evaluates eight individual organ systems;1 the 

organ systems included in this analysis included: mus-
culoskeletal, mucocutaneous, or renal.

• Physician's Global Assessment (PGA) on a 0 (none) to 3 
(severe) visual analogue scale.

• Average prednisone- equivalent daily corticosteroid 
dose (aPEDD).

Composite SLE outcomes are based on component 
scores like the SLEDAI and/or BILAG, PGA, and non- 
initiation of protocol- prohibited treatments, and include:

• Systemic Lupus Erythematosus Responder Index (SRI).2

• BILAG- based Composite Lupus Assessment (BICLA).3

• Lupus Low Disease Activity State (LLDAS).4

Many therapeutic interventions have failed or shown 
only modest effect compared to standard of care (pla-
cebo + SoC) in clinical trials.5,6 Furthermore, trial out-
comes have been discordant between endpoints,7,8 which 
may, in part, be related to the complexity of the composite 
endpoints. In addition, it has been shown that shortfalls of 
SRI and BICLA may be due to BICLA requiring only par-
tial improvement but in all organs versus SRI requiring full 

describe the first population approach to support a model- informed drug devel-
opment framework in SLE.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Drug development in systemic lupus erythematosus (SLE) is challenged by low 
success rates, discordance in trial performance across primary endpoints, and the 
lack of reliable short- term outcome biomarkers of efficacy.
WHAT QUESTION DID THIS STUDY ADDRESS?
What are the clinical sources of variability in SLE disease trajectory that influence 
response to standard of care (SoC) treatment?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
This work describes the first population disease trajectory model of SLE. Patients 
from Central/South America with Hispanic ethnicity, baseline C3 not less than 
the lower limit of normal, or time since diagnosis <1 year, high baseline total 
Systemic Lupus Erythematosus Disease Activity Index (SLEDAI), or high base-
line total number of British Isles Lupus Assessment Group Index (BILAG) organ 
systems A or B, have greater decrease in SLE disease activity during SoC treat-
ment. Disease trajectory is similar between Asian and non- Asian patients.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
Patient enrollment strategies based on the identified covariates may enhance SLE 
proof- of- concept trial designs to ultimately maximize success rates. Consistency 
in disease trajectory in Asian versus non- Asian patients supports Asia- inclusive 
multiregional clinical trials, whereas the other identified covariates may inform 
appropriate stratification in pivotal SLE trials.
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improvement in some manifestations and not necessarily 
in all organs.9 Thus, the importance of understanding 
endpoint sensitivity and eventual clinical phenotypes10,11 
associated with it to describe the SLE disease are required 
and beyond the scope of this paper. Of note, there are ef-
forts within the SLE community for newer or modified 
endpoints that describe the SLE disease and perhaps these 
will be available in the future.12

Therefore, there is a need to understand these com-
posite endpoints via longitudinal models of historical pla-
cebo + SoC data. Of note, the importance of considering 
the time course of SLE endpoints in longitudinal analyses 
for evaluating sources of variability in treatment response 
have been emphasized previously.13– 15 In a recently con-
vened workshop by the US Food and Drug Administration 
(FDA) the value of longitudinal disease progression mod-
eling for enabling efficient drug development and inform-
ing patient selection and cross- population extrapolation in 
chronic diseases was extensively discussed.16 Herein, we 
describe development of disease trajectory models for SLE 
endpoints to provide insight into the factors influencing 
SLE response following placebo + SoC and help identify 
study populations who are likely to have a low response to 
placebo + SoC and who could benefit from new treatment.

The objective of this analysis was to quantitatively 
characterize the time course of SLE disease trajectory and 
identify associated demographic and clinical sources of 
variability in patients with SLE in the placebo + SoC arms 
of randomized controlled trials.

METHODS

Data came from nine randomized, placebo controlled 
clinical trials in patients with SLE who received the SoC 
treatment (placebo + SoC) of each trial. Two trials were 
conducted by the sponsor EMD Serono Inc. (a business 
of Merck KGaA), and placebo + SoC data from seven tri-
als were obtained through the TransCelerate BioPharma's 
Historical Trial Data Sharing Initiative.17 Figure 1 summa-
rizes the studies, including their respective clini caltr ials.
gov identifiers, and primary publications. The individual 
components for the composite endpoints were collected 
on the same patient at the same visit over a specified study 
duration described in the protocol as per the inclusion and 
exclusion criteria of the respective trials. Details of study 
design and duration are as noted in Figure 1 and section 7 
in Supporting information and the associated references. 
Data integration, visualization, modeling, and simulations 
were conducted using R version 3.6,18 and estimation and 
inference were carried out using Bayesian methods imple-
mented in Stan version 2.419 via RStan package version 
2.21.2.20 Because the number of compounds evaluated are 

minimal, only an empirical method using a latent variable 
model similar to the ones in literature was used21,22 and 
this analysis does not tease out the mechanism of action 
for each compound as only placebo + SoC data were mod-
eled and patient- level data from treatment arms were not 
available from the TransCelerate BioPharma's Historical 
Trial Data Sharing Initiative. It should be noted that latent 
variable framework described in the paper reflects the un-
observed disease trajectory. Using such an approach, the 
main purpose was to distinguish between the time course 
of endpoints from disease trajectory. The baseline contin-
uous covariates by study and population are provided in 
Supporting information (Section 7).

Model development

Joint (multiple endpoint) longitudinal models were de-
veloped separately for the component and composite SLE 
outcomes. As shown in Figure 1, the component outcomes 
consisted of six endpoints: SLEDAI total score; scores for 
the BILAG musculoskeletal, mucocutaneous, and renal 
organ system domains; PGA; and aPEDD. Composite SLE 
outcomes consisted of three endpoints: SRI, BICLA, and 
LLDAS. Although some scales may present collinearity, 
the assumption in these analyses is that the outcomes 
from different scales are independent conditional in the 
latent SLE disease. Having an underlying latent SLE dis-
ease induces correlation on the same outcome of a patient 
and among different scale outcomes of the same patient. 
Consequently, the use of latent variable modeling to ex-
press outcomes as a function of latent disease shows an 
approach that can be used to model various component 
or composite psychometric instruments simultaneously 
while taking into account correlation between them. Both 
component and composite SLE outcome models assumed 
that there was a unidimensional and structurally similar 
latent continuous measure of SLE disease activity that 
varies as a continuous function of time. Each longitudinal 
outcome measure was modeled as a function of the latent 
disease activity. The component and composite outcomes 
were analyzed separately but used the same structural 
form for the latent disease trajectory in each analysis. The 
adherence to corticosteroid and dropout were modeled in 
the latent disease trajectory framework of the component 
and composite endpoints (discussed further in Section 4.3 
in Supporting information). This was important to be in-
cluded in the modeling plan to mitigate the impact of po-
tential non- random dropout, especially in longer studies. 
The structural models for latent disease activity, observed 
component SLE outcomes, and observed composite SLE 
outcomes are described in the Supporting information 
(Sections 1, 2, and 3, respectively).

http://clinicaltrials.gov
http://clinicaltrials.gov
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F I G U R E  1  Summary of datasets and analysis workflow
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Identification of covariates

To identify covariates, machine learning approaches, 
including random forest and least absolute shrinkage 
and selection operator (LASSO) models, were applied 
to the empirical Bayes estimates in the latent disease ac-
tivity time course. Multiple machine learning methods 
were used so that the choice of one particular analyti-
cal technique does not inadvertently pick up a covari-
ate that is not likely to explain the disease trajectory in 
SLE. Relative covariate importance was assessed from 
the random forest model using the Boruta algorithm and 
Shapley values.23– 25 With the latent disease model, it is 
not possible to directly assess clinical relevance of covari-
ate effects; hence, covariates were assessed for clinical 
relevance through simulations.

Selection of covariates was dependent on which base-
line data were consistently available across all studies. 
Baseline covariates considered for identification as pre-
dictive in the latent disease model were:

• Demographic: age (years), body weight (kg), sex (female 
vs. male), race (White vs. Asian vs. other vs. missing), and 
ethnicity (non- Hispanic vs. Hispanic –  North America 
vs. Hispanic –  Central/South America vs. missing).

• Laboratory: complement C3 below the lower limit 
of normal (no vs. yes), complement C4 below the 
lower limit of normal (no vs. yes), anti- double stranded 
DNA positive status (no vs. yes), baseline renal function 
(estimated glomerular filtration rate [eGFR]), renal in-
volvement (normal: eGFR >90 ml/min/1.73m2 vs. mild: 
eGFR 60– 90 ml/min/1.73m2, and moderate: eGFR <60 
mL/min/1.73m2).

• Disease status: time since diagnosis (≤1  year vs. 
>1  year), baseline SLEDAI total score, baseline total 
number of organ systems with scores of A or B (0 vs. 1, 
2, and 3+).

• Previous or concomitant medication (yes vs. no): anti-
malarial use, immunosuppressant use, mycophenolate 
use, methotrexate use, and azathioprine use. Baseline 
prednisone equivalent daily corticosteroid dose (mg).

Although the baseline SLEDAI total score was in-
cluded in the structural model for the SRI outcome for the 
composite analysis, it was included in the covariate selec-
tion to assess its ability to predict the LLDAS and BICLA 
composite outcomes. Missing covariates were either im-
puted using the median or the mode for continuous and 
categorical covariates, respectively. If a study did not pro-
vide any data for a particular covariate, missing data were 
imputed at the overall median or mode across all studies. 
For categorical variables with substantial missing data, a 
“missing” category was defined.

Model evaluation and validation

Modeling was performed on a subset of the full data using 
a train/evaluate/test paradigm,26 which consisted of 60%, 
20%, and 20% of the total number of patients, respectively. 
Hereafter, these data are referred to as training, evalua-
tion, and test datasets. Although the approach of using 
subsets of the full data for model development has its 
limitations, it should be noted that appropriate stratifica-
tion and cross- validation like leave- one- study- out cross- 
validation procedures were used to ensure robustness of 
the analyses. The partitioning into training, evaluation, 
and test datasets was stratified by sex, total number of 
organ systems with BILAG index scores of A or B at base-
line, and baseline anti- double stranded DNA positive sta-
tus. Model development was performed using the training 
dataset, and model evaluation was performed using the 
evaluation dataset. The test dataset was used at the end of 
the modeling process as a one- time external model evalu-
ation. Additionally, the models were evaluated using a 
leave- one- study- out cross- validation to assess the model's 
ability to predict future placebo + SoC response in a study 
up to 52 weeks. The primary method for evaluation was 
visual predictive checks (VPCs), the widely applicable 
information criterion (WAIC), and log posterior density 
(LPD) criterion, whereby smaller values for the WAIC and 
LPD criterions reflect a more favorable model.27,28 Models 
were initially estimated using the training dataset with 
no covariates. The WAIC and LPD were computed using 
the training and evaluation datasets, respectively, and 
compared across models. Somers’ D criterion was used 
to quantify the predictive performance in the leave- one- 
study- out cross- validations.29,30 For continuous variables, 
Somers’ D corresponds to a measure of rank correlation; 
for binary variables, it is a linear transformation of the area 
under the concentration time curve (AUC) under the re-
ceiver operating characteristic curve (D = 2 AUC- 1). The 
final model was estimated using the entirety of the data.

RESULTS

Source data

Data were pooled from 2158 patients across nine phase 
II and III studies that ranged from 24 to 76 weeks in du-
ration and from 94 to 387 patients in size (Figure 1). The 
data were partitioned randomly stratified across trials 
into training, evaluation, and test datasets with sample 
sizes of 1309, 432, and 417 patients, respectively. Patient 
covariates are summarized across all studies in Table 1. 
The median baseline SLEDAI score was 10.0 (range: 0 
to 34), and the median number of BILAG organ systems 
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with scores of A or B was 2.0 (range: 0 to 7). The percent-
age of missing baseline covariate data was imbalanced 
across studies with certain studies providing no infor-
mation on some of the covariates due to data anonymi-
zation or other reasons from the sponsor companies. 
The ILLUMINATE- 1 and ILLUMINATE- 2 studies had 
completely missing time since diagnosis data (35.3%); 
the EMBODY1 and EMBODY2 studies had completely 
missing eGFR, ethnicity, and race data (24.2% missing 
for these 3 variables), and the Sifalimumab study had 
missing data on prior and concomitant medication use 
(4.36%).

Component score SLE modeling

Latent variable model development

The WAIC and LPD were computed and compared across 
models (Table S1), showing that the log linear model was 
preferable; however, the VPCs indicated that the mono- 
exponential models provided a better fit to the observed 
data (Figure 2). The log linear model also did not provide 
monotone decreasing predictions of some endpoints. The 
WAIC and LPD were similar for the maximum effect and 
mono- exponential models, but, ultimately, the mono- 
exponential model values were lower (indicating a more 
favorable model). Of the two mono- exponential models, 

T A B L E  1  Patient demographics and baseline characteristics

Statistic
All data 
N = 2158

Baseline age, years

Mean (SD) 39.4 (12.2)

Minimum/maximum 17.5/80.0

Missing 522

Baseline body weight, kg

Mean (SD) 69.6 (18.0)

Minimum/maximum 34.7/177

Missing 26

Time since diagnosis (at screening), years

Mean (SD) 7.93 (7.52)

Minimum/maximum 0.00/57.0

Missing 772

Baseline SLEDAI total score

Mean (SD) 10.2 (3.74)

Minimum/maximum 0.00/34.0

Missing 12

N organ systems w scores of A or B at BL

Mean (SD) 1.76 (0.848)

Minimum/maximum 0.00/7.00

Missing 12

BL prednisone- equivalent daily corticosteroid, mg

Mean (SD) 13.0 (32.4)

Minimum/maximum 0.0500/1250

Missing 566

Baseline renal function, ml/min/1.73 m2

Mean (SD) 99.8 (27.7)

Minimum/maximum 23.6/291

Missing 542

Sex

Female 2017 (93.5)

Male 141 (6.5)

Race

Asian 280 (13.0)

White 919 (42.6)

Other 429 (19.9)

Missing 530 (24.6)

Hispanic vs. Non- Hispanic

Non- Hispanic 1008 (46.7)

Hispanic –  Central/South America 449 (20.8)

Hispanic –  North America 109 (5.1)

Missing 592 (27.4)

eGFR categorization

Normal 1020 (47.3)

Mild 503 (23.3)
(Continues)

Statistic
All data 
N = 2158

Moderate 93 (4.3)

Missing 542 (25.1)

BL complement C3 below lower limit of normal

No 1308 (60.6)

Yes 815 (37.8)

Missing 35 (1.6)

BL complement C4 below lower limit of normal

No 1376 (63.8)

Yes 718 (33.3)

Missing 64 (3.0)

Time since missing diagnosis

Less than a year 163 (7.6)

Greater than a year 1223 (56.7)

Missing 772 (35.8)

Note: Categorical summary is count (percent).
Abbreviations: BL, baseline; eGFR, estimated glomerular filtration rate; N, 
number of records summarized; SLEDAI, Systemic Lupus Erythematosus 
Disease Activity Index.

T A B L E  1  (Continued)
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the one with random effects on baseline disease activity 
and long- term disease activity (defined as ≥1  year) was 
most parsimonious and was selected as the final latent 
variable model.

Identification of covariates

The covariates identified for baseline disease activ-
ity and long- term disease activity differed depending 
on the machine learning method or rule implemented 
(Table S2). All covariates identified were included in the 
final model. To ensure missing information about previ-
ous and concomitant medication use in the Sifalimumab 
study was not biasing the results, covariate selection 
was performed with and without patients from the 
Sifalimumab study, and no additional covariates were 
identified.

Final model

The final latent SLE disease trajectory for the compo-
nent score outcomes were best described using mono- 
exponential models with random effects on baseline 
and long- term disease activity and covariate effects (see 
Table S5 and Section 6 in Supporting information for the 
formulaic expressions). The covariates for baseline disease 
activity included ethnicity, the number of organ systems 
with BILAG index scores of A or B, age, and total SLEDAI 
score (Table S2). The covariates for long- term disease ac-
tivity included race, ethnicity, complement C4 below the 
lower limit of normal (LLN); the number of organ systems 
with BILAG index scores of A or B, age, body weight, time 
since diagnosis, aPEDD, total SLEDAI score, and renal 
function. The Somers’ D criterion indicated the model did 
an adequate job of predicting disease trajectory in each 
study (Figure S1).

F I G U R E  2  Visual predictive check of 
final model for component score analysis. 
BILAG, British Isles Lupus Assessment 
Group Index; PGA, Physician's Global 
Assessment; SLEDAI, Systemic Lupus 
Erythematosus Disease Activity Index
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After identifying the final model structure and co-
variates, the training and evaluation datasets were com-
bined, and the model was re- fit. As an external validation 
of model fit, this second iteration of the model was used 
to predict into the test dataset. VPCs were generated to 
assess model performance by comparing each model- 
predicted outcome to those observed in the test dataset 
and did not suggest model deficiencies across component 
endpoints or studies (Figure 2). Stratifying the results by 
different baseline covariates also did not suggest model 
deficiencies across component endpoints or studies (not 
shown). Finally, the training, evaluation, and test data-
sets were recombined, and the model was re- fit using the 
full dataset. These final parameter estimates were used 
to assess magnitude and directionality of the covariates 
(Table  S3) and to simulate the change from baseline in 
clinical endpoints, over 1 year of treatment, for covariates 
(Figures 3, 4, and 5).

Parameter estimates of covariate effects can be found in 
the Supporting information. The model- predicted change 
in SLE component endpoints, for a given change in base-
line covariate, differed in size and directionality across 
endpoints (Table S3). Higher baseline total SLEDAI score 
was associated with larger reductions in total SLEDAI, 
PGA, BILAG mucocutaneous and BILAG musculoskeletal 
endpoints at all study timepoints; the association between 
baseline total SLEDAI score and aPEDD and BILAG renal 
endpoints was weaker. Across all endpoints, predictions up 
to 52 weeks generally showed that patients from Central/
South America with Hispanic ethnicity or baseline C4 not 
below the LLN or time since diagnosis of less than a year 
or high baseline total SLEDAI or high baseline total num-
ber of BILAG organ systems A or B had greater decrease in 
SLE disease activity compared with other patients.

Predictions of outcomes indicated that Hispanic eth-
nicity from Central/South America, baseline total number 

F I G U R E  3  Impact of baseline total 
SLEDAI, C4 below LLN, ethnicity by 
region or race on simulated change in 
SLEDAI score. C/S America, Central/
South America; LLN, lower limit of 
normal; SLEDAI, Systemic Lupus 
Erythematosus Disease Activity Index
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of BILAG scores A and B, time since diagnosis, C4 below 
LLN, and baseline total SLEDAI had an impact on model- 
predicted future SLE disease activity (Figures 3, 4, and 5).

Composite score SLE modeling

Latent variable model development

The mono- exponential model that best fit the compo-
nent outcomes was used to fit the composite outcomes, 
although variations on the latent variable structure were 
explored (Table S1). The models were initially estimated 
using the training dataset only and no covariate predic-
tors. The WAIC and LPD indicated models with and with-
out endpoint specific interindividual variability (IIV) fit 
the training and evaluation datasets better than the time- 
scaled and shifted disease trajectory model. The WAIC 

was identical for models with and without endpoint spe-
cific IIV, indicating that they both fit the training data 
equally well. However, the model with endpoint specific 
IIV better fit the evaluation dataset (per the LPD), and it 
was selected as the final latent variable model for the com-
posite score SLE modeling.

Identification of covariates

The identified covariates again differed depending on 
the machine learning method or rule implemented 
(Table S2). All covariates identified were included in the 
final model. Similar to the component score modeling, co-
variate selection was performed with and without patients 
from the Sifalimumab study, and no additional covariates 
were identified when Sifalimumab study patients were 
removed.

F I G U R E  4  Impact of baseline 
total SLEDAI or BILAG scores on 
simulated probabilities of being an SRI-4 
or BICLA responder. BICLA, British 
Isles Lupus Assessment Group Index-
based Composite Lupus Assessment; 
BILAG, British Isles Lupus Assessment  
Group Index; SLEDAI, Systemic Lupus 
Erythematosus Disease Activity Index
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Final model

The final latent SLE disease trajectory for the composite 
score outcomes were best described using a mono- 
exponential model with endpoint specific IIV, random 
effects on baseline and long- term disease activity, and 
covariate effects (see Table  S5 for covariate effects and 
Section 6 in Supporting information for the formulaic 
expressions). The covariates for the baseline disease 
activity included race, ethnicity by region, total number 
of organ systems with BILAG scores of A or B, body 
weight, time since diagnosis, aPEDD, and total SLEDAI 
(Table S2). The covariates for long- term disease activity 
included race, ethnicity, complement C3 below the LLN, 
total number of organ systems with BILAG scores of A 
or B, age, body weight, aPEDD, total SLEDAI, and renal 
function. The Somers’ D criterion indicated the model 
did an adequate job of predicting disease trajectory 
in all studies (Figure  S1). The extent to which the IIV 

is explained by the covariates differs between the two 
models. In the component model, covariates explain 
49% and 16% of the variability in baseline and long- 
term disease activity, respectively. In the composite 
endpoint model, covariates explain 20% and 58% of the 
corresponding variability.

As with the component score modeling, the training 
and evaluation datasets were combined, and the final 
model was re- fit. VPCs did not suggest model deficien-
cies across composite endpoints or studies (Figure  6). 
Results were comparable when stratifying by different 
baseline covariates and for patients with and without 
previous and concomitant medication use (i.e., no model 
deficiencies were identified across component endpoints 
or studies; Figure S2). Finally, the model was re- fit using 
the full, recombined dataset. These final parameter es-
timates were used to assess magnitude and direction-
ality of the covariates (Table  S4) and to simulate the 
change from baseline in clinical endpoints, over 1 year 

F I G U R E  5  Impact of ethnicity by 
region or race on simulated probabilities 
of being an SRI- 4 or BICLA responder. 
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of treatment, for all covariates (Figures  3, 4, and 5). 
Model performance stratified by covariates of interest in 
global drug development (race and ethnicity) are shown 
in the Supporting information (Section 8: Figure  S3 
and Figure S4). VPCs stratified by other covariates also 
yielded similar plots (data not shown). Further, sensitiv-
ity analyses of the missing data were performed and did 
not result in any model instability as predicted in the test 
and validation data sets using the leave- one- study- out 
cross- validation technique.

The model predicted change in SLE composite end-
points for a given change in baseline covariate differed in 
size and directionality across endpoints (Table S4). Higher 
baseline total SLEDAI score was associated with higher 
proportion of responders for SRI- 4 and SRI- 6 response 
(where SRI- 4 and - 6 are defined as a 4-  and 6- point reduc-
tion in SLEDAI score); the association between baseline 

total SLEDAI score and BICLA and LLDAS endpoints was 
weaker over time. Higher baseline total number of BILAG 
organ systems A or B was associated with larger increases 
in BICLA response and LLDAS attainment but was asso-
ciated with decreases with the SRI- 4 and SRI- 6 response. 
Across all the endpoints, predictions up to 52 weeks gen-
erally showed that patients from Central/South America 
with Hispanic ethnicity or C3 not below the LLN or time 
since diagnosis of less than a year or high baseline total 
SLEDAI or high baseline total number of BILAG organ 
systems A or B had greater decrease in SLE disease activity 
compared with other patients.

Predictions of outcomes indicated that ethnicity, base-
line total number of BILAG scores A and B, time since 
diagnosis, C3 below the LLN, and baseline total SLEDAI 
had an impact on model- predicted future SLE disease ac-
tivity (Figures 4 and 5).

F I G U R E  6  Visual predictive check of 
final model for composite score analysis. 
BICLA, British Isles Lupus Assessment 
Group Index- based Composite Lupus 
Assessment; LLDAS, Lupus Low Disease 
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DISCUSSION

SLE has high unmet medical needs along with complex 
composite endpoints making the readout of the trials cum-
bersome, therefore there is a need for model- informed 
drug development. Population models were developed to 
describe the time course of the component and composite 
endpoints used in phase II and III SLE clinical trials in 
a latent disease model framework. In the current analy-
sis, placebo effect (without SoC treatment) on the time 
course of clinical endpoints was not evaluated because no 
data were available on patients receiving only the placebo 
without SoC. Consequently, no information was available 
on pure placebo effect. It should be noted that whereas 
endpoints may overlap in characterizing the endpoint 
time course, both the component and composite scores 
were treated as un- nested in this analysis. Furthermore, 
individual component or composite scores (e.g., BICLA 
and SRI) were treated as uncorrelated, conditional on the 
latent disease severity. Covariate analyses were enabled 
by various machine learning approaches with rules for 
identifying covariates using multiple measures of variable 
importance. These methods and rules produced different 
results, with LASSO typically identifying the least num-
ber of covariates and the Shapley importance measure 
identifying the most covariates, although the identified 
covariates between the component and composite score 
analyses were similar (Table S2). The covariates identified 
by the Shapley variable importance measure were consist-
ently important, but this was less so with the other vari-
able importance measures. Therefore, it was necessary to 
find the most common covariates that influence the SLE 
disease trajectory by running multiple algorithms.

Multiple rules were used to ensure covariate identi-
fication properly. Covariates identified were not neces-
sarily strongly associated with latent disease trajectory 
or SLE outcomes. For this reason, simulations using the 
final estimated model were primarily used to determine 
whether a covariate was an influential predictor of the 
SLE outcomes. For example, age was identified as covari-
ate on baseline and long- term disease activity, but pre-
dictions of change in SLEDAI score were similar across 
ages in the patient population. This may be due to the 
large sample size, which can detect small covariate ef-
fects that may not necessarily be strongly associated with 
an outcome.

The component and composite outcomes were an-
alyzed separately due to the distinct nature of the out-
comes. The limitations of composite and general disease 
status scores are not restricted to SLE, but a feature of 
most clinical scales with comparable operating character-
istics. Previous attempts to explore the sensitivity of clini-
cal scales for the evaluation of antidepressant drugs have 

been challenging.31,32 Often, scale items or dimensions 
are too rudimentary or insensitive to the specific phar-
macological effects of drugs, which in many cases do not 
provide disease modifying properties, but rather symp-
tomatic improvement. Additionally, while understanding 
the trajectory of endpoints is important, there are other 
challenges in establishing efficacy in clinical trials, such 
as the heterogeneity of disease pathogenesis, patient pop-
ulation, and SoC therapy. The challenges associated with 
evaluation of Belimumab have been well- documented 
due to the nature of SLE endpoints33 and certainly a lot of 
work is actively ongoing in this space to derive modified 
or new disease endpoints that perhaps can better describe 
SLE as a disease. We envision that continued refinement 
and extension of the model may be needed for any newer 
endpoints that would emerge in this disease area in the 
upcoming years that could support shorter trials or the 
possibility to have a lower sample size if a population with 
lower placebo response is identified. The analyses were 
linked by using the same mono- exponential latent disease 
structural model developed in the component analysis for 
the composite outcome analysis. Similar covariates were 
identified as predictive, and influential in simulations, for 
both component and composite analyses, except that C4 
below the LLN was predictive for the component anal-
ysis, whereas C3 below the LLN was predictive for the 
composite analysis. For the composite score outcomes, 
additional parameters, such as endpoint specific IIV were 
necessary to adequately explain the data. The impacts of 
influential predictors on the composite scores were differ-
ent for the various outcomes, as reflected in both the sim-
ulations and data. For example, increases in the baseline 
total SLEDAI had a minimal impact on the BICLA and 
LLDAS endpoints over time, implying a minimal change 
in future SLE disease activity. In contrast, increases in the 
baseline total SLEDAI increased the SRI- 4 and SRI- 6 end-
points, implying a decrease in future SLE disease activity 
(Figure 4 and Table S4). These findings are consistent with 
previous results that showed discordant trial outcomes be-
tween SRI and BICLA (e.g., as noted in the two phase III 
trials of anifrolumab).7,8 In future SLE clinical trials, pa-
tient stratification based on baseline SLEDAI or baseline 
BILAG organ A or B scores may warrant consideration for 
the primary endpoint of interest (SRI vs. BICLA).

The VPCs showed the model sufficiently explained the 
data for the overall placebo + SoC patient population and 
under different covariate classifications. The leave- one- 
study- out cross- validations demonstrated that the model 
adequately explained outcomes across studies (Figure S1). 
Among component endpoints, aPEDD and BILAG renal 
outcomes showed poorer predictive performance than the 
other component endpoints, which may be due to the flat 
trajectories of these outcomes (i.e., the model is unable 
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to predict change over time when aPEDD and BILAG re-
main fairly constant). Hence, these may be less meaning-
ful in finding differences in SLE clinical trials.

Some studies were completely missing data due to an-
onymization or other reasons. The ILLUMINATE- 1 and 
ILLUMINATE- 2 studies had completely missing time 
since diagnosis data, and the EMBODY1 and EMBODY2 
studies had completely missing ethnicity, race, and eGFR 
data. If the missing data of these covariates is acquired, a 
re- analysis may result in different results and conclusions. 
When substantial data were missing, such as with race 
and ethnicity, a “missing” category was included, and its 
effect estimated. Because these missing data were mostly 
attributable to the EMBODY studies, this covariate effect 
is analogous to a study effect rather than actual ethnicity 
or race effect. At the time of analysis, the selection of trials 
contributing to the individual- level dataset was based on 
what was accessible to the authors from the stated external 
source (TransCelerate BioPharma's Historical Trial Data 
Sharing Initiative). Importantly, to address the generaliz-
ability of the model, we have conducted leave- one- study- 
out cross- validation analyses and presented the results in 
the Supporting information along with Somer's D criteria 
to assess model performance across datasets. As more data 
would be available in the future, perhaps validation with 
external data can be performed with this current model.

Patient medication use was included in the covariate 
selection of the latent variable model. Medication use was 
distinguished by type (anti- malarial, immunosuppressant, 
mycophenolate, methotrexate, and azathioprine) and tim-
ing (either prior to study enrollment or concomitantly). 
No medications were identified as predictive of latent SLE 
disease during covariate selection, implying that SLE dis-
ease trajectory is consistent across current SoC regimens. 
This was supported by the fact that the model- based pre-
dictions were equally good for patients with and without 
previous and concomitant medication use (Figure  S2). 
Although SoC drugs with distinct mechanisms of action 
were assessed in our disease trajectory model, it was not 
possible to discern mechanism-  or class- related differ-
ences in their effects on the underlying disease dynamics 
in SLE based on this analysis. Application of the developed 
modeling framework is anticipated to be useful for future 
analyses of the effects of investigational agents with novel 
mechanisms of action. The treatment effect can be incor-
porated in the future within the latent disease framework 
of an investigational agent, where the new therapeutic 
may affect either the baseline latent disease activity and/
or the long- term latent disease activity. In addition, the 
model can be used to support Bayesian analyses of future 
clinical trials through the use of a weakly or moderately 
informative prior distribution for a placebo + SoC arm. 
Such efforts on active treatments (beyond the placebo + 

SoC data utilized in the present analysis) should enhance 
our understanding of the effects of different pharmaco-
logic mechanisms on the underlying dynamics of disease 
trajectory and disease pathophysiology, as has been de-
scribed in other therapeutic areas.34– 36

One goal of this analysis was to identify study popu-
lations likely to have a low response to placebo + SoC to 
inform potential patient enrollment hypotheses. This 
can be achieved by considering clinical trial enrollment 
criteria on the influential covariates (baseline total num-
ber of BILAG scores A and B, time since diagnosis, C3/
C4 below the LLN, and baseline total SLEDAI) such that 
they minimize future change in outcomes. Ethnicity, de-
fined as (i) non- Hispanic, (ii) Hispanic –  North America, 
(iii) Hispanic –  Central/South America, and (iv) missing, 
was also an influential predictor of patient outcome. Both 
non- Hispanic patients and Hispanic patients from North 
America were found to have similar disease trajectories, 
and both appeared to have substantially different trajec-
tories than those of Hispanic patients from Central/South 
America (not shown).

Simulations from the final component and compos-
ite models indicate that disease trajectory across the 
endpoints is conserved in Asian versus non- Asian pa-
tients identified in our dataset (i.e., White and other). 
These findings may have important considerations for 
the design of multiregional clinical trials (MRCTs) as 
insight into the contribution of demographic covari-
ates to interindividual differences in disease trajectory 
allow sponsors to better plan and refine sample size for 
MRCTs. A principal assumption underlying MRCT de-
sign is that drug and disease- related intrinsic and extrin-
sic factors are reasonably conserved across the overall 
population.37,38 If conserved and if there is similarity in 
disease trajectory across Asian and non- Asian patients, 
conducting Asian- inclusive global pivotal trials would 
be supported. Given the similar trajectory of SLE clin-
ical endpoints in Asian and non- Asian patients demon-
strated in our analysis, we posit that Asia- inclusive 
development strategies should be considered in SLE 
drug development to minimize access lag via inclu-
sive development strategies that leverage totality of ev-
idence principles.39,40 Of course, this will require timely 
completion of necessary drug- specific ethnic sensitiv-
ity evaluations to support the MRCT design. Of note, 
the observed differences in disease trajectory between 
Hispanic patients from Central/South America and the 
remainder of the population may suggest that stratifica-
tion by region may be appropriate to control heteroge-
neity and maximize treatment response in the design of 
pivotal MRCTs in SLE.

Given the well- recognized heterogeneity of SLE dis-
ease biology,41 we anticipate that machine learning 
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methodologies42 could further support identification of 
prognostic and predictive factors at the molecular level by 
incorporating patient- level deep biological profiling data, 
such as transcriptomic signatures.43

Our analysis represents a first step in the develop-
ment of a quantitative model- based framework to enable 
clinical trial simulations to optimize SLE trial designs. 
Simulations with population disease trajectory models, as 
presented herein, can help improve trial design (e.g., opti-
mize the duration and sample size of proof- of- concept tri-
als) and assist in objectively estimating the probability of 
success ahead of initiating phase III trials. Although based 
on patient- level data from placebo + SoC arms of phase 
II and III SLE trials, in principle, the structural models 
should be applicable for population exposure- response 
analysis of longitudinal data in phase II proof- of- concept 
trials to inform phase III trial design decisions (e.g., end-
point selection, dose selection, and stratification factors 
for appropriate control of heterogeneity). In a previously 
published population exposure- response analysis of effi-
cacy of the type I interferon receptor antibody anifrolumab 
in SLE, repeated measures logistic regression was used to 
estimate the underlying exposure- response for the time 
course of SRI- 4 response rate in phase II to inform phase 
III dose selection.44 Our analysis borrows longitudinal 
data from across multiple endpoints in a latent variable 
model, which, in principle, should provide a fundamen-
tal understanding of sources of variability and exposure- 
response relationships in the underlying disease process. 
Given that the leave- one- study- out cross- validation eval-
uations showed generally acceptable model performance, 
the final model can be applied as a Bayesian prior for an-
alyzing emerging data from phase II trials. It should also 
be possible to simulate an investigational agent's expected 
long- term performance (i.e., 1- year duration) in phase III 
trials, provided the assumption of conserved longer term 
disease trajectory, beyond the duration of the phase II 
trial, is reasonably supported by biological considerations.

Drug development in SLE has been challenged by low 
success rates,45 discordance in trial performance across 
primary endpoints, and the lack of reliable short- term 
outcome biomarkers of efficacy. Population disease trajec-
tory models using patient- level data from placebo + SoC 
arms of diverse phase II/III SLE trials, as developed in this 
analysis, may help establish model informed drug devel-
opment frameworks to support principled decision mak-
ing and increase the probability of success in SLE clinical 
drug development. Simulations from the model developed 
herein could be helpful for drug developers to investigate 
the design of futility or interim analyses to evaluate pre-
dictive performance for early termination of a study if 
treatment response is unlikely to be significantly different 

from SoC at an earlier timepoint (e.g., after 6  months). 
With multiple clinical endpoints in SLE, their relative 
performance characteristics (e.g., sensitivity and variabil-
ity), can be assessed in silico using the developed model 
to optimize trial design. Obvious application of such sim-
ulations could be to assist future protocol design, such as 
the role of interim analysis as an optimization tool,46,47 
the relevance or not of run- in phases,48 treatment dura-
tion for optimal characterization of treatment effect size,49 
and potential impact of comorbidities. Additional applica-
tions may extend to adaptive protocols or enrichment trial 
designs to increase the overall probability of success of a 
trial. We hope that the current framework will stimulate 
applications to address these questions for future investi-
gational agents likely to be developed for SLE. To this end, 
we envision this disease trajectory model serving as a first 
step for future model- informed precision medicine devel-
opment in SLE.
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