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There are increasingly strict regulations surrounding the purchase and use of combustible

tobacco products (i.e., cigarettes); simultaneously, the use of other tobacco products,

including e-cigarettes (i.e., vaping products), has dramatically increased. However, public

attitudes toward vaping vary widely, and the health effects of vaping are still largely

unknown. As a popular social media, Twitter contains rich information shared by users

about their behaviors and experiences, including opinions on vaping. It is very challenging

to identify vaping-related tweets to source useful information manually. In the current

study, we proposed to develop a detection model to accurately identify vaping-related

tweets using machine learning and deep learning methods. Specifically, we applied

seven popular machine learning and deep learning algorithms, including Naïve Bayes,

Support Vector Machine, Random Forest, XGBoost, Multilayer Perception, Transformer

Neural Network, and stacking and voting ensemble models to build our customized

classification model. We extracted a set of sample tweets during an outbreak of

e-cigarette or vaping-related lung injury (EVALI) in 2019 and created an annotated corpus

to train and evaluate these models. After comparing the performance of each model, we

found that the stacking ensemble learning achieved the highest performance with an

F1-score of 0.97. All models could achieve 0.90 or higher after tuning hyperparameters.

The ensemble learning model has the best average performance. Our study findings

provide informative guidelines and practical implications for the automated detection of

themed social media data for public opinions and health surveillance purposes.
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INTRODUCTION

Recent data from the Center for Disease Control and Prevention
(CDC) shows that over 8.1 million U.S. adults and 3.6 million
youth use electronic cigarettes (i.e., e-cigarettes or vaping
products) (Harold, 2020; Villarroel et al., 2020). Although
companies that market vaping products state that vaping is less
harmful than traditional cigarettes and can be used as a form of
harm reduction, there are limited evaluations of the long-term
health consequences that result from vaping, particularly among
youth. To add to this relative uncertainty, an outbreak of acute
consequences such as e-cigarette and vaping use-associated lung
injury (EVALI) occurred in 2019 (Hajek, 2013; Goniewicz et al.,
2014; Camenga and Tindle, 2018). This EVALI outbreak resulted
in a total of 2,807 hospitalized cases with 68 confirmed deaths in
29 states and the District of Columbia, with a peak in September
2019, according to a CDC report (Centers for Disease Control
and Prevention, 2020). The number of adults and youth vaping
has evolved into a global public health crisis in the last decade,
making it crucial to understand public perceptions and attitudes
toward vaping and how these may relate to health behaviors and
self-reported health outcomes.

Given the popularity of social media, many individuals use
these platforms to connect with others and express themselves,
including personal experiences with and opinions toward vaping.
These social media platforms can serve as an excellent data source
for collecting and mining vaping-related data. Twitter is one of
themost popular social media applications, with 192million daily
active users reported at the end of 2020 (Digital Information
World, 2021). Prior studies have successfully leveraged Twitter
for health-related public surveillance in the areas of illicit drug
use (Kazemi et al., 2017), mental health and wellbeing (Amir
et al., 2019; Skaik and Inkpen, 2020), public health (Aiello et al.,
2020), and other health-related topics (Jiang et al., 2018).

Despite its potential for public health surveillance, due to
the large volume of tweets on Twitter, it would be highly
challenging for mental and behavioral health providers to review
all posts and replies to identify those which are vaping-related.
Thus, the current study aims to develop a robust detection
model to automatically capture vaping-related tweets and their
associated user accounts by screening millions of tweets on
Twitter. Our ultimate goal is to use this detection algorithm to
effectively identify users at risk for adverse health outcomes due
to vaping to reach out to those who may benefit from a vaping
cessation intervention.

In this study, we propose to develop a high-efficiency
detection model to automatically identify vaping-related tweets
based on various machine learning and deep learning algorithms.
To train and test the detection model to recognize vaping-
related tweets, we created an annotated corpus as golden standard
data consisting of vaping-related tweets as cases and other
general non-vaping tweets as controls. The machine learning and
deep learning algorithms include Naïve Bayes classifier, Support
Vector Machine (SVM), Random Forest, XGBoost, Multilayer
Perceptron (MLP), Transformer Neural Network, and stacking
and voting structure-based ensemble learning methods (Das
and Behera, 2017; Alzubi et al., 2018; Minaee et al., 2021).

The annotated corpus and developed detection model may
be helpful in future research to inform the customization of
models for other research projects utilizing Twitter and other
social media platforms. Compared with real-world settings, this
study has its limitations, including the dataset’s size, imbalanced
test distribution, generalizability beyond training data, such as
generating keywords, and evaluation bias from bot accounts.
These limitations will be further handled in future work.

RELATED WORK

Social media platforms have become an essential part of public
life. Previous literature has demonstrated that social media can
be used to analyze public opinions on vaping and vaping-
related behaviors, including their opinions between vaping and
cannabis legalization (Adhikari et al., 2021), and perception
of smoking behavior and emerging tobacco products (Myslín
et al., 2013). Deploying predictive models with features extracted
from Twitter, including tweet text, user profile information,
geographic information, and sentiment, has been proven
feasible in identifying vaping-related tweets in previous studies
(Martinez et al., 2018). Extracted features can be considered as
input variables in the standard machine learning algorithms,
including SVM, Naïve Bayesian, and Random Forest, and have
also been used successfully for topic analysis and detection
(Aphinyanaphongs et al., 2016; Han and Kavuluru, 2016).
Aphinyanaphongs et al. (2016) compared the performance of
Naïve Bayes, Liblinear, Logistic Regression, and Random Forest
classifiers to test the automatic detection of e-cigarette use
(including e-cigarette use for smoking cessation) from tweet
content (Aphinyanaphongs et al., 2016). Logistic Regression
achieved the best performance (90% accuracy) for e-cigarette use
detection, and Random Forest achieved the best performance
(94% accuracy) for smoking cessation detection. For their Tweet
sentiment analysis, positive sentiment indicates users’ intention
to use, the act of using, or sequel from use. Benson et al. (2020)
investigated sentiment surrounding JUUL (i.e., an electronic
nicotine delivery system) and vaping among youth and young
adults by applying Logistic Regression, Naïve Bayes, and Random
Forest for the detection of JUUL use and sentiment analysis. The
Random Forest classifier achieved the best performance with 91%
average detection accuracy among these classifiers. Moreover,
due to their ability to learn complex non-linear functions, deep
learning models have gained more popularity for detection
tasks by feeding vectorized tweet contents as the model input
(Visweswaran et al., 2020).

To design and justify our study, we reviewed relevant studies
on vaping-related tweets analysis and cross-compared the scale
of their dataset, setting, and performance of various machine
learning and deep learning classifiers. The comparison results are
presented in Table 1.

As shown in Table 1, Logistic Regression, Random Forest,
SVM, and Naïve Bayes are the most used supervised machine
learning classifiers for vaping-related Twitter studies, and
deep neural networks (DNN) could also perform well in the
tweet classification task. Hyperparameter tuning is necessary
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TABLE 1 | Summary and cross-comparison of vaping-related twitter studies.

Vaping-related

Twitter studies

Subject Scale of the dataset Size of annotation Classifier applied Classifier setting (where

applicable)

Best performance

(accuracy)

Adhikari et al.

(2021)

Public opinions analysis

about cannabis and JUUL

on tweets

Dj:597,000 tweets from 2016 to

2018; Dc: 3.28M tweets from

2014 to 2018

500 tweets annotated from

Dj, and 500 tweets

annotated from Dc

Logistic Regression (LR),

Support Vector Machine

(SVM), LSTM-based Deep

Neural Network (DNN)

Hyperparameters were

tuned for each classifier

Public opinions about

cannabis and JUUL:

microAUC

e-cigarette: 0.93

Cannabis: 0.75

Myslín et al. (2013) Tobacco-relevance tweets

detection, positive &

negative sentiment

7,362 tweets at 15-day intervals

from December 2011 to July

2012 by keywords

Each of 7,362 tweets was

manually classified

Naïve Bayes (NB),

K-Nearest Neighbors

(K-NN), SVM

Rainbow toolkit 10-fold

cross-validation

Tobacco-relevance tweets

detection

NB: 0.77

K-NN: 0.73

SVM: 0.82

Martinez et al.

(2018)

Public opinion about vaping

investigates using sentiment

analysis

973 tweets selected from

193,051 geocoded tweets within

the U.S., and were collected

between October 28, 2015 and

February 6, 2016 by keywords

100 tweets were manually

coded by two coders; Other

tweets were single coded

according to the codebook

classifications

Aphinyanaphongs

et al. (2016)

Vaping use and the

detection of vaping use for

smoking cessation tweets

13,146 tweets were selected

from 228,145 tweets, collected

between January 2010 and

January 2015 by keywords

Each of 13,146 selected

tweets was labeled by the

classifiers

NB, SVM, LR, Random

Forests (RF)

Parameters Settings:

NB: Default

SVM: Default

LR: Auto search to optimize

regularization parameter

RF: Default

Vaping use detection

NB: 0.82

SVM: 0.87

LR: 0.90

RF: 0.89

Vaping Use for Smoking

Cessation

NB: 0.60

SVM: 0.80

LR: 0.89

RF: 0.94

Han and Kavuluru

(2016)

Marketing E- cigarette

tweets detection and

themes analysis

1,000 tweets were selected from

1,166,494 tweets obtained from

April 2015 to June 2016 by

keywords

Both authors independently

annotated the 1,000 tweets

SVM, LR, Convolutional

Neural Network (CNN)

Ten such models were run

for each classifier on 10

different 80–20% train-test

splits of the dataset

E-cigarette tweets detection

SVM: 0.87 ± 0.01

LR: 0.88 ± 0.01

CNN: 0.88

Benson et al.

(2020)

Adolescents and young

adults for JUUL tweets

detection and sentiment

analysis

4,000 tweets were selected from

11,556 unique tweets containing

a JUUL-related keyword

Manually annotated 4,000

tweets for JUUL-related

themes of use and

sentiment

LR, NB, RF Grid search was applied to

optimize hyperparameters

10-fold cross-validation

Teen JUUL use tweets

detection

LR: 0.94

NB: 0.78

RF: 0.99

Visweswaran et al.

(2020)

The relevance and

commercial Vaping-related

tweets detection, and

sentiment analysis

4,000 tweets were selected from

810,600 tweets extracted from

August 2018 to October 2018 by

vaping-related keywords

Manually annotated each of

4,000 tweets

LR, RF, SVM, NB, CNN,

LSTM, LSTM-CNN, BiLSTM

Used default setting for the

parameters in LR, RF, SVM.

Tuned hyperparameters for

CNN, LSTM,

LSTM-CNN, BiLSTM

Vaping tweets relevance

detection was based on

vaping-related word vector:

AUC

LR: 0.84

RF: 0.95

SVM: 0.92

NB: 0.88

CNN:0.94

LSTM: 0.91

LSTM-CNN: 0.89

BiLSTM: 0.89
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to improve the performance when building the classifiers.
The appropriate splitting way for the training and testing set
and validation method is also meaningful when building the
classifiers. The typical approach of using 80% training set, 20%
testing set, and cross-validation was applied in the previous
studies. Since most of the previous research collected tweets in a
long period (6 months or longer), their results cannot reflect the
impact of specific events or changing public opinion tendencies.

In this study, we collected vaping-related and non-vaping-
related tweets from July 2019 to September 2019. We only
focused on these 3 months’ peak period of EVALI outbreak
in 2019 to avoid the ambiguity of long-period tweets analysis.
Our clinical team also cross-checked these tweets to ensure no
misclassified tweets in our dataset. We then built a detection
model for vaping-related tweets by leveraging various machine
learning and deep learning classifiers and cross-compared their
detection performance metrics after tuning hyperparameters
for each classifier. We also used ensemble learning models to
compare the performance with baseline classifiers to identify the
models with the highest performance.

METHODS

Data Creation
Data Collection
In this project, we created an annotated corpus as a golden
standard dataset to develop a detection model using machine
learning and deep learning algorithms. We extracted Twitter
data using the Twint Python package, an advanced open-source
Twitter scraping tool that allows for scraping tweets from Twitter
rather than using Twitter’s official API (Pratama, 2020), limiting
the extraction to 3,200 tweets with a 7-day history limit on each
search. The Twint library tool provides a solution to bypass these
limitations in data collection (Xavier and Souza, 2020).

The annotated corpus for the vaping-related tweet detection
consisted of 1,506 vaping-related tweets and 1,464 general tweets
not mentioning vaping. Each tweet included 10 or more words
and was posted within the timeframe between July 2019 and
September 2019. The tweet numbers in different months (July,
August, and September) are shown in Table 2.

We included only tweets with 10 or more words to keep
our dataset informative with more textual content to allow for
analysis of semantic meaning and to further support the machine
learning prediction. To create the annotated corpus, we collected
and combined two separate sets of tweets: (1) a set of tweets

TABLE 2 | Monthly distribution of tweets in the annotated corpus.

Month in 2019 Vaping-related Vaping not Total tweets

tweets related tweets

July 498 495 993

August 499 502 1,001

September 509 467 976

Total 1,506 1,464 2,970

was searched and extracted using vaping-related keywords, and
(2) a set of tweets was collected through a random selection
without using vaping-related keywords. The Twitter search
keywords include ejuice, e-juice, eliquid, e-liquid, e-cigarette, e-
cigs, electronic, vaporizer, vape, vaping, Pod-Mods, sub-ohm,
MarkTen Elite, PAX Era, Eonsmoke, Eonsmoke, Vapor4Life, Puff
Bar, njoy, and vuse. Then we need to identify the keywords
selected tweets and randomly selected tweets related to vaping
or not. Two individual clinical domain experts in mental health
and substance use were recruited to label the combined dataset of
selected vaping and non-vaping-related tweets. Each annotator
manually reviewed and labeled vaping-related tweets as 1 and
non-related tweets as 0. Inter-rater reliability was 93%. All
discrepancies between the first 2 coders were resolved by a final
consensus coder. The annotation results show that 254 keywords
in the selected tweets were not related to vaping, and no vaping-
related tweets were found in the randomly selected tweets. Then
we added the 254 tweets to the set of randomly selected tweets
as our control set. Finally, we obtained a new dataset with 1,506
tweets related to vaping and 1,464 tweets not related to vaping.

Data Preprocessing
We cleaned and processed the annotated corpus to prepare the
tweet data for machine learning and deep learning algorithms
by converting them into computational vectors (Brownlee, 2020).
This data preprocessing allows us to conduct more efficient and
accurate tweet data analyses to improve the overall performance
of machine learning and deep learning models.

Following tweets preprocessing strategies used in previous
literature (Irfan Alghani, 2020), our initial step was to convert
the raw tweet text with noise into pure text. Unlike common
texts, due to the 280-character limit of tweets and brevity of
tweet writing style, users tend to add different types of non-
text information when sending tweets that can be considered as
“noise,” such as emojis, mentions (i.e., mentioning other Twitter
user handles), hashtags symbol (#), and URLs. Although there
are many mature models for non-textual data recognition, such
as emoji recognition (LeCompte and Chen, 2017), these non-
text pattern recognition models were not considered in this
study as our focus was on the detection of vaping-related text
within tweets.

More specifically, we converted tweet text to lowercase for all
characters to avoid case sensitivity. We then removed unreadable
Unicode characters, including emojis and other non-ASCII
characters. In Twitter and other social media communities, users
frequently use contractions in the limited text to communicate
with others (Gómez-Adorno et al., 2016). We applied the
contractions package to covert the contractions into original
words to help with the data standardization and make the dataset
ready for further process. Next, we focused on removing stop
words, a type of word that has no specific meaning in the
tweet text such as “is,” “be,” “are,” and “at,” etc. We used a stop
word list from the NLTK library in previous research (Loper
and Bird, 2002) to recognize and remove these words. After
these cleaning steps, additional noises such as URLs, hashtags,
mentions, punctuations, ticks with the next character, numbers,
and over spaces remained for some tweets. To remove these
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remaining sources of noise from the dataset, we used regular
expressions which contain the patterns to match and remove the
target types of noise.

The next step was to tokenize the cleaned tweets into separate
words and convert them into numerical vectors as machine
learning and deep learning models inputs. We used the word
tokenization function in the NLTK library to tokenize the cleaned
tweets into separate words (Chakravarthy, 2020). Each word is
called a token, which is used to analyze the words’ sequence and
to be vectorized further to develop our machine learning models.
Before vectorizing the tokens for each tweet, we applied the
word lemmatization function from the NLTK library to convert
the words to their base forms. This step could reduce the size
of word space to curb the sparsity of the data set and avoid
model overfitting in further analysis (Camacho-Collados and
Pilehvar, 2017). Both lemmatization and stemming approaches
could lessen the word space (Jivani, 2011), but the result of
lemmatization is the actual words which could provide more
information when we look into the practical importance of the
analysis results. Thus, we used the lemmatization approaches
to convert the words into their base forms. We also applied
the part-of-speech (POS) tag function provided by the NLTK
library to assign a tag for each word in a specific context, such
as noun, verb, adverb, adjective, determiner, etc. (Loper and Bird,
2002). These POS tags provide more evidence for the conversion
process. Sequentially, we converted the textual data to numerical
data before putting our dataset into the machine learning models
as input. For this step, we applied Term Frequency-Inverse
Document Frequency (TF-IDF), the most common method to
transfer textual value to numerical value (Zhang et al., 2011).
During the process of the TF-IDF, the tokens from the tokenizing
process were converted to different feature indexes. The output
features from TF-IDF were then fed into the machine learning
models. In addition, for Transformer Neural Network, we used
the word embedding technique as implemented in Keras (Gulli
and Pal, 2017) to represent the cleaned tweets.

Vaping-Related Tweets Detection Models
We built different vaping-related tweet detection models based
on various machine learning algorithms, including Naive Bayes
classifier, SVM, Random Forest, and XGBoost. We also deployed
two deep learning models, a Multilayer Perceptron (MLP)
model and a Transformer Neural Network model based on the
Keras framework, to cross-compare the detection performance
betweenmachine learning classifiers and deep learning classifiers.
We further tuned the setting of hyperparameters for each
model based on our vaping detection dataset. Additionally, we
combined several tree-based algorithms with building ensemble
models and compared their performance with single tree-based
machine learning classifiers and other machine learning models.

Machine Learning Classifier and Optimization

Naïve Bayes Classifier
The Naïve Bayesian algorithm is a supervised classification
algorithm based on Bayes’ theorem and assumes independence
between features (Kiilu et al., 2018). It is widely used for
text binary classification, sentiment analysis, and information

filtering (Zhang and Li, 2007) due to its ability to handle small
sample sizes with only a small amount of training data to estimate
basic parameters.

This study applied the Gaussian Naive Bayes classifier
as implemented in the Scikit-Learn (Pedregosa et al., 2011)
Python package. There are two model parameters, Priors, and
Var_smoothing, for the Gaussian Naive Bayes classifier as
described in the Scikit-Learn official document. Priors indicate
the prior probabilities of the classes.We kept the default setting to
set the Priors as “None” because we did not input anything to the
model as the prior experience. Var_smoothing is used for stability
calculation by adding the portion of the largest variance of all
features to their variances. The default value of Var_smoothing
is 1e-9.

To optimize the model performance, we used the grid search
algorithm to identify the optimal value of Var_smoothing. We set
the searching range of the var_smoothing value from the default
value of 1e-9 to 1e0 and generated 100 equally spaced candidate
values within the range. We applied the 5-fold cross-validation to
train and test the model for each candidate value and output the
parameter value with the best model performance in each pair of
training and testing sets.

Support Vector Machine (SVM)
SVM is a standard supervised machine learning algorithm
for regression and classification problems, especially binary
classification problems. The SVM algorithm finds a line or
hyperplane in N-dimensional space that can best classify the data
points. It is suitable for our binary text classification task because
it is more effective in high dimensional space and performs well
with small datasets (Liu et al., 2010).

In SVM, we optimized three major parameters to achieve the
best model performance and get the optimal combination of
parameters setting. The three major parameters include kernel,
regularization parameter (C), and kernel coefficient parameter
(Gamma). The kernel is a core function that transforms the input
space from a lower dimension to a higher dimension in a non-
linear fashion. The regularization parameter (C) is the penalty
parameter that indicates the boundary of misclassification
objects. The kernel coefficient parameter (Gamma) indicates the
distance impact on the line of different classes separation. The
parameters C and Gamma must be strictly positive. To find the
optimal setting, we applied the grid search algorithm for three
different kernels: sigmoid, polynomial, and radial basis function.
The C’s candidates are 0.1, 1, 10, 100, and 1,000. The choices of
Gamma are 1, 0.1, 0.01, 0.001, and 0.0001 (Sunkad, 2016). As
the hyperparameter tuning was processed in the Gaussian Naive
Bayes classifier, we used grid search together with 5-fold cross-
validation to find the optimal parameter setting with the best
model performance in each pair of training and testing set.

Random Forest
Random Forests are among the most popular machine
learning classification techniques, given their excellent accuracy,
robustness, and ease of use (Roy and Larocque, 2012). The
robustness of random forest is reflected in the capability of
handling outliers. Based on the tree structural property, the
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outliers only impact the leaf node where the outliers belong
to, but no impact on any other leaf node. Moreover, Random
Forest classifiers effectively handle high dimensional, noisy data
in text classification (Pranckevičius and Marcinkevičius, 2017).
The Random Forest classifier with a bootstrap method generates
different training sets, and the Random Forest algorithm
constructs a decision tree for each training set. The features used
in training each decision tree node are also randomly selected
from the set of features. The benefit of using these random
samples in both the training samples and the components of the
feature vectors is its correction for the overfitting of decision
trees, and thus all these decision trees form a robust Random
Forest model. For classification problems, voting by multiple tree
classifiers was used to determine the final classification result
(Hastie et al., 2009).

To get the best performance of the random forest
classifier, we tuned six important model parameters, which
are n_estimators, max_features, max_depth, min_samples_split,
min_samples_leaf, and bootstrap (Scornet, 2017). Compared
with the Naive Bayes classifier and SVM, the model parameter
space is vast, and it is costly to find the best combination of
model parameters with the grid search algorithm. Thus, we
used the random grid search algorithm to randomly sample
the parameter combinations to approximate the best parameter
setting (Bergstra and Bengio, 2012; Siji George and Sumathi,
2020). We set the range of the number of trees in the forest
(n_estimators) from the default value 100–1,000 and generated
10 candidates with the searching range. We generated 10
candidates of the maximum depth of the tree (max_depth) for
the searching range from 10 to 100. The min_samples_split is the
minimum number of samples required to split an internal node,
and its minimum value is 2. We chose 5 candidates from 2 to
10 for min_samples_split. The min_samples_leaf, the minimum
number of samples required to be at a leaf node, has five
candidates from 1 to 10 for searching. The bootstrap is a Boolean
parameter that indicates whether the bootstrap samples are used
when building trees. For the number of features to consider
when looking for the best split (max_features), three different
parameter types are included in the searching space: auto, sqrt,
and log2. We used 5-fold cross-validation to evaluate the model
performance and find the model with the best performance in
each training and testing set combination.

XGBoost
XGBoost (Chen et al., 2015) is a supervised machine
learning method for regression and classification tasks like
the Random Forest classifier. Due to high execution speed,
model performance, flexibility, and portability, XGBoost is
popular in different data science competitions, like Kaggle, a data
science community, and machine learning competition website
(Chen and Guestrin, 2016).

XGBoost classifier has seven essential parameters,
including n_estimators, learning_rate, max_depth, subsample,
colsample_bytree, eta, and gamma for tuning the model
performance (Budholiya et al., 2020; Ryu et al., 2020). Similar
to the Random Forest classifier, we applied the random grid
search method to optimize the seven essential parameters.

We generated 10 candidates for the number of trees in a tree
ensemble (n_estimators) from 100 to 1,000. We set 4 candidates
(0.01, 0.1, 0.2, and 0.3) for the value of learning_rate. The
candidates of the maximum depth of each tree (max_depth)
were generated from 1 to 20 with a step size of 1. The subsample
ratio of the training instances (subsample) prevents overfitting.
We scanned the candidate value from 0.5 to 1 with a step size
of 0.1. The parameter colsample_bytree indicates the subsample
ratio of columns when constructing each tree, and the parameter
candidates were generated incrementally by 0.1 from 0.1 to 1.
The parameter eta is used to downsize the weights of features
after each boosting step to prevent overfitting. The searching
range of eta is from 1 to 2, and the interval between adjacent
candidates is 0.1. Gamma is proportionate to the regularization
level, and the candidate of gamma is scanned from 0 to 5 with an
incremental step of 1. We deployed the 5-fold cross-validation
to evaluate model performance and find the best performance in
each training and testing set combination.

Deep Learning Classifier and Optimization

Multilayer Perceptron (MLP)
Multilayer Perceptron (MLP) is a deep learning neural network
connecting multiple layers in a directed graph (Hastie et al.,
2009). MLPs utilize non-linear activation functions on the
hidden and output layers to distinguish data that is not linearly
separable. MLP uses a supervised learning technique called
backpropagation for training. After the feedforward calculation
from the input layer to the output layer, the connection weights
between layers are updated through backpropagation based on
the amount of error in the output compared to the expected result
for the supervised learning of MLP.

We applied the MLPClassifier as implemented in the Scikit-
Learn Python package for the vaping detection task (Pedregosa
et al., 2011). The MLP model consists of an input layer, multiple
hidden layers, and an output layer. To build the MLP classifier
with the best performance, we tuned five key model parameters,
including the size of the hidden layers and the number of
neurons in each layer (hidden_layer_sizes), the type of activation
function (activation), the kind of solver for weight optimization
(solver), the maximum number of iterations (max_iter), and
the learning rate for weight updates (learning_rate) (Car et al.,
2020; Weissbart, 2020). Given the size of the annotated corpus,
we set the size of the hidden layers to be up to five layers,
and the number of neurons in each layer from 100 to 500.
The activation functions include tanh, relu, and logistic. There
exist three different optimization solvers: sgd, adam, and lbfgs.
The maximum iteration is scanned from 100 to 1,000 with an
increment of 100. The types of learning rate include constant
and adaptive. We applied the random grid search method and
5-fold cross-validation to find the optimal parameters with the
best classifier performance.

Transformer Neural Network Classifier
We also built a Transformer Neural Network for the vaping-
related tweets classification and compared the performance with
other classifiers using Keras (Jakhar and Hooda, 2018). In this
classifier, we first fed the token of words for each tweet into
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the embedding layer and then embedded the positional vector
with the tokens and output this to the transformer layer. Multi-
head attention was applied in the transformer layer to calculate
scaled dot-production attention by the query, key, and values.
The query, key, and value all came from the embedding input
matrix. After normalizing the calculation results from multi-
head attention, the transformer layer outputs one vector for
each time step. It takes the mean value across all time steps to
feedforward to the output of classification results (Vaswani et al.,
2017; Apoorv, 2020).

To achieve the best performance of the Keras-based
transformer neural network classifier and find the optimal
parameter setting, we tuned the parameters using KerasTuner,
which is a popular hyperparameter optimization framework
under Keras (O’Malley et al., 2019; Rogachev and Melikhova,
2020). The tuned parameters include:

• The embedding size for each token
• The number of attention heads
• The hidden layer size in the feed forward network inside

the transformer
• The dropout rates
• Activation function
• Optimizer function
• Learning rate

The range of the embedding size for each token was set from
32 to 512, and the interval between adjacent candidates was
32. We used the same searching strategy for the hidden layer
size. The number of the attention heads is from 2 to 5. The
candidates of dropout rate include 0.0, 0.01, 0.1, 0.2, and 0.3.
The candidates of the activation function include rehu, tanh, and
sigmoid. The types of optimizer functions include adam, sgd, and
rmsprop. The candidates of the learning rate include 0.1, 0.01,

and 0.001. We searched for the optimal parameter setting for the
best model performance using the random grid search method in
the KerasTuner package.

Ensemble Learning Classifier
In addition to the single machine learning models described
above, to obtain better performance and eliminate the biases
from different single models, we applied the ensemble learning
method to combine the base machine learning models to get
a better, more comprehensive, and strongly supervised model
(Xiao et al., 2018). To establish the final ensemble model, we
incorporated two common structures, including stacking and
soft voting to compare the performance (Figure 1). The twomost
popular ensemble methods, bagging and boosting, have different
preferences. The bagging method is suitable for eliminating the
overfitting problem but could increase the bias, and the boosting
method could reduce the bias but may lead to the overfitting
issue. To get an ensemble model with better performance and
avoid the disadvantages of using single bagging and boosting
model, we selected four different base models: a typical linear
model for classification—SVM, a most common model with the
baggingmethod—RandomForest, and two standardmodels with
the boosting method—XGBoost and AdaBoost. In the ensemble
model, we applied stacking and soft voting strategies to evaluate
the results from these four base models.

As shown in Figure 1, there were two training stages in the
stacking structure. In Stage 1, we trained a set of base machine
learning models and generated prediction results by a 5-fold
cross-validation process by splitting the training set into five
subsets (Rodriguez et al., 2009). We used four subsets to train all
base machine learning classifiers in the ensemble model, assigned
the remaining subset as the testing set, and evaluated the model
performance. Next, we used a different subset as the testing set

FIGURE 1 | The structures of our ensemble learning model.
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to run the same process until all groups were applied as a testing
set once.

Based on the stacking algorithm, in Stage 2, we constructed
a new data set based on the output from the single classifiers in
Stage 1 (Figure 1). The output predicted labels of the classifiers
in Stage 1 are regarded as the new input features, and the
labels in the original dataset are the labels in the new data set
(Odegua, 2019). Then we used Logistic Regression to train the
final stacking model based on the new dataset and obtained the
final performance. Separately in Stage 2 we also applied the soft
voting classifier to the new training set generated in Stage 1
to calculate the probabilities of each class from different base
models. These probabilities were averaged with equal weights
in this step. We selected the highest weighted and averaged
probability to determine the final voting result. The final output
is the method with the highest performance based on the testing
set among stacking and voting.

Experiments and Evaluation
This study builds and optimizes different machine learning and
deep learning classifiers based on the annotated dataset for the
vaping detection task. We tuned the model parameters and
hyperparameters and evaluated the model performance using
accuracy, precision, recall, and F1-score.

Accuracy =
True Negative + True Positive

True Negative + True Positive+

False Negative+ False Positive

Precision =
True Positive

True Positive + False Positive

Recall =
True Positive

True Positive + False Negative

F1− score =
2 ∗ (Precision ∗ Recall)

Precision+ Recall

True-positive denotes the number of positive classes correctly
predicted by the model. False-positive means the number of the
positive class incorrectly predicted by the model. True-negative
refers to as the number of the negative classes correctly predicted
by the model. False-negative is the number of the negative classes
that incorrectly predicted the model.

In addition, we experimented with two different spitting
strategies of the training and testing sets to evaluate the classifiers
based on the month-based and percentage-based methods. For
the month-based split method, we used two out of 3 months’
data as the training set and another month’s data as the testing
set, generating three different training-testing combinations. For
the percentage-based method, we split the dataset by six different
percentages: 50% training and 50% testing, 60% training and 40%
testing, 70% training and 30% testing, 80% training and 20%
testing, 90% training, and 10% testing. The similar language and
utterances from the same user’s tweets in the training and testing
sets could bring evaluation bias. To avoid biased evaluations, we
checked our dataset by the user ID and tweet ID with the tweet
content to ensure no tweets from the same users or retweets by
other users overlapped between the training and testing sets when
we split our dataset.

RESULTS

This section presents our experimental and evaluation results
based on each classifier’s training and testing combination
and cross-comparison.

Model Performance
Table 3 shows the best performance achieved by each
classifier for all different training-testing combinations
and hyperparameters settings. As shown in Table 3, the
stacking ensemble method achieved the highest F1-Score 0.97
based on all different training and testing set combinations
(Tables A13, A14 in Appendix). Random Forest and
Transformer classifiers achieved the second high F1-Score
0.96 (Tables A5, A6, A11, A12 in Appendix). The highest
F1-Score of Naïve Bayes, SVM is 0.95. The best F1-Score for
the MLP classifier is 0.94, and XGBoost got 0.92. The detail
of the results for each classifier is shown in Tables A1, A14

in Appendix.

Temporal Experiment
We performed temporal experiments based on different
combinations of month-based training and testing datasets (i.e.,
Training-testing Months of 7, 8–9, 7, 9–8, and 8, 9–7). Figure 2
shows the best prediction accuracy achieved in eachmonth-based
training and testing combination. All classifiers can accurately
classify vaping-related tweets with an F1-Score of 0.92 or better.
The best detection model is stacking ensemble (0.97, 0.97, 0.97),
and the second-best model is Random Forest (0.96, 0.96, 0.95)
for three different month-based training-testing settings. After
cross comparing the different month-based training and testing
set combinations, we found that all classifiers achieved 0.91
or higher F1-Score except Naïve Bayes. The stacking ensemble
and transformer classifiers have the most stable performance
for all three training and testing set combinations. The detailed
results of their testing accuracy, precision, recall, F1-score,
and the optimal parameter value are shown in Tables A1–A14

in Appendix.

Testing Size Experiment
We also experimented with a percentage-based split of training
and testing sets (i.e., different combinations of Training-testing
percentages: 90–10%, 80–20%, 70–30%, 60–40%, and 50–50%).
Figure 3 shows the best prediction accuracy achieved in each
percentage-based training and testing combination. The results
are based on the month-based training and testing combinations,
except the Naïve Bayes classifier, and all other classifiers can
accurately classify vaping-related tweets 0.91 or a better F1-Score.
The top 3 detection models are stacking ensemble (0.97, 0.97,
0.97, 0.97, 0.97), Random Forest (0.96, 0.94, 0.96, 0.96, 0.96),
and SVM (0.95, 0.94, 0.95, 0.94, 0.93) for different percentage-
based training and testing settings. The stacking ensemble
classifier is still the most stable model for all training-testing set
combinations. The detailed results of testing accuracy, precision,
recall, F1-score, and the optimal parameter value are shown in
Tables A1–A14 in Appendix.
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TABLE 3 | Best performance (F1-score) achieved for each classifier.

Classifier Accuracy Precision Recall F1-Score Training set Testing set

Naïve Bayes 0.94 0.93 0.96 0.95 90% 10%

SVM 0.95 0.98 0.92 0.95 7, 8 (Month) 9 (Month)

0.95 0.96 0.94 0.95 90% 10%

0.94 0.96 0.95 0.95 70% 30%

Random Forest 0.95/0.96 0.96/0.95/0.94/0.93 0.97/0.96 0.96 90%/70%/

60%/50%

7, 8 (Month)

7, 9 (Month)

10%/30%

40%/50%

9 (Month)

8 (Month)

XGBoost 0.91/0.92 0.94/0.93/0.91 0.91/0.92 0.92 All training sets are

based on various

month and percentage

combinations except:

7, 8 (Month)

All testing sets are

based on various

month and percentage

combinations except: 9

(Month)

Ensemble - Stacking 0.97 0.97 0.97 0.97 All training sets are

based on various

month and percentage

combinations

All testing sets are

based on various

month and percentage

combinations

MLP 0.94 0.94 0.94 0.94 7, 9 (Month) 8 (Month)

0.94 0.94 0.94 0.94 50% 50%

Transformer 0.96 0.96 0.96 0.96 7, 8 (Month) 9 (Month)

FIGURE 2 | The performance comparison for all classifiers based on different month-based training-testing combinations.

Feature Analysis
To further understand the characteristics of vaping-related
tweets, we applied the Random Forest classifier to analyze feature
importance. Then top 20 important features were identified for
the detection of vaping-related tweets, as shown in Figure 4,

in which the y-axis represents the feature names, and the x-
axle indicates the importance score for each feature, calculated
through Gini importance (Qi, 2012) for each node on each
decision tree and an average overall the trees based on the sum
of all feature importance values. The final importance score was
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FIGURE 3 | The performance comparison for all classifiers based on percentage-based different training-testing combinations.

FIGURE 4 | Top 20 important features based on random forest classifier.
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normalized into the scale 0 and 1. The higher value indicates the
more important feature (Breiman, 2001; Ronaghan, 2018).

We grouped the most important words into two major
categories, including smoking-related and health-outcome-related
words based on their literal meaning, without considering the
context of tweets, and thus the words from these four categories
could occur in the same tweets. In detail, these two groups of
words include (1) Smoking-related common words: vaping, vape,
smoke, cigarette, cigs, nicotine, tobacco, smoking. (2) The health-
outcome-related words: lung, quit, use. (3) Vaping product-related
words: juice, juul, product, pod, flavor, liquid, tank. (4). Policy-
related word: ban. The presence of these 20 important words
indicate that more vaping-related tweets mentioned vaping
or smoking health-related outcomes during the outbreak of
EVALI. Furthermore, there are 15 out of 20 most important
words about smoking and vaping products, which indicate that
the topic of vaping products is also popular in the Twitter
community. Moreover, a certain number of tweets are focused
on banning vaping.

EVALUATION

In this section, to validate the results based on the input
vectors from TF-IDF, we applied word2vec for the new dataset.
Word2vec is a popular method for learning word embeddings
based on a two-layer neural network to convert the text data
into a set of vectors (Mikolov et al., 2013). Unlike TF-IDF,
word2vec could consider more context when processing each
word (Kurnia et al., 2020). We applied word2vec with a skip-
gram training algorithm given by the Gensim library (Rehurek
and Sojka, 2011). We applied the results from word2vec as the
input to the classification models except for Keras, which has a
similar embedding layer for text vectorization.

Table 4 shows the best performance achieved for each
classifier among all different training-testing combinations and
hyperparameters settings based on the new dataset—the highest
F1-Score 0.97 achieved by the stacking ensemble model. SVM
and MLP achieved second high F1-Score 0.95. All models
still achieved 0.9 or higher F1- Score for all training-testing
combinations, excepting Naïve Bayes, which got lower than
0.9 F1-Score for 6 out of 8 training-testing combinations.
SVM and MLP achieved their best performance in the same
training-testing combinations and hyperparameters settings as
the original results. These results provide evidence to show
our classification models’ generalizability and the validation of
previous results. The detail of the results for each classifier is
shown in Tables A15, A16 in Appendix.

DISCUSSION

This study extracted vaping-related tweets from the Twitter
platform and created an annotated corpus for developing a
detection model. We built different detection models based
on TF-IDF, word embedding techniques and popular machine
learning and deep learning algorithms. Model performance
comparisons demonstrated that all machine learning and deep

TABLE 4 | Best performance achieved for each classifier—evaluation dataset.

Classifier Accuracy Precision Recall F1-score Training

set

Testing

set

Naïve

Bayes

0.90 0.95 0.86 0.90 7, 8

(Month)

9 (Month)

0.90 0.92 0.88 0.90 8, 9

(Month)

7 (Month)

SVM 0.95 0.96 0.94 0.95 7, 8

(Month)

9 (Month)

0.95 0.96 0.94 0.95 90% 10%

Random

Forest

0.94 0.94 0.94 0.94 7, 8

(Month)

9 (Month)

0.94 0.94 0.93 0.94 8, 9

(Month)

7 (Month)

XGBoost 0.94 0.94 0.94 0.94 7, 8

(Month)

9 (Month)

Ensemble—

stacking

0.95 0.97 0.97 0.97 7, 9

(Month)

80%

70%

8 (Month)

20%

30%

MLP 0.95 0.95 0.95 0.95 7, 8

(Month)

9 (Month)

0.95 0.95 0.95 0.95 90% 10%

learning models for our small sample of textual data with
high dimensions could achieve F1-Score>0.91. The ensemble
learning classifier (stacking) achieved the best average detection
performance. The stacking approach, which created the first-
stage features by the single classifiers and transformed the
data into another feature space to predict the actual target in
the second stage, could slightly improve the vaping detection
performance among other machine learning and deep learning
classifiers that we evaluated.

After comparing our vaping-related tweets detection
performance with the classifier results reported in previous
studies (Table 1), we found that the Random Forest, SVM,
and Transformer classifiers have constantly achieved better
performance than the Naïve Bayes classifier. This finding
is consistent in our study that Random Forest, SVM, and
Transformer perform better in executing text content
classification tasks than the Naïve Bayes. Unlike previous
studies that only built the classifiers on the same training and
testing combination, we developed our classifiers based on six
different training and testing combinations and examined the
optimal hyperparameter setting for each classifier. We also
evaluated our classification models based on the word2vec
vectorization method. The classification models also achieved
high accuracy from the new dataset and supported the initial
results—the average performance of Naïve Bayes is not as good
as other classifiers for the vaping detection task. Furthermore,
the stacking ensemble model could perform better than
other models.

Recently, the pre-trained deep learning methods have shown
promising results in natural language processing tasks, including
text classification, so we plan to explore these pre-trained models
and their variants to detect vaping-related tweets in the future.
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The current study results effectively support the feasibility
and validity of using detection models based on ensemble
classifier with stacking method to identify vaping-related tweets
on Twitter. Such approaches to detection and combined with
additional analyses, have the potential to screen and mine
millions of tweets to identify individuals who are communicating
and networking about vaping on social media sites and to reach
out to those who may be at risk for adverse health outcomes due
to vaping and could benefit from direct connection to cessation
support and related intervention programs.

LIMITATION

The first limitation of this study is the size and distribution
of our dataset. In the current dataset, we have 1,506 vaping-
related tweets and 1,464 vaping-not-related tweets. In the real-
world situation, the vaping topic is a small part of all tweets in
the Twitter community. Still, we did not use many unrelated
vaping tweets instead of a sample to form an imbalanced dataset
to evaluate the vaping detection classifiers. Since clinic experts
need to cross-check all collected tweets to determine whether the
tweets are related to vaping or not, we cannot overextend the
size of our data due to the time-consuming human manual check
process and resource limitations.

The second limitation of this study is its generalizability. We
collected the vaping-related tweets based on a set of the keywords
generated by our clinic team, given that the keyword search
is a standard method when we search specific content on the
Internet. The additional human check process has helped avoid
the impact of keyword filtering on recall and precision. The
limitation of keyword search is that irrelevant content might be
included since the keyword search cannot accurately identify the
words’ semantic meaning in different contexts, and thus may
cause negative effects on recall and precision. In our study, our
clinical team checked each tweet from keywords selection when
they annotated the tweets to ensure they were all related to the
vaping topic that we focused on in this study. As such, there
might be a lack of generalizability to expand this keyword set,
which is not the current scope of this work.

Another limitation is the bias in our current dataset. The
tweets possibly generated from the bot could be included in the
dataset. At the current stage of this study, we did not apply any

filter to remove these tweets since our primary target of this study
is to detect whether the tweets are related to vaping or not.
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