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Cardiovascular diseases are the leading cause of mortality worldwide. Such a widespread 
diffusion makes the conditions affecting the heart and blood vessels a primary medical 
and economic burden. It, therefore, becomes mandatory to identify effective treatments 
that can alleviate this global problem. Among the different solutions brought to the attention 
of the medical-scientific community, therapeutic angiogenesis is one of the most promising. 
However, this approach, which aims to treat cardiovascular diseases by generating new 
blood vessels in ischemic tissues, has so far led to inadequate results due to several 
issues. In this perspective, we will discuss cutting-edge approaches and future perspectives 
to alleviate the potentially lethal impact of cardiovascular diseases. We will focus on the 
consolidated role of resident endothelial progenitor cells, particularly endothelial colony 
forming cells, as suitable candidates for cell-based therapy demonstrating the importance 
of targeting intracellular Ca2+ signaling to boost their regenerative outcome. Moreover, 
we will elucidate the advantages of physical stimuli over traditional approaches. In particular, 
we will critically discuss recent results obtained by using optical stimulation, as a novel 
strategy to drive endothelial colony forming cells fate and its potential in the treatment of 
cardiovascular diseases.

Keywords: cardiovascular disease, therapeutic angiogenesis, endothelial colony forming cells, intracellular Ca2+ 
signaling, transient receptor potential vanilloid 1, cell fate, optical stimulation, conjugated polymers

INTRODUCTION

The vascular network is indispensable for all organisms to distribute oxygen (O2) and nutrients 
to the tissues and to remove carbon dioxide and other metabolic waste products (Heinke 
et  al., 2012). Additionally, the circulatory system serves to maintain homeostasis by stabilizing 
body temperature and avoiding pH unbalance, to facilitate inter-organ humoral communication, 
and finally, to guide immune cells towards sites of inflammation or infection (Heinke et  al., 
2012; Udan et  al., 2013). Insufficient vascularization or impairment of regional blood flow due 
to local vessel obstruction results in ischemia, thereby promoting coronary artery disease, 
acute myocardial infarction, peripheral artery disease, stroke, pre-eclampsia, and obesity- or 
neurodegenerative associated disorders (Draoui et  al., 2017; Potente and Mäkinen, 2017). 
Cardiovascular disease (CVD) induced by disruption of the vascular network in heart, limbs 
and brain is, therefore, regarded as a global medical and economic issue with high prevalence 
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and mortality rates (Benjamin et  al., 2019). The World Health 
Organization and Global Burden Disease have listed CVD as 
the first cause of death worldwide (Mensah et  al., 2019). 
Therapeutic angiogenesis (TA) represents a promising strategy 
that aims at reconstructing the damaged vascular network by 
stimulating the regrowth of the endothelial cell layer that lines 
the inner lumen of blood vessels and plays a crucial role in 
adjusting blood supply according to local energy demand 
(Qadura et  al., 2018; Prasad et  al., 2020). Endothelial colony 
forming cells (ECFCs), which represent the only known truly 
endothelial precursor (Medina et  al., 2017), are mobilized in 
peripheral circulation to maintain endothelial homeostasis 
throughout postnatal life and to rescue local blood flow upon 
an ischemic insult (D’Alessio et  al., 2015; Tasev et  al., 2016; 
O’Neill et  al., 2018). A wealth of in vitro and in vivo studies 
has been recently carried out to design an effective strategy 
to stimulate endogenous ECFCs’ regenerative potential for 
therapeutic purposes, thereby alleviating the life-threatening 
impact of CVD (Tasev et  al., 2016; Moccia et  al., 2018a; 
O’Neill et  al., 2018; Paschalaki and Randi, 2018).

In this perspective, we  will briefly describe how endothelial 
precursors generate the primitive vascular plexus and can, 
therefore, be exploited for TA. Then, we will explain the rationale 
for targeting the Ca2+ handling machinery, which delivers a 
crucial pro-angiogenic signaling input. Finally, we  will review 
recent approaches, based on the use of physical stimuli in place 
of chemical cues. Specifically, we  will report on the use of 
visible light pulses to stimulate ECFCs’ proliferation and 
bidimensional tube formation. Optical modulation could provide 
an effective strategy to rescue ECFCs’ vasoreparative potential 
in patients affected by CVD and to circumvent the main hurdles 
associated to autologous stem cell therapy.

THE ROLE OF ECFCs IN VASCULAR 
DEVELOPMENT AND HOMEOSTASIS: 
ORIGIN, CHARACTERIZATION, AND 
SUITABILITY OF THERAPEUTIC 
ANGIOGENESIS

The circulatory system is the first functional organ to develop 
(already during gastrulation) with the purpose to supply growing 
tissues with O2 and nutrients and thereby sustain organism 
growth (Udan et al., 2013; Potente and Mäkinen, 2017). Embryonic 
blood vessels arise from endothelial progenitor cells (EPCs), 
also known as angioblasts, which differentiate from multipotent 
mesodermal precursors. EPCs coalesce and assembly into a 
primitive capillary plexus, according to a process known as 
vasculogenesis. This is followed by further expansion of the 
vascular network via angiogenesis, which may occur through 
either sprouting or splitting of pre-existing vessels (Udan et  al., 
2013; Potente and Mäkinen, 2017). The endothelial monolayer 
retains a state of proliferative quiescence for years, but it may 
undergo sprouting angiogenesis to meet local metabolic demand 
under hypoxia, i.e., during skeletal muscle exercise, or in  
the cycling ovary and in the placenta during pregnancy 

(Potente and Mäkinen, 2017). Furthermore, EPCs may be released 
on demand by cytokines released from hypoxic/injured tissues 
to support local angiogenesis and rescue local blood flow (Moccia 
et  al., 2012; O’Neill et  al., 2018). Since the landmark discovery 
of a population of endothelial precursors circulating in peripheral 
blood (Asahara et al., 1997), multiple EPC subtypes were isolated, 
characterized and probed for their therapeutic potential (Asahara 
et  al., 2011; Keighron et  al., 2018). Nevertheless, ECFCs were 
recently presented as the most suitable cellular substrate for 
regenerative therapy of CVD (Moccia et  al., 2015; Tasev et  al., 
2016; Medina et  al., 2017; Paschalaki and Randi, 2018; O’Leary 
et al., 2019). Unlike other myeloid EPC subtypes, which stimulate 
neovessel growth in a paracrine manner, ECFCs display the 
following properties: (1) they are truly endothelial progenitors, 
able to assembly into capillary-networks in vitro and to form 
patent vessels in vivo; (2) display high clonogenic potential 
and may be  replated into secondary and tertiary colonies; (3) 
rescue injured vascular networks by physically engrafting within 
neovessels and by releasing pro-angiogenic signals; (4) interact 
with perimural cells, which ensures neovessel stability; and (5) 
are more amenable for pharmacological and genetic manipulation 
aiming at improving their vasoreparative phenotype (Moccia 
et  al., 2015, 2018a,b; Tasev et  al., 2016; Medina et  al., 2017; 
Paschalaki and Randi, 2018; O’Leary et  al., 2019).

INTRACELLULAR Ca2+ SIGNALING 
DRIVES ECFCs’ ANGIOGENIC ACTIVITY

A finely tuned spatio-temporal increase in intracellular Ca2+ 
concentration [(Ca2+)i] in vascular endothelial cells has long 
been known to stimulate angiogenesis (Fiorio Pla and Munaron, 
2014; Moccia et al., 2014, 2019; Negri et al., 2020a). Endothelial 
Ca2+ signals may indeed mediate the pro-angiogenic effect of 
multiple growth factors, including vascular endothelial growth 
factor (VEGF; Potenza et  al., 2014; Yokota et  al., 2015; Savage 
et al., 2019), and epidermal growth factor (Moccia et al., 2003), 
inflammatory mediators, such as ATP (Moccia et  al., 2001), 
and pleiotropic hormones, such as erythropoietin (Yu et  al., 
2017). Likewise, a recent series of reports documented that 
intracellular Ca2+ signals stimulate ECFCs to undergo angiogenesis 
both in vitro (Zuccolo et  al., 2016; Lodola et  al., 2017a; Wu 
et  al., 2017) and in vivo (Zuccolo et  al., 2018; Balbi et  al., 
2019). For instance, VEGF-induced intracellular Ca2+ oscillations 
stimulated ECFC proliferation and tube formation by promoting 
the nuclear translocation of the Ca2+-sensitive transcription 
factor, nuclear factor-κB (NF-κB; Dragoni et  al., 2015b; Lodola 
et  al., 2017a), whereas biphasic Ca2+ signals favored stromal 
derived factor-1α (SDF-1α)-induced ECFC homing to injured 
tissues by recruiting the extracellular signal-regulated kinase 
(ERK) and phosphoinositide 3-kinases (PI3K)/Akt (Zuccolo 
et  al., 2018). The Ca2+ response to these pro-angiogenic cues 
was initiated by endogenous Ca2+ release from the endoplasmic 
reticulum (ER) through inositol-1,4,5-trisphosphate (InsP3) 
receptors (InsP3Rs), followed by store-operated Ca2+ entry 
(SOCE) activation (Lodola et  al., 2017a; Zuccolo et  al., 2018; 
Figure  1). SOCE is activated upon InsP3-induced ER Ca2+ 
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depletion to refill the ER with Ca2+ and is mediated by the 
interplay among STIM1, Orai1, and Transient Receptor Potential 
(TRP) Canonical 1  in ECFCs (Lodola et  al., 2012; Figure  1). 
TRP channels provide an alternative pathway for extracellular 
Ca2+ entry in both vascular endothelial cells (Negri et  al., 
2020a) and ECFCs (Inoue and Xiong, 2009; Hofmann et  al., 
2014; Dragoni et  al., 2015a; Figure  1). Endothelial cells use 
TRP channels to sense the local microenvironment in which 
they reside, thereby adapting to subtle changes in the chemical 
composition of the extracellular milieu and/or in the mechanical 
forces acting on the vascular wall (Genova et  al., 2020;  
Negri et  al., 2020a). For instance, the endothelial TRPV1 is 
sensitive to an increase in local temperature above 43°C (Negri 
et  al., 2020b) and/or in  local hydrogen peroxide (H2O2; 
DelloStritto et al., 2016), whereas TRPV4 is sensitive to physical 

stimuli, such as shear stress (Schierling et al., 2011) and pulsatile 
stretch (Thodeti et  al., 2009), and to arachidonic acid (AA) 
production (Fiorio Pla et  al., 2008). Recent studies suggested 
that TRP channels may also stimulate ECFCs’ angiogenic activity. 
For instance, TRPV1-mediated uptake of anandamide stimulates 
ECFC migration (Hofmann et  al., 2014), whereas TRPV4-
mediated nitric oxide release promotes the pro-angiogenic 
effects of AA (Zuccolo et  al., 2016). It has, therefore, been 
suggested that targeting TRP channels could represent an 
efficient strategy to boost ECFCs’ regenerative potential (Moccia 
et al., 2015, 2018a). Indeed, TRP channels are physically coupled 
to specific Ca2+-dependent effectors which translate extracellular 
Ca2+ entry through specific pathways into precise biological 
outputs which differentially affect endothelial cell fate 
(Smani et  al., 2018; Genova et  al., 2020; Negri et  al., 2020a).

FIGURE 1 | Endothelial colony forming cells (ECFCs) Ca2+ machinery and pro-angiogenic Ca2+ signals. Growth factors (like VEGF or IGF2) and chemokines (like 
SDF-1) bind to Receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCRs) respectively, thus activating specific PLC isoforms, which in turn leads to 
production of inositol 1,4,5-trisphosphate (InsP3). InsP3 binds to InsP3 receptors (InsP3R) bearing the release of Ca2+ from the endoplasmic reticulum (ER) pool. The 
Ca2+ store depletion, detected by Ca2+ sensor Stromal interaction molecule 1 (STIM1), is the signal for store-operated calcium entry (SOCE) activation. SOCE, the 
major Ca2+ entry pathway in ECFCs, is mediated by the interaction among STIM1 and the proteins Orai1 and Transient receptor potential canonical 1 (TRPC1). 
These plasma membrane pore channels allow Ca2+ entry from the extracellular space that will be subsequently transported from the cytosol within the SR by the 
Sarco-Endoplasmic Reticulum Calcium ATPase (SERCA), while Plasma membrane Calcium ATPase (PMCA) contributes to clear cytosolic Ca2+ levels. Transient 
receptor potential vanilloid (TRPV) channels (TRPV1 and TRPV4) also represent an alternative pathway for extracellular Ca2+ entry in ECFCs. These intracellular Ca2+ 
signals evoke pathways (NF-κB, ERK1/2, PI3K/Akt) that lead to nuclear transcription of pro-angiogenic factors.
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CURRENT LIMITATIONS OF ECFCs FOR 
THERAPEUTIC ANGIOGENESIS

ECFCs hold great promise for TA. Conversely, clinical trials 
clearly showed that cell therapy based upon transplantation of 
myeloid EPCs fail to induce a remarkable improvement in 
capillary density and local blood flow in patients affected by 
CVD (Moccia et  al., 2012; Prasad et  al., 2020). Indeed, an 
array of hurdles hampered the enthusiasm towards ECFC 
introduction in therapy. Firstly, the frequency of circulating 
ECFCs is rather low, ranging from 0.28 to 15 ECFCs/107 
mononuclear cells, which is insufficient to achieve a therapeutically 
relevant outcome (Moccia et al., 2017, 2018a). Secondly, ECFCs’ 
angiogenic activity is severely compromised by CVD (Sung 
et  al., 2013; Mauge et  al., 2014; Su et  al., 2017; Komici et  al., 
2020) and by cardiovascular risk factors (Shelley et  al., 2012; 
Jarajapu et  al., 2014; Mena et  al., 2018), which may ultimately 
lead to ischemia-related disorders. Thirdly, ECFCs’ angiogenic 
activity could be  further reduced once they reach the harsh 
microenvironment of ischemic tissues. For instance, ECFC 
proliferation and tube formation are affected in the presence 
of elevated pro-inflammatory signaling (Mena et  al., 2018), 
oxidative stress (Gremmels et  al., 2017), and hypoxia (He et  al., 
2018; Tasev et  al., 2018). As recently reviewed (Faris et  al., 
2020), the therapeutic use of umbilical cord blood-derived ECFCs, 
which display a greater pro-angiogenic potential as compared 
to circulating ECFCs, is currently not feasible for the high cost 
of their processing and banking and potential immune 
complications. It has, therefore, been proposed that the  
therapeutic outcome of ECFCs-based treatment of CVD could 
be remarkably improved by boosting the specific pro-angiogenic 
signaling pathways of circulating ECFCs (Tasev et  al., 2016; 
Moccia et  al., 2018a,b; Paschalaki and Randi, 2018).

STRATEGIES TO BOOST ANGIOGENESIS 
BASED ON PHYSICAL STIMULI

The evidence that ECFC harvested from CVD patients often 
present a dysfunctional phenotype with low proliferative 
potential and reduced vasculogenic and angiogenic capability 
boosted numerous efforts to improve ECFC therapeutic 
efficacy (Paschalaki and Randi, 2018). The large majority 
of these trials relies on a chemical approach, and include 
epigenetic activation through stimulation of proangiogenic 
signaling pathways by specific drugs, as well as administration 
of bioactive compounds (i.e. fucoidan, genistein, globular 
adiponectin; Tasev et  al., 2016). Very recently, acidic 
preconditioning has been also reported to have positive 
effects on ECFC adhesion, vascular density and inflammation 
reduction (Mena et al., 2018). Chemically controlled methods 
proved to be  successful in many cases. Unfortunately, they 
are mostly considered to be  still insufficient to modulate 
ECFCs’ activity and to promote TA in a fully satisfactory 
way. In more detail, their critical limitations consist in 
limited spatial and temporal resolution of administration, 
as well as lack of reversibility. Thus, the opportunity to 

employ physical stimuli has been emerging in the latest 
years as an alternative, innovative tool to control ECFC 
fate. Several possibilities are being explored in this direction. 
First, the effects of micropatterning and nano-patterning 
and, more generally, of mechanical cues, is under intensive 
investigation. The hypothesis that the direct micropatterning 
of ECFCs induces morphological elongation, cytoskeletal 
alignment, and changes in immunogenic and thrombogenic–
related gene expression, is being tested. It was recently 
reported that ECFCs cultured on top of micropatterned 
polyurethane substrates show sizable alignment to the 
underlying substrate geometry, accompanied by the alignment 
of actin fibers and microtubules. However, this did not 
correspond to significant cellular elongation in the case of 
ECFCs, nor to sizable changes in the expression of the 
transcription factor Krüppel-like Factor 2 (KLF-2) or its 
downstream targets (Hagen and Hinds, 2020). Conversely, 
in another work, cells patterned on 25 μm-wide lanes, created 
by alternating collagen-I and a blocking polymer, clearly 
displayed elongation, and actin alignment. Micropatterning 
increased their packing densities, without affecting the 
apoptotic rate, and KLF-2 gene expression was increased 
in micropatterned relative to non-patterned ECFCs after 
50  h. No significant differences were seen in the other 
genes tested (Hagen and Hinds, 2019). Lower, sub-micrometric 
scale was also addressed; patterning of ECFCs in this case 
lead to a decrease in the ECFC area and perimeter, as well 
as to an increase in their filopodial outgrowth, associated 
with a modulation of the focal adhesions and overexpression 
of the ROCK gene (Cui et  al., 2018). Overall, however, the 
number of studies addressing the use of mechanical stimuli 
on ECFCs is still very limited and does not allow for 
sketching a complete picture of their effects.

A second possible approach, still in the early stages, is 
the use of electromagnetic stimulation. It was reported that 
electrical stimulation, provided by a wearable solar cell, favored 
the secretion of angiogenic growth factors and EPC migration 
(Jeong et al., 2017). Moreover, electrical stimulation promoted 
the formation of capillaries and arterioles in a mouse model 
of ischemia, while attenuating muscle necrosis and fibrosis 
and eventually preventing loss of the injured limb. Interestingly, 
it was also reported that electrical stimulation significantly 
increases, among other effects, the number of EPCs in the 
peripheral blood of rats subjected to fluid percussion injury 
(Zheng et  al., 2017). Magnetic field-guided transplantation of 
silica-coated magnetic iron oxide nanoparticle-labeled EPCs 
was associated with their enhanced aggregation in the infarcted 
border zone (Zhang et  al., 2019). These initial, promising 
results are expected to boost the investigation of electromagnetic 
stimulation in the field of TA, and in more detail the investigation 
of the effects of a localized electromagnetic field on 
ECFC activity.

Thirdly, the use of light stimuli may be  perfectly suited for 
TA. In the last decade, the scientific community has exploited 
the use of light to control the activity of different cell types 
genetically modified to express light-sensitive ion channels, 
thus gaining an unprecedented control in terms of selectivity 
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and reversibility (Knollmann, 2010; Deisseroth, 2011). An 
alternative strategy, that obviates the need of viral gene transfer 
is based on the use of hybrid interfaces between living cells 
and organic semiconductors (OS), used as artificial light 
transducers (Rivnay et  al., 2017; Di Maria et  al., 2018; Fang 
et  al., 2020; Ohayon and Inal, 2020). OS, and thiophene-based 
materials in particular, have emerged as promising tools for 
biological application, thanks to a series of key-enabling 
characteristics: they are soft materials with a high degree of 
mechanical conformability; they are highly biocompatible and 
very well tolerated within in vivo conditions; they support 
both electronic and ionic charge conduction; they are sensitive 
to visible and near-infrared light; they are easily processed 
from solution. Among other materials, it has been demonstrated 
that optical excitation of regioregular Poly (3-hexyl-thiophene), 
P3HT, reliably and efficiently modulates the activity of living 
cells, tissues and systems, including non-excitable (Benfenati 
et  al., 2014; Martino et  al., 2015) and excitable cells (Ghezzi 
et  al., 2011; Feyen et  al., 2016; Lodola et  al., 2019b), retinal 
explants (Ghezzi et al., 2013), as well as invertebrate (Tortiglione 
et  al., 2017) and mammal animal models (Maya-Vetencourt 
et  al., 2017). It has been also reported that illumination of 
thiophene thin films leads to a functional interplay with 
cytochrome C protein, opening the path to selective targeting 
of sub-cellular organelles (Abdel Aziz et  al., 2020).

OPTICAL CONTROL OF ECFC FATE 
MEDIATED BY P3HT

Interestingly, it was demonstrated that optical excitation of P3HT 
leads to sizable modulation of TRPV1 channels, in TRPV1 Stable 
Cell Line-HEK-293 (Lodola et  al., 2017b). Moreover, 
we  unambiguously proved that optical excitation of thiophene-
based materials leads to non-toxic activation of photoelectrochemical 
phenomena (Tullii et  al., 2017; Abdel Aziz et  al., 2020), i.e., 
reactive oxygen species (ROS) generation and subsequent 
modulation of Ca2+ dynamics (Bossio et  al., 2018; Moros et  al., 
2018). Indeed, reduction of the oxygen present in the extracellular 
medium in consequence to the polymer photoexcitation leads 
to the formation of superoxide (O2

−), intermediate ROS and ends 
up with spatially and temporally controlled generation of H2O2, 
which, in turn, can permeate the plasma membrane, thereby 
causing an increase in the cytosolic H2O2 levels, which can activate 
TRPV1 and induced extracellular Ca2+ entry (DelloStritto et  al., 
2016; Lodola et  al., 2019a). A local reduction in extracellular 
pH because of polymer photoexcitation could also gate TRPV1 
(Negri et  al., 2020b), but its role in P3HT-mediated TRPV1 
activation remains to be  investigated.

This experimental evidence prompted us to investigate whether 
a similar optically-triggered approach could have a beneficial 
effect on the modulation of ECFC’s angiogenic activity.  

A B

FIGURE 2 | Conjugated polymers optically drive the fate of Endothelial Colony Forming Cells. (A) Sketch of the polymer device used for cell optical activation. 
ECFCs are cultured on top of P3HT thin films, deposited on glass substrates. Optical excitation is provided by a green LED (λMAX

EM 525 nm). (B) Photo-thermal and 
photo-electrochemical reactions occur at the interface between material and ECFC membrane. The latter is the predominant mechanism triggering TRPV1 
activation. A subsequent increase in [Ca2+]i results in the degradation of IκB, the inhibitory sub-unit of the transcriptional factor NF-κB. As a consequence, the p65 
NF-κB subunit is released from IκB inhibition and translocates into the nucleus leading to a robust up-regulation of angiogenic genes, which are under NF-κB-
dependent transcriptional control.
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To this purpose, circulating ECFCs were seeded on top of 
P3HT and subjected to light stimulation in the green visible 
region (Figure  2A). We  observed that P3HT excitation leads 
to spatiotemporally resolved modulation of the Ca2+ permeable 
TRPV1 channel, as well as increased ECFC proliferation and 
tubulogenesis (Lodola et al., 2019a). The interplay among these 
experimental evidences was clarified by means of a detailed 
pharmacological analysis: TRPV1 inhibition and manipulation 
of intracellular free Ca2+ levels by selective drugs impaired the 
pro-angiogenic effect of P3HT excitation thus highlighting the 
pivotal role of TRPV1-mediated Ca2+ influx in ECFC proliferation 
and tube formation. Moreover, we  experimentally identified 
the phototransduction effect as due to a temporally and spatially 
localized activation of photoelectrochemical reactions at the 
interface between the conjugated polymer surface and the cell 
membrane. Finally, we depicted the molecular scenario observing 
that polymer photoexcitation led to a significant nuclear 
translocation of the Ca2+-sensitive transcription factor NF-kB 
and subsequent up-regulated the mRNA levels of specific 
pro-angiogenic genes (Figure  2B). Overall, these results start 
paving the way towards the use of conjugated polymers as 
reliable and efficient functional materials for precise and reversible 
optically-driven modulation of ECFC physiological activity.

CONCLUSION

In this perspective, we have summarized the most recent outcomes 
in the field of TA. ECFCs are emerging as suitable candidates 
for cell-based therapy, but to achieve clinically relevant results 
it is pivotal to ameliorate current treatment limitations (i.e., 
insufficient circulating ECFCs frequency, impaired angiogenic 
activity in CVD, low engraftment, survival and integration within 
the inhospitable environment of damaged myocardium). The use 
of physical stimuli, a still less beaten path that should ideally 
receive increasing attention in the forthcoming years, may allow 
to overcome these drawbacks. The development of novel biohybrid 
interfaces between ECFC and materials endowed with electrical, 
photoacoustic, piezoelectric, magnetic, and/or optical properties 
may reveal a successful route for selective stimulation of 
pro-angiogenic signaling pathways. The portfolio of different 
possibilities is still fully open and among them, the use of optical 
stimuli represents a minimally invasive strategy, able to trigger 
the desired biophysical pathways with unprecedented selectivity 
and spatial resolution. In particular, the promising results shown 
by ECFC optical stimulation using light-sensitive conjugated 
polymers (Lodola et  al., 2019a) may be  further exploited in 
multiple directions. Optical stimulation could be  harnessed to 
stimulate also capillary endothelial cells nearby the injury site, 
thereby promoting local angiogenesis. Besides circulating ECFCs, 
TRPV1 is largely expressed and drives proliferation and tube 
formation in vascular endothelial cells (Negri et  al., 2020a,b). 
Light active materials can be  easily patterned with micro- and 
sub-micrometer resolution, and processed in three-dimensional 
architectures (Tullii et  al., 2020). Another possible action  
consists in the development of optically active beads,  
eventually functionalized with specific moieties, for the selective 

targeting of ECFCs. Polymer nanoparticles can be easily internalized 
within cells, can target subcellular organelles, show excellent 
photocatalytic properties, and are able to modulate intracellular 
Ca2+ dynamics and display optimal in vivo biocompatibility 
properties (Bossio et  al., 2018; Maya-Vetencourt et  al., 2020). 
Thus, they may serve as sub-micrometer active sites for local 
triggering of ECFC pathways relevant for TA. Moreover, conjugated 
polymers are prone to chemical functionalization with specific 
drugs, opening the possibility to couple optical excitation with 
on-demand pharmacological treatment. Many crucial issues should 
be  carefully addressed in detail before any preclinical test can 
be envisaged: (i) understand the complex interplay among materials, 
physical stimuli and ECFCs biophysical pathways, e.g., the 
investigation of additional ROS-sensitive pro-angiogenic channels, 
such as TRP Melastatin 2 (Mittal et  al., 2015); (ii) critically 
evaluate the dose-response efficiency and reliability of the different 
approaches and stimulation devices; (iii) assess any possible 
biocompatibility issue and adverse side effects; (iv) develop suitable 
tools for implantation and in vivo chronic use (i.e., engineering 
of proper waveguides as well as implementation of microscopic, 
minimally invasive light sources already optimized for optogenetics). 
Experimental studies in this direction, though highly promising, 
are currently at a very embryonal stage, and in our opinion 
would deserve supra-disciplinary efforts from the bioengineering, 
materials science, and physics communities. We believe the effort 
will be  worth taking and will pay off in time.
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