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Deep learning has brought a rapid development in the aspect of molecular representation for various tasks, such as molecular
property prediction.+e prediction of molecular properties is a crucial task in the field of drug discovery for finding specific drugs
with good pharmacological activity and pharmacokinetic properties. SMILES string is always used as a kind of character approach
in deep neural network models, inspired by natural language processing techniques. However, the deep learning models are
hindered by the nonunique nature of the SMILES string. To efficiently learn molecular features along all message paths, in this
paper we encode multiple SMILES for every molecule as an automated data augmentation for the prediction of molecular
properties, which alleviates the overfitting problem caused by the small amount of data in the datasets of molecular property
prediction. As a result, by using the multiple SMILES-based augmentation, we obtained better molecular representation and
showed superior performance in the tasks of predicting molecular properties.

1. Introduction

Traditionally, drug discovery is time-consuming and very
expensive. For understanding the properties of a compound,
many results of the simulations can be obtained via the
experience of a chemist or pharmacist. +e overall process is
significantly complex, long, and always inefficient. Deep
learning has brought a rapid development in the field of drug
discovery and is expected to accelerate the process of drug
discovery [1–8]. Nevertheless, deep learning methods still
face some obstacles, such as small amount of data in mo-
lecular datasets, few label data [3], and label noise [5, 6],
which leads to overfitting and poor model prediction
performance.

Inspired by natural language processing techniques,
many deep learning models use the simplified molecular
input line entry system (SMILES) [9] as a line text repre-
sentation of a molecule. SMILES string is in form of a 1D
sequence of chemical structure that can be encoded using a
one-hot vectorization form. A molecule may have multiple
SMILES. Because SMILES are not unique, a molecule is often

defined by canonical SMILES [10], which ensures that each
molecule corresponds to a unique canonical SMILES. +e
SMILES-based methods [11–16] have shown great potential
and have been widely used in the tasks of molecular property
prediction [12–14] and molecular generation [15, 16]. +e
performances of the deep learning models are hindered by
the nonunique nature of SMILES string, which affects the
accuracy of molecular property prediction and the ability to
explore the potential chemical space of molecules in mo-
lecular generation tasks [11]. Paul et al. proposed a mixed
deep learning network architecture CheMixNet [12] to learn
molecular representation by using several neural networks
design (convolutional neural network (CNN), recurrent
neural network (RNN), and multilayer perceptron (MLP))
for learning molecular SMILES sequences and molecular
ACCess (MACCS) fingerprints, respectively. +en, concat-
enate the two parts of features and make the final prediction.
Lin et al. learn molecular representation by using bidirec-
tional gated recurrent unit (BiGRU) neural network ar-
chitecture based on sequencemanner [13], which is designed
for solving the single- and multitask classification in the field
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of drug discovery. +e methods input single
SMILES sequence for a molecule to neural networks to
learn representation. +erefore, the limited molecular
representation affects the predictive performance of the
neural network models. SMILES2vec [14] was proposed to
train on SMILES for predicting chemical property using
an RNN neural network via Bayesian optimization
methods [17]. SMILES2vec was inspired by language
translation using RNN in the field of natural language
processing (NLP). SMILES2vec did not explicitly encode
the grammar of SMILES specification. +e LSTM-based
[18] or GRU-based [19] recurrent neural network ar-
chitecture is an effective neural network design for
learning features from sequence or text data. +e above
neural network models based on SMILES have limitations
because only the single SMILES of each molecule is
considered, which cannot learn the grammatical features
of SMILES well. Although SMILES enumeration [11] and
all SMILES variational autoencoder [15] have considered
multiple SMILES strings of single molecule to learn latent
molecular representation. However, these methods are
not used in the tasks of molecular property prediction. In
this paper, we proposed a novel molecular representation
method for molecular property prediction using multiple
SMILES-based augmentation to alleviate the problem of a
small amount of data and few labels in the molecular
property prediction datasets， regardless of descriptors
engineering and expert experience.

2. Related Work

A related method to this paper is the SMILES enumeration
[11]. SMILES enumeration explored the fact that multiple
SMILES represent the same molecule as a technique for data
augmentation. +e augmented dataset was bigger than the
original. +e neural network trained with the augmented
dataset showed better performance on the test set than the
original neural model trained with the unaugmented dataset.
Another SMILES enumeration-based method is all SMILES
variational autoencoder [15], which used multiple SMILES
strings of single molecule to learn latent molecular repre-
sentation for molecular generation. All SMILES variational
autoencoder (VAE) encoded multiple SMILES by using
several recurrent neural network layers and decoded them to
molecular SMILES. All SMILES VAE learned a bijective
mapping between molecules and the latent representations
near the high-probability subspace of the prior. +e result
showed that all SMILES VAE obtained the state-of-the-art
performance. However, these methods are not used in the
tasks of molecular property prediction, recommended by
MoleculeNet [8].

3. Methods

+e key idea is that we focus on a multiple-SMILES rep-
resentation learning as data augmentation for various
downstream tasks. As we all know, the deep learning model
must be fed with a large amount of data. +rough learning a
large amount of data, the model can find the law and obtain

the potential knowledge of the data. Despite the presence of a
large number of molecules, labeled datasets are scarce. In the
task of molecular property prediction, the number of
molecules in some datasets of property prediction is also
very small. It leads to the problem of unstable prediction
performance using the deep learning models due to over-
fitting and underfitting.

Inspired by the SMILES enumeration [11] and all
SMILES VAE [15], we proposed a novel method of mo-
lecular property prediction using multiple SMILES-based
augmentation to solve the overfitting and underfitting
problem. +e general framework is illustrated in Figure 1.
Generally, before feeding the data into the deep neural
network, the multiple SMILES-based augmentation must be
completed (Figure 1(a)), which is related to whether the
model can learn the potential knowledge in the datasets. It is
a crucial step for the successful prediction of deep neural
model. +e process of data augmentation includes cleaning
data and removing invalid molecules.+enmultiple SMILES
sequences are generated for each molecule, and further one-
hot vectorization is carried out that can be fed to the neural
network to learn molecular features. +e deep neural net-
work used in this paper is shown in Figure 1(b), which
consists of stacked CNN and RNN.+e “Gate” in Figure 1(b)
is denoted as the gated recurrent unit (GRU) or long-short-
term memory (LSTM). +e final molecular representation
can be used for a variety of downstream tasks, such as
molecular property prediction.

In the following, we will describe technical details. We
first give the mathematical definition of the problem (Sec-
tion 3.1) and then propose a novel molecular representation
method using multiple SMILES-based augmentation for
molecular property prediction (Section 3.2).

3.1. Problem Definition. We define a feed-forward con-
volutional neural network as CNN(kernel,channel,padding),
where kernel is the convolution kernel, channel denotes the
convolution channel, and padding represents the type of
padding. A recurrent neural network can be defined as
RNNgate, where gate denotes the type of gate, such as
LSTM and GRU. Let Xos be the original SMILES strings that
have been cleaned and are valid molecules. Let mapping
function of multiple SMILES be fms. Xms is the multiple
SMILES sequences. We define the vectorization function as
fvect. +e problem is to learn the function fres that maps the
multiple SMILES vectors to molecular representation Xmol.
+e mapping relations are represented as follows:

Xms � fms Xos( 􏼁,

fvect Xms( 􏼁;CNN(kernel,channel,padding),RNNgate􏽨 􏽩

⟶ fres Xmol.

(1)

+e whole process includes three mapping functions,
namely, fms, fvect, and fres. +e final molecular represen-
tation is what we want to get and can be further used in
specific tasks such as molecular property prediction.
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3.2.Multiple SMILES-Based Augmentation. +e SMILES [9]
is a popular specification for extracting the feature of mo-
lecular sequences that uses ASCII strings encoding molec-
ular structures in the form of a line notation. +e SMILES
structure follows a certain grammar. +e alphabets and
numbers in SMILES denote atoms and rings, respectively.
+e special characters such as “�” and “ ≡ ” indicate the
bond types, and the parentheses indicate side chains. +e
mapping function of multiple SMILES fms can be imple-
mented using the method of renumbering atoms in RDKit
[20] after performing randomization of a SMILES sequence
and then regenerating a new SMILES sequence using the
“MolToSmiles” method and setting canonical to be “False”
in RDKit. Figure 2 takes estradiol as an example to randomly
generate 10 multiple SMILES sequences. Estradiol is ran-
domly selected from the ESOL dataset. Figure 3 demon-
strates randomly generated 4 SMILES sequences with

renumbered atoms in the molecular graph for estradiol. It is
shown that atoms with different numbers in the molecule
can generate different SMILES sequences. +erefore, the
SMILES sequence of molecules is not unique, but canonical
SMILES are unique for specific molecule.

+e mapping function fvect can be implemented using
language translation technology in the field of natural
language processing, which is an effective method for
learning from text data. We need to construct a character set
for all SMILES sequences in some datasets, which is similar
to the corpus in natural language processing. +en ran-
domization and vectorization to convert the SMILES array
to a one-hot vector are performed. Figure 4 demonstrates the
one-hot images of vectorization using multiple SMILES for
estradiol. Each image of vectorization in Figure 4 highlights
the one-hot vector for different SMILES sequences. +e
abscissa interval is [0, 9], and the 9 represents the number of
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Figure 1: +e architecture of molecular representation with a multiple SMILES-based augmentation for molecular property prediction. (a)
+e process of data augmentation using multiple SMILES. After cleaning and removing invalid molecules from the original datasets,
multiple SMILES sequences are generated for each molecule, and further one-hot vectorization is carried out. (b) +e stacked CNN and
RNN neural networks. After passing through different layers (including dense layer, dropout layer, pooling layer, and gather layer), finally
the characteristics such as molecular properties are predicted.
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characters contained in the character set. +e interval of the
ordinate is [0, 37], and the 37 denotes the length of the
SMILES string (including predefined extra padding).

+e last mapping function fres for obtaining molecular
representation can be learned using stacked CNN and RNN
mixed architecture. +e RNN consists of an input layer, a

c12ccc(O)cc1CCC1C3C(C)(C(O)CC3)CCC21

C1CC(O)C2(C)CCC3c4ccc(O)cc4CCC3C12

C1(O)CCC2C1(C)CCC1c3ccc(O)cc3CCC12

Oc1cc2c(cc1)C1CCC3(C)C(O)CCC3C1CC2

C12C(c3c(cc(O)cc3)CC1)CCC1(C)C(O)CCC21

c1(O)cc2c(cc1)C1CCC3(C)C(O)CCC3C1CC2

CC12C(CCC1O)C1CCc3cc(O)ccc3C1CC2

c1(O)ccc2c(c1)CCC1C3C(C)(CCC21)C(O)CC3

c1(O)cc2c(cc1)C1C(C3C(C)(C(O)CC3)CC1)CC2

C1C2C(CCc3cc(O)ccc32)C2C(C)(C(O)CC2)C1

Estradiol

Original SMILES:
CC12CCC3C(CCc4cc(O)ccc34)C2CCC1O

Randomization Multiple SMILES

HO
OH

Figure 2: +e generation of multiple SMILES for estradiol. +e original SMILES is “CC12CCC3C(CCc4cc(O)ccc34)C2CCC1O” that is
randomly selected from the ESOL dataset. Here, it is shown the randomly generated 10 SMILES sequences for estradiol molecule.
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Figure 3: +e randomly generated 4 SMILES sequences with renumbered atoms in the molecular graph for estradiol.
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hidden layer, and an output layer. Figure 5 shows the simple
structure of RNN, where X is an input vector, H indicates
the hidden vector of the hidden layer, O represents the
output vector. Wxh, Who, andWh denote the weight matrix
from input layer to hidden layer from hidden layer to output
layer, and hidden layer, respectively.

Figure 6 demonstrates the timeline structure of RNN.
+e output Ot of RNN at time t is related not only to the
input xt at time t but also to the hidden layer value ht−1 at
time t− 1. It is shown that RNN can better deal with se-
quence information, that is, the previous input is related to
the subsequent input. SMILES string is precisely this se-
quence structure, which can extract features with designed
RNN architecture.

+e message passing process for stacked CNN and RNN
mixed architecture can be found in Figure 7, which shows
the message passing in the neural network at time t and time
t− 1.+e result of the output layer at time tmust be based on
the input at time t and the result vector of the hidden layer at
time t− 1. +e process can be summarized in the form of
matrix as follows:

Ot � P Who · Ht( 􏼁,

Ht � Q Wxh · Xt + Wh · Ht−1( 􏼁,
(2)

whereP and Q indicate some kind of neural network. Finally,
the mapping function fres for obtaining molecular represen-
tation can be represented using CNN and RNN as follows:

0
8
6
4
2
0

5 10 15 20 25 30 35

(a)

0
8
6
4
2
0

5 10 15 20 25 30 35

(b)

0
8
6
4
2
0

5 10 15 20 25 30 35

(c)

0
8
6
4
2
0

5 10 15 20 25 30 35

(d)

0
8
6
4
2
0

5 10 15 20 25 30 35

(e)

0
8
6
4
2
0

5 10 15 20 25 30 35

(f)

Figure 4: +e images of one-hot vectorization using multiple SMILES for Estradiol molecule. It shows the vectorization of randomly
generated 6 SMILES strings, using random order of the character set for Estradiol, which consists of 9 characters: “(”, “3”, “O”, “c”, “1”, “)”,
“2”, “4”, “C”. +e length of padding is 37, that includes predefined extra padding. (a) c12cc(O)ccc1C1C(C3CCC(O)C3(C)CC1)CC2. (b)
C1(O)C2(C)C(CC1)C1C(c3c(cc(O)cc3)CC1)CC2. (c) C12(C)C(CCC1O)C1C(c3ccc(O)cc3CC1)CC2. (d) Oc1ccc2c(c1)CCC1C3CCC(O)
C3(C)CCC12. (e) OC1C2(C)CCC3c4ccc(O)cc4CCC3C2CC1. (f ) C1C2c3ccc(O)cc3CCC2C2CCC(O)C2(C)C1.
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Figure 5: +e structure of the recurrent neural network [21].
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Figure 6: +e timeline structure of the recurrent neural network
[21].
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Xcnn � CNN(kernel,channel,padding) fvect Xms( 􏼁( 􏼁,

Ot � RNNgate Who · Q Wxh · X
(t)
cnn + Wh · H

(t− 1)
􏼐 􏼑􏼐 􏼑􏼐 􏼑,

Xmol � f(Dense,Pooling,Gather) Ot( 􏼁,

(3)

where f(Dense,Pooling,Gather) denotes the mapping of full-
connection layer, pooling layer, and gather layer.

4. Experiments

Extensive experiments have been implemented to evaluate
the performance of molecular representation using the
multiple SMILES-based augmentation for the tasks of
molecular property prediction.We will describe the datasets,
baselines, and experimental results.

4.1. Dataset Description. We use five molecular property
datasets recommended by MoleculeNet [8] for the experi-
ments. Table 1 shows the information of five datasets.

+e details of used datasets are shown as follows:

(i) ESOL: ESOL [22] contains the logarithmic aqueous
solubility (mol/L) of 1,127 compounds, which is
used as a regression task to predict water solubility
in deep neural networks

(ii) Lipophilicity: lipophilicity [23] includes the octanol/
water distribution coefficient (logD at pH 7.4) about
4,200 compounds, which is important in membrane
permeability and solubility

(iii) FreeSolv: FreeSolv [24] provides the hydration free
energy (kcal/mol) of 642 compounds in water

(iv) HIV: HIV [25] is used as a classification task in deep
neural networks to predict the activity of inhibiting
HIV replication, which contains 41,127 compounds

(v) BACE: BACE [26] is used as a classification task,
which contains 1,513 molecules and provides

quantitative and qualitative binding results for a set
of inhibitors

+e datasets must be cleaned before being input into the
neural network. +e cleaning and preprocessing process are
shown in Figure 8. +e original data are cleaned via five
steps, namely, excluding invalid molecules, filtering organic
molecules, removing salt and stereochemistry information,
keeping the largest fragment, and converting to canonical
SMILES.+en, we get the cleanedmolecules that will be used
to generate multiple SMILES sequences and vectorization.
Finally, the feature of vectorization will be fed to the neural
network to be trained.

4.2. Baselines. We compared our method with the following
models:

(1) CheMixNet: CheMixNet [12] was proposed for
predicting chemical properties using molecular
SMILES sequences and fingerprints, which is a
mixed deep neural network architecture. In this
paper, we focus on the molecular SMILES sequence.
+erefore, we do not consider computable char-
acteristics, such as molecular fingerprints or
physical descriptors. For a fair comparison with our
method, we adopt the neural architecture of CNN
and RNN in CheMixNet [12], which uses the
SMILES as the sole input.

(2) Smi2Vec-BiGRU: Smi2Vec +BiGRU [13] was
proposed for learning atoms and the single- and
multitask classification tasks, which learns the low-
dimensional representation for a molecule by
transforming SMILES to vector based on bidirec-
tional gated recurrent unit (GRU) [18]
architectures.

(3) XGBoost: XGBoost [27] is an ensemble method to
implement a gradient boosting decision tree
(GBDT) for improving the speed and efficiency of
the model.
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Figure 7: +e message passing process for stacked CNN and RNN.
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(4) Multitask: Multitask network [28] was proposed for
sharing the processed input among all learning
tasks in a dataset and then used separate linear
classifiers or regressors for each different task.

(5) MPNN: Message Passing Neural Network (MPNN)
is a generalized graph-based architecture [29], in-
cluding the message passing phase and readout
phase. +e former phase is to learn the character-
istics of the graph, and the latter phase is to obtain
the full graph representation for predicting various
tasks.

(6) GC: GC [30] is a standard feature extraction
method for molecules based on circular finger-
prints, which is a kind of graph convolutional
model and operates directly on graphs with arbi-
trary size and shape.

(7) Weave: Weave [31] implemented graph convolu-
tional operation on molecules using a simple
encoding of the molecular graph including atoms,
bonds, and distances.

(8) Pretraining GNN: pretraining GNN [32] proposed
a new strategy and self-supervised methods for
pretraining graph neural networks. In order to
obtain useful local and global features, the strategy
of pretraining GNN is to pretrain expressive graph
neural networks by using individual nodes and
entire graphs. Pretraining GNN achieved state-of-

the-art performance on the tasks of molecular
property prediction.

(9) Drug3D-Net: Drug3D-Net [2] is a grid-based 3D
model for molecular representation using spatial-
temporal gated attention, which uses the geometric
information of molecules to extract the molecular
characteristics.

(10) Multiple SMILES (RNN (one layer), RNN (two
layers), CNN_RNN): this is the method presented
in this article. +e neural network architecture
includes one layer RNN, two layers RNN, and the
mixed networks of CNN and RNN.

4.3. Experimental Setup. In this experiment, we use root
mean squared error (RMSE) and mean absolute error
(MAE) to evaluate the performance of regression tasks.
Similarly, we use the loss function of “binary_crossentropy”
for classification datasets. We use the average area under the
receiver operating characteristics curve (AUROC) and the
area under the precision-recall curve (AUPRC) predicted
from the test set to evaluate the performance of themodel for
classification tasks. Our experiment was trained based on the
Keras framework and TensorFlow [33]. We used the Adam
algorithm [34] for optimizing the parameters of the model.
We set a total of 200 epochs, 64 batch sizes, and 5-fold cross-
validation with checkpoint and early stopping. We set the
learning rate as 0.001 with learning rate decay. We perform

Table 1: +e description of public molecular datasets, including data type, task type, and the number of compounds before and after
augmentation.

Dataset Data type Task type Compound Compound after augmentation
ESOL SMILES Regression 1127 6762
Lipophilicity SMILES Regression 4200 25200
FreeSolv SMILES Regression 642 3852
HIV SMILES Classification 41127 69987
BACE SMILES Classification 1513 9078

Filter organic molecules

Remove salt and
stereochemistry information

Keep largest fragment

Convert to canonical
SMILES

�e cleaned
molecular dataset

Clean dataset
and

Preprocess

Exclude invalid moleculels

Multitple SMILES
augmentation
Vectorizatiton

Figure 8: +e process of data cleaning and preprocessing.
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Figure 9: Scatter diagram of FreeSolv dataset for four training folds.+e horizontal axis is the ground truth value, and the vertical axis is the
predicted value by our model.+e solid lines indicate the trend lines, and the dashed lines indicate the identity lines.+e blue and red points
represent the predicted values in the validation set and test set, respectively.

Table 2: +e RMSE and MAE values of various approaches in ESOL, lipophilicity, and FreeSolv datasets. +e predictive values of the
approaches are partly derived from the related references [2, 8].

Model ESOL Lipophilicity FreeSolv
RMSE MAE RMSE MAE RMSE MAE

CheMixNet CNN_RNN 1.0419 0.8010 1.0513 0.8282 1.3553 1.0156

Conventional methods XGBoost 0.9900 — 0.7990 — 1.7400 —
Multitask 1.1200 — 0.8590 — 1.8700 —

Graph-based methods MPNN 0.5800 — 0.7190 — 1.1500 —
Weave 0.6100 — 0.7150 — 1.2200 —

3D-based models Drug3D-Net 0.9683 0.7841 0.9930 0.8404 1.4709 1.1598

Our method (multiple SMILES)
RNN (one layer) 0.6585 0.5105 0.7929 0.6211 1.6051 1.2313
RNN (two layers) 0.6394 0.4940 0.7960 0.6217 1.3575 1.0468

CNN_RNN 0.5916 0.4448 0.7054 0.5481 1.0033 0.7859
+e best results are highlighted in bold.
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randomization of a SMILES string with the random number
5 for ESOL, lipophilicity, FreeSolv, and BACE datasets. As
for the HIV dataset, we set random number 20 to implement
multiple SMILES randomization only for positive samples so
that we obtain a total of 30,303 positive examples compared
with the original 39,684 negative samples.

4.4. Performance Comparison

4.4.1. Performance in Regressions. Solubility, lipophilicity,
and free energy are very important physical chemistry
properties, which are essential properties to understand
molecular interaction with solvents. Table 2 demonstrates
the predictive performances for water solubility (ESOL),
octanol/water distribution coefficient (lipophilicity), and
hydration free energy (FreeSolv). Our multiple SMILES-
based model using mixed CNN and RNN architecture
obtains the best performance.+e smaller the value of RMSE
and MAE, the better for ESOL, lipophilicity, and FreeSolv.
As shown in Table 2, we obtain 0.4448 MAE and 0.5916

RMSE values for ESOL in the test set. +e RMSE value of
0.5916 is slightly lower than the MPNN with the 0.5800
RMSE. However, as for lipophilicity and FreeSolv datasets,
our method obtains superior performance on both RMSE
and MAE values, which shows that the multiple SMILES-
based data augmentation can alleviate the overfitting
problem to a certain extent on a small amount of data, such
as ESOL and FreeSolv datasets.

Figure 9 shows the scatter plots in the FreeSolv dataset
for four training-folds, which indicates that the points on the
test set closely surround the identity line, which shows that
the prediction results in the test set are closer to the target
value, although the trend lines deviate slightly from the
identity lines in each training folds. In addition, Figure 10
shows the loss curves during our model training in the
training set and validation set for the FreeSolv dataset. At the
beginning of the training of the model, the loss on the
training set and the validation set has a relatively large gap
(training loss curve and validated loss curve are far away),
indicating that the model is not stable. When the number of
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Figure 10: +e loss curves during our model training for FreeSolv in the training set and validation set.
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training epochs increases, the loss curves on the training set
and the validation set tends to be consistent and fit each
other, indicating that the model tends to be stable and is
slowly converging.

4.4.2. Performance in Classifications. Table 3 demonstrates
the predictive performances for HIV activity (HIV) and
inhibitors of human β-secretase 1 (BACE). +e larger the
AUROC and AUPRC score, the better for HIV and BACE.
Our method based on mixed CNN and RNN architecture
achieved the best performance on AUROC and AUPRC
scores in the test set for HIV and BACE datasets. In HIV, we
obtain 0.9767 AUROC and 0.9798 AUPRC scores compared
with the 0.9621AUROC and 0.9617 AUPRC of the 3D-based
method Drug3D-Net, although the Drug3D-Net considered
the information of molecular geometry. In addition, the
performance of our method exceeds that of the pretrained
model pretraining GNN with a large margin.

In summary, our method shows superior performance in
both regression datasets and classification datasets, which
implies the good molecular representation ability of our
proposed method.

4.5. Ablation Study. For different neural architectures of our
multiple SMILES methods (shown in Tables 2 and 3), the
mixed CNN_RNN architecture obtains the best performance
among RNN (one layer), RNN (two layers), and CNN_RNN,
which indicates that the CNN convolution in our model is
essential and can improve the predictive performance for
downstream tasks. Meanwhile, the performance of RNN (two
layers) architecture is slightly better than that of RNN (one
layer) architecture, which shows that the deeper neural
networks can have better learning ability for extracting fea-
tures. +erefore, it can show better performance in specific
tasks, such as molecular property prediction.

5. Conclusion

In this study, wemake full use of the nonunique nature of the
SMILES string to perform randomization of a SMILES string

multiple times for efficiently learning molecular features
along all message paths. By encoding multiple SMILES for
every molecule as an automated data augmentation, we
obtain better molecular representation and the proposed
method shows superior performance in the tasks of pre-
dicting molecular properties, which alleviates the overfitting
problem caused by the small amount of data in the datasets
of molecular property prediction.
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