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The recent recognition that FcyRIII (CD16) expressed on polymorphonuclear leu-
kocytes (FcyRIIIPMN)t is a glycosyl-phosphatidylinositol (GPI) anchored molecule
(1-3) has heightened interest in the functional roles of human Fcy receptors (FcyR) .
The potential for rapid lateral mobility within the membrane (4, 5) and the lack
ofan obvious mechanism to couple with guanine nucleotide-binding regulatory pro-
teins or cytoskeletal structures have fostered the concept of FcyRIIIpMN as a binding
molecule serving to present ligand to FcyRII for subsequent transmembrane sig-
naling (1, 6, 7) . In contrast, the other human FcyRs (FcyRI, FcyRII, and the iso-
form of FcyRIII on NK cells) are transmembrane proteins (8-14), each with the
capacity for signal transduction independent of other types of FcyRs (15-21) .
Two lines of evidence, however, suggest that FcyRIIIpMN is also a functionally ac-

tive molecule independent ofFcyRII. First, PMN can lyse chicken E opsonized with
anti-FcyRIII heteroantibodies (22-24) . Second, while phagocytosis of IgG-opsonized
E (EA) by PMN may involve both FcyRII and FcyRIIIpMN, internalization of Con
A-opsonized E requires the obligatory participation of FcyRIIIpMN and is indepen-
dent of Con A-mediated engagement of FcyRII (25, 26) . To explore the capacity
of FcyRIIIpMN to generate intracellular signaling events that would indicate a func-
tional role extending beyond simple ligand binding, we have analyzed cytosolic cal-
cium and membrane potential changes elicited by FcyR-specific mAbs (27, 28) . Our
data indicate that multivalent, but not univalent, ligation of FcyRIIIpMN causes a
rapid increase in cytosolic calcium that is derived from intracellular stores . This signal
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SIGNAL TRANSDUCTION BY FcyRIIIPMN

is insensitive to pertussis and cholera toxins. Ligation of Fc-yRII with mAb does
not elicit a similar change in intracellular calcium . This inability is not merely a
reflection of the lower receptor density of FcyR1I, since FcYRIIIPMN reduced to a
similar density level by PI-PLC, still signals effectively. These data indicate that
FctiRIIIPMN, a GPI-anchored molecule, actively mediates transmembrane signaling
events distinct from FcyRIl . Ligand-dependent collaboration of FctiRIIIPMN with
FcyRII is not required .

Materials and Methods
Preparation ofPMN.

	

Peripheral blood, obtained from healthy volunteers, was drawn into
heparinized plastic syringes . PMN were separated by two-step discontinuous density gra-
dient centrifugation on Ficoll-Hypaque (density = 1.078 and 1.119 g/ml) (25, 26) . The PMN
layer was harvested and washed once in PBS at 25 °C. Contaminating erythrocytes were lysed
by a 10-s exposure to redistilled water (Ultrascientific, Inc ., Chicago, IL) followed by 0.18%
saline . Cells were resuspended in PBS at 10' cells/ml for loading with pertinent fluorescent
probes. By microscopic examination >95% ofthe cells were PMN with >99% viability. Sep-
arations were completed within 90 min and all experimental procedures were completed within
4-5 h of phlebotomy.

Reagents and Bu,ffers.

	

All buffers and solutions were made with redistilled water. PBS (125
mM NaCl, 10 MM P04) was made with 5 mM KCl and 5 mM glucose . PBS with calcium
and magnesium included 1.65 MM MgC12 and 1.0 mM CaC12. Sheath fluid for flow cytom-
etry was redistilled water with 154 mM NaCl, 1 .5 mM MgC12, and 1.0 mM CaC12. Reagents
were used at ambient temperature (25°C) ; 5 min before analysis, each sample was warmed
to and maintained at 37°C (29, 30) .
The chemotactic peptide, FMLP (Sigma Chemical Co., St . Louis, MO), was dissolved

in ACS grade DMSO (Fisher Scientific, Pittsburgh, PA) for a stock concentration of 10-3
M and stored in sterile, pyrogen-free containers at -20°C . Before each experiment an ali-
quot of the 10 -3 M stock was thawed and diluted with PBS to a working concentration of
10 -5 M. For experiments with Vibrio cholerae toxin (CT) and Bordetella pertussis toxin (PT)
(Sigma Chemical Co.), cells were preincubated at 37°C for 120 min with either CT (0.5 to
2.5,ug/ml with 20 mM dithiothreitol) or PT (125 ng/ml to 500 ng/ml) (19, 31, 32) . Indo-1
and DiOC5 (Molecular Probes, Junction City, OR), fluorochromes for the measurement of
intracellular calcium and membrane potential, respectively, were used as described below .
BAPTA-acetoxymethyl ester (Molecular Probes), a nonfluorogenic calcium chelator, was pre-
pared as a 2 mM stock solution in DMSO. For chelation of intracellular calcium, cells were
preincubated with 10 AM BAPTA at 37°C for 30 min .

Aggregated IgG, prepared by heat aggregation ofchromatographically purified 7S human
IgG from Cohn fraction II (Miles Biochemicals, Elkhart, IN), was sized by column chroma-
tography with AcA22 (LKB, Rockville, MD) and stored in aliquots at -70°C . Goat F(aV)2
anti-mouse IgG (GAM), free of intact IgG by silver stain analysis of SDS-PAGE analytical
gels, was obtained from Tago Immunochemicals (Burlingame, CA) . F(aV)2 GAM directly
conjugated to FITC was used to confirm specific binding of this reagent to mouse mAb on
the cell surface.

Monoclonal Antibodies.

	

3G8, a murine IgGl mAb recognizing human FcYRIII (CD16) (33),
was prepared in bulk culture and purified by ion-exchange and size-exclusion chromatog-
raphy (Damon Biotechnology, Needham Heights, MA) . Fab fragments were prepared by
digestion with papain-Sepharose (Pierce Biochemical Co., Rockford, IL) and were purified
by passage over protein A-Sepharose (Pharmacia Fine Chemicals, Piscataway, NJ) at pH
8.3 and by molecular sieve chromatography with a column of TSK 3000 (LKB) . Proteins
were >98% pure . Fab fragment preparations contained no detectable intact IgG or heavy
chains, as judged by silver stain of SDS-PAGE analytical gels .
mAb IV.3, a murine IgG2b recognizing human FcyRII (CD32) (34), was obtained as

purified IgG and Fab fragments from Medarex, Inc ., West Lebanon, NH. Fab fragments
contained no detectable intact Ig or heavy chains as judged by silver stain of SDS-PAGE
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gels. mAb preparations were sterile and contained no detectable endotoxin as determined
by the limulus amoebocyte assay (Associates of Cape Cod, Woods Hole, MA). In selected
experiments, mAb CIKM5, a murine IgGI also recognizing CD32 (35), was used as an in-
tact Ig .

Indo-I Fluorescence.

	

Indo-1, a calcium binding fluorescent dye whose spectral properties
change with binding of free Cat' (36), was used to measure changes in intracellular calcium
concentrations ([Ca2 '] ;) . PMN were incubated for 15 minutes at 37°C with 5 AM indo-1
acetoxymethyl ester. After loading, the cells were washed once with PBS and maintained at
room temperature in the dark . Five minutes prior to analysis the cells were warmed to 37'C
in PBS with Ca2 ' and Mgt' and adjusted to a concentration of 1 x 10 6 cells/ml (29, 30) .
For selected experiments designed to test the influence of indo-1 loading conditions on assay
sensitivity, PMN were incubated with varying concentrations of indo-1 acetoxymethyl ester
ranging from 0.1 AM to 10 AM. Loading conditions were otherwise identical.
DiOC5 Fluorescence .

	

The lipophilic, cationic cyanine dye DiOC5 was used to measure
changes in membrane potential (29, 37, 38) . Just prior to stimulation, cells were suspended
at a final concentration of 106 cells/ml in PBS containing Ca2 ' and Mgt' and incubated for
5 min at 37°C with 20 nM DiOC5 . Cells were then analyzed directly on the flow cytometry.

Measurement of[Ca1']; and Membrane Potential.

	

Four and five color flow cytometry was per-
formed with a dual laser CytofluorografIIS with a 2151 computer (Becton Dickinson Immu-
nocytometry Systems, Westwood, MA). Constant stirring was maintained throughout each
experiment . Excitation at 488 nm for measurement of forward and right angle light scat-
tering and for measurement of DiOC5 fluorescence was provided by a Lexel 75 argon ion
laser. Ultraviolet excitation at 350-360 nm for measurement of indo-1 fluorescence was pro-
vided by a Coherent 90K krypton ion laser. Peak indo-1 fluorescence emissions at 405 and
490 nm were monitored after passing through violet (395 ± 20) and blue (500 t 20) band
pass filters, respectively, as previously described (39) . Physical separation ofthe two different
incident laser beams was used to distinguish the 488-nm emission line ofthe argon laser from
the blue emission of indo-1 . DiOC5 fluorescence emission was collected at >560 nm for five
color analysis . Initial studies with DiOC5 alone showed a linear relationship between fluores-
cence simultaneously collected at 510-530 nm and at >560 nm . All signals were analyzed
in linear fluorescence units . The indo-1 ratio of violet to blue fluorescence was calculated
in real time for each cell, multiplied by a constant to allow appropriate scaling, and displayed
as a function of time . At the beginning of each experiment, the blue and violet PMTS were
adjusted to provide a baseline display ratio of 10 on a scale of 1-100 . The maximum ratio
was determined after addition of 10 Ag/ml ionomycin (Calbiochem-Behring Corp., LaJolla, CA).

For calibration of the indo-1 signal as [Ca'`]; in nM, the four calibration parameters
(Rmin, Rmax, Sb2, and Sf2) (36) were determined in a series of experiments on an SLM
8000 spectrofluorometer with excitation measured at 355 nm and emission measured simul-
taneously at 405 nm and 490 nm (SLM-Aminco, Urbana, IL) . Since early time points (<10 s)
were missed on the Cytofluorograf due to sample addition and mixing, the injection port
on the SLM was used to facilitate analysis of these early points . All experiments were per-
formed with constant stirring, and the mixing time was typically 2-3 s . The SLM 8000 was
also used in parallel with the Cytofluorograf to analyze the influence of varying indo-I-AM
loading concentrations on sensitivity for detection ofchanges in [Ca2 '] ; . Sensitivity was com-
parable for PMN loaded with indo-1 ranging from 1 to 10 AM and stimulated with both
threshold and maximal stimuli . Loading with concentrations of0 .1 and 0.5 AM necessitated
increased gains on the PMTs, but the sensitivity for detection of changes in [Ca2 '] ; remained
comparable for both the Cytofluorograf and the SLM 8000 measurements .

Immuno,fluorescent Flow Cytometry.

	

Cells (2.5-5 x 105), in PBS/1% FCS, were incubated
with saturating doses of anti-FcyRIII mAb (3G8), anti-Fc'yRII mAb (IV.3), or the murine
myeloma proteins MOPC21 (mIgGI) and UPC 10 (mIgG2a) as controls, for 30 min at VC.
After washing, cells were stained with saturating amounts of FITC-conjugated rabbit
anti-mouse IgG (Fab')2 (Organon Technica, Malvern, PA) fragments . Additional controls
included autofluorescence and staining ofthe cells with the FITC-conjugated rabbit anti-mouse
IgG (Fab')2 fragment alone . Cell-associated immunofluorescence was assayed by quantita-
tive flow cytometry using an internal standard for each study (13, 26) .
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PI-PLC Digestion .

	

For treatment of PMN with phosphatidylinositol-specific phospholi-
pase C (PI-PLC), a functional concentration of enzyme from Bacillus thuringiensis sufficient
to cleave 0.39 pmol of PI/min/ml was added to the cells in PBS and incubated for 1 h at
37°C (13) .

DataAnalysis.

	

Flow cytometry data were collected in real time and expressed as a fluores-
cence ratio for indo-1 and as absolute fluorescence for DiOC5 as illustrated in Fig . 1 . These
data were then computer-analyzed to determine time-dependent mean fluorescence ratio (R,
indo-1) and mean fluorescence (F, DiOC5) . Changes in these values, relative to the prestim-
ulus baseline (R, and F.), were calculated for indo-1 (R/R,) and for DiOC5 (F/F� ) (Figs. 2-6).
In addition, the percentage of cells responding to a stimulus was determined by selecting
an arbitrary R value to give 5% responding cells in the baseline period (indo-1) . The per-
centage ofcells exceeding that value after stimulation was then calculated in a time-dependent
fashion . For DiOC5 fluorescence, the threshold value varied because of the broad distribu-

FIGURE 1 .

	

Stimulation of PMN with FMLP and mAb 3G8 . PMN were loaded with the appro-
priate fluorochromes and stimulated with 10-7 M FMLP or saturating levels of mAb 3G8 . (A)
The real-time, simultaneous measurement of time-dependent changes in (Ca2 *] ; with indo-1 (left)
and in membrane potential with DiOC5 (right) elicited by 10' M FMLP. The arrows indicate
the addition of FMLP. (B) The same parameters after stimulation by 10 t~g/ml of mAb 3G8 .
The arrows indicate the addition of mAb 3G8 . Computer analysis of these three-dimensional
cytograms allowed the quantitation of mean fluorescence and of percentage of cells responding
(cf., Figs. 2-6).
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tion of fluorescence in the baseline state . Absolute values of [Ca21], were determined from
calibration experiments performed on the SLM 8000 spectrofluorometer as outlined above.
Mean values are represented with the standard deviation as an index of dispersion .

Results
Stimulation ofPMNby Chemotactic Peptide Receptors.

	

Stimulation of freshly explanted
human PMN by chemotactic peptides elicits a rapid increase in intracellular cal-
cium levels and a change in membrane potential (29, 30). To provide a comparison
for FcyRIIIPMN-induced responses, we analyzed the PMN response to FMLP by
four- and five-color flow cytometry. Changes in membrane potential were monitored
with DiOC5, and simultaneous changes in intracellular calcium were measured by
the ratio offluorescence emission of indo-1 (Fig. 1 A). Membrane potential changes
showed a dose-response with hyperpolarization induced by FMLP at 10-i1 to 10-9
M and increasing depolarization induced by FMLP at 10-s to 10-6 M. The mean
F/Fo for DiOC5 at maximal membrane depolarization with FMLP 10-' M was 0.32
t 0.07 (Fig . 1 A; n = 12). The magnitude of the increase in [Ca2+ ]i also showed
adose-response relationship with the maximal change achieved by FMLP 10'M.
The peak intracellular Cat+ response (R/Ro) was 4.1 t 0.9 (n = 6) and was evi-
dent within 10 s after stimulation. Themaximal membrane depolarization was not
reached until 60-120 s after stimulation with 10-7 M FMLP The initial [Ca2+],

change was unaffected by chelation of extracellular Cat' with 10 mM EGTA.
Transmembrane Signaling Initiated by FcyRIIIpyN. To explore the capacity of

FcyRIIIPMN, a GPI-anchored molecule, to elicit similar early cell activation signals,
we used the anti-FcyRIII (CD16) mAb 3G8 that binds the receptor in or near the
ligand binding site . At 5-10 ug/ml, a rapid increase [Ca2+ ]; was induced by mAb
3G8 followed by modest membrane depolarization (Fig. 1 B) . Both the cytosolic
Ca2+ response and the membrane depolarization showed a dose-response behavior
over two logs of mAb concentration (0.1-10 gg/ml; Fig. 2 A). Discrete, responding
subpopulations were not identified (Figs. 1 B and 2 A [lower frames]), and smaller
mean changes in the indo-1 signal represented smaller changes in [Ca2+] ; on an in-
dividual cell basis. Peak response was achieved at a final concentration of5-10 /Ag/ml .
Concentrations of 50 hg/ml gave responses identical to 5-10 ug/ml. As with FMLP,
some variability among donors in the [Ca2+ ] ; response elicited by 3G8 was noted
(Figs. 2, A and B) . On average, the peak R/Ro was 3 .6 t 1.1 (n = 25). In parallel
studies on the spectrofluorometer this response represented a change in calculated
[Ca2+]; from a baseline level of 112 t 16 nM (n = 5) to 257 nM (range : 167-417
nM; n = 5).

Because the membrane potential changes elicited by mAb 3G8 were modest, we
focused on [Ca2+ ] ; to define the properties of the cellular response induced by
Fc-yRIIIPMN . The change in [Ca2+]i was abolished by preloading cells with the
nonfluorogenic Cat+ chelator, BAPTA (data not shown), but was unaffected by che-
lation of extracellular Cat+ with 10 mM EGTA (Fig. 2 B) . These observations in-
dicate that the indo-1 fluorescence reflected a true [Ca2+ ]; signal and that the change
in [Ca2+ ] ; was derived from intracellular stores .

Multivalent Crosslinking of FcyRIIIpuN Is Required.

	

To examine whether univalent
ligation of FcyRIIIPMN by 3G8 Fab fragments, like univalent ligation of the che-
motactic peptide receptor by FMLP, could elicit a [Ca2+ ]i response, we added 3G8



1244

	

SIGNAL TRANSDUCTION BY FcyRIIIPMN

w
U

C
O

" O

Oa
m
0
m
ó
á
E

T

0 a N o 0 0 0 ó00 10 4 N

ó
LLo

v_

6uipuodsaa slla j %

m e á

6ulpuodsaa spa3 %

ao

	

a N o 00 0 0 0

6uipuodsad spaj %

0
0

0
0

N

0
0

-V0o

	

%~ -0
~r

3x u
.M

.
03 En

y O q

w C y

O ~ y
N ~ idL
G
0. C
"o -C
MC~

O
C E
NYy u ,-,M
M (t<
-u u

ç 4 m u
0 4 m u

q O a
O

e
9

-,
? E x

- ' �á,r-w
1E~`° ó-oo 124 y
Û M~

	

wv
C.E < .2 ß.

,; x ç
0
óso

E
.
3-0 .

uQ

~ .c "c=wa1 %~ V

	

O

tö 4 .C-. ,r. U
,owF uVN i1i1

N
y0a+

~ O d ~ O0. <L
w~ó.'m



5

4-

3i

R/R.
2

1

0
0

5r

3}

R/Ra 2

A

3G8 Fab

3G8 / -'-,

	

GaM

KIMBERLY ET AL .

	

1245

Fab to indo-I-loaded cells . Fab concentrations from 2.5 to 10 ug/ml showed no stim-
ulation despite final concentrations of anti-receptor Fab exceeding the concentra-
tion necessary for saturation binding (Fig . 3A ; n = 1 [2 .5 ug/ml], 4 [5 ug/ml], and
3 [10 ug/ml]). Addition of F(ab')2 GAM, 50 ug/ml, to cells previously opsonized with
10 ug/ml 3G8 Fab, however, elicited an increase in [Ca2,], comparable to intact 3G8
(Fig . 3 B). These data indicate that univalent ligation of FcyRIIIPMN is insufficient
but that crosslinking of FcyRIIIPMN alone is able to elicit the calcium response.

Interestingly, the crosslinking event did not make cells refractory to further stimu-
lation by the same receptors. In two different experimental designs, FcyRIIIPMN,
crosslinked initially with 3G8 IgG ranging in concentration from 5 to 50 ug/ml and
subsequently with F(ab')2 GAM, elicited a change in [Ca21j, that was not sig-
nificantly different from the initial 3G8 IgG response. First, after addition of mAb
3G8 to PMN in suspension, repetitive signaling could be demonstrated with the

r
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FIGURE 3.

	

Crosslinking of FcyRIIIPMN. (A) Univalent ligation of FcyRIIIPMN with 3G8 Fab,
10 ug/ml, did not elicit a [Ca2`] ; flux (n = 3, [10 ug/ml]). (B) When the 3G8 Fab were cross-
linked by F(ab')2 GAM, a calcium flux occurred. Cells were opsonized with 3G8 Fab (10 /4g/ml),
washed once, and then analyzed with the addition of F(ab')2 GAM. F(ab')2 GAM, 1-10 jug/ml,
gave no response (n = 3), while F(ab')2 GAM, 25 ug/ml, was variable (a = 3) . F(ab')2 GAM,
50 pg/ml, gave a consistent response comparable to that for 3G8 IgG (n - 3). (C) 3G8 IgG(5 /Ag/ml)
was added to cells, the response analyzed and then F(ab')2 GAM, 5 ug/ml, was added as soon
as R/Ra approached baseline (n = 6) . (D) The [Ca2*] ; response to crosslinking of 3G8 IgG (10
ug/ml) with GAM(25 Ag/ml) afterone wash of 3G8-opsonized cells (n = 4) . Low concentrations
of GAM (1-5 1cg/ml) gave smaller responses, as did very high concentrations (100 ug/ml) . For
these studies, binding of F(ab')2 GAM was confirmed in selected experiments by using a FITC-
conjugated preparation and monitoring cell-associated immunofluorescence in five-parameter
analysis .

5
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further addition of F(ab')2 GAM (Fig . 3 C) . Similarly, PMN, preincubated with
mAb 3G8 and washed once before addition of F(ab')2 GAM, responded to receptor
crosslinking with a change in [Ca2+ ]i (Fig . 3 D) . The intensity of the calcium re-
sponse varied with the final concentration of GAM. For cells preopsonized with mAb
3G8, F(ab')2 GAM 10-25 wg/ml was effective while cells preopsonized with 3G8 Fab
required crosslinking with F(ab')2 GAM 25-50 ltg/ml .

The FcRII-induced Cal' Ji Signal Is Pertussis Toxin Insensitive.

	

In PMN, FMLP
induces the breakdown of PIP2 with the generation of diacylglycerol and IP by cou-
pling with PT sensitive G proteins (40, 41). IP are recognized as mediators of the
mobilization of calcium from intracellular stores (reviewed in reference 42) . Accord-
ingly, we looked at the toxin sensitivity of the [Ca2+]i signal elicited by both FMLP
and Fc7RIIIPMN . Preincubation of PMN with 125 ng/ml and 500 ng/ml PT
significantly reduced the FMLP-induced [Ca2+ ]i response, while the FcyRIIIPMN-
induced signal showed no change (Fig . 4) . Cholera toxin (2 .5 Fig/ml) had no effect
on the [Ca2+ ] ; changes elicited by either stimulus (data not shown; n = 3) .

Crosslinking of FcyRII Does Not Elicit a Comparable Change in [Ca"]i .

	

The experi-
ments with 3G8 Fab and F(ab')2 GAM demonstrated that participation of FcyRII
(potentially engaged via the Fc piece of 3G8 IgG) is not necessary for generation
of an intracellular calcium response . However, since mAb ligation of both human
FcyRII and its murine homologue induces a change in [Ca211, in monocytes, U937
cells (15, 16), and peritoneal macrophages (28), we considered the possibility that
FcyRII in PMN might function in comparable fashion. Using the anti-FcyRII mAb
IV.3, we were unable to induce a calcium response with either univalent Fab frag-
ments (Fig . 5 A) or with IV.3 Fab, crosslinked with F(ab')2 GAM (Fig . 5 B) . Intact
IV.3 IgG at concentrations ranging from 0.1 FAg/ml through saturation to 20 hg/ml
was unable to induce a consistent change in [Ca211, (Fig . 5 C) . Of note, however,
in 2 of 14 separate experiments with IV.3 IgG a small change in the indo-1 ratio
was observed (Fig . 5 C) . Further experiments with the anti-FcyRII mAb CIKM5,
known to induce a change in [Ca2+ ] ; in monocytes, also showed small [Ca2 +] ; re-
sponses (R/R. = 1.3 with 10 hg/ml; n = 3) .
While IV.3 Fab crosslinked by F(ab')2 GAM were unable to generate a change

[Ca 2+1 , B

FIGURE 4.

	

Comparative sensitivity to pertussis toxin. (A) The effect of PT on the [Ca2 .] ; re-
sponse to FMLP For FMLP, PT (125 ng/ml) reduced the [Ca2'] ; response with an even greater
effect at 500 ng/ml. (B) PT had no effect on the [Ca2'] ; response elicited by mAb 3G8.

S
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e - 25 ug/ml
- - 50 ug/ml

FIGURE 5.

	

Changes in [Ca2+] ; with mAbIV.3 . (A) Univalent ligation of FcyRII with IV3 Fab,
10 kg/ml, did not elicit a [Ca2+1, flux (n = 3) . Nor did a calcium flux occur when the IV,3 Fab
(10 pg/ml) were crosslinked by F(ab')2 GAM (25 and 50 Wg/ml) . (B) Cells were opsonized with
IV3 Fab, washed once, and then analyzed with the addition of F(ab')2 GAM. F(ab')2 GAM, 25-50
kg/ml gave little or no response (n = 6) . (C) IV3 IgG (5-20,ug/ml) was added to cells but no
consistent response was evident (see text) . The 20 1Ag/ml IV3 represents the maximal [Ca2* ] ;
response seen with IV3. The mAb 3G8 response on the same day is included for comparison .
(D) The [Ca2*]i response to crosslinking of IV.3 IgG (10 pg/ml) with F(ab')2 GAM (25 Ag/ml)
after one wash of IV3-opsonized cells (n = 3) . The response is comparable to the 3G8 response .

in [Ca2+ ] ;, IV3 IgG crosslinked by the same reagent gave a rapid calcium response
(Fig . 5 D) comparable to that elicited by 3G8 IgG. Both IV3 Fab and IV3 IgG
bound to the PMN equally, as judged by quantitative flow cytometry. Thus, the
effectiveness of GAM with IV3 IgG may reflect the formation of heterotypic clus-
ters of both FcyRII engaged by the Fab end of IV3 and FcyRIIIPMN engaged by
the Fc region . Interestingly, aggregated human IgG generated a change in [Ca2+]i
comparable to crosslinked 3G8 Fab, 3G8 IgG and crosslinked IV3 IgG (data not
shown) . Thus, both ligand and mAb induced similar [Ca2+ ] ; fluxes, but ligand was
unable to distinguish between FcyRIIIPMN signaling and synergistic signaling of,
FcyRIIIPMN and FcyRII through heterotypic clusters .

FcyRIIIpNrN Signals E,ffectively at Reduced Receptor Density.

	

Since PMN express ap-
proximately 150-200,000 copies of FcyRIIIPMN per cell but only 40-60,000 copies
of FcyRII per cell, we explored the possibility that the higher receptor number of
FcyRIIIPMN might explain the differential ability of the two FcyR on PMN to ini-
tiate a change in [Ca2 +] ; . We incubated PMN with PI-PLC to decrease the number
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of FcyRIIIPMN on the cell surface . As measured by flow cytometry, FcyRIIIPMN den-
sity was reduced by N70% to a level similar to that of FcyRII (Fig . 6 A) . PI-PLC
treatment did not alter PMN responsiveness to FMLP (Fig . 6 B) . Similarly, cross-
linking of FcyRIIIPMN with 3G8 IgG still elicited a rapid change in [Caz+ ] ; that was
indistinguishable from control samples (Fig . 6 B, bottom) . Since PI-PLC treated and
control cells showed identical response characteristics over a three log dose range
ofmAb 31138 (0.05-50 /cg/ml; n = 11), differences in receptor density cannot explain
the different signaling properties of FcyRIIIPMN and FcyRII .

Discussion
The potential for rapid lateral mobility in the cell membrane and lack of an ob-

vious signal transducing structure for the GPI-anchored form of FcyR1I expressed
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FIGURE 6 . Reduced FcyRIIIPMN density
does not alter the change in [Ca2*] ; . (A) After
incubation of cells with PI-PLC, FcyRIIIPMN
density is reduced to a level similar to FcyRII .
Histogram dis mAb3G8 fluorescence before
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in PMN has raised the possibility that FcyRIIIpMN may serve only as a focusing
molecule for ligand . The ability ofvarious GPI-anchored molecules to mediate trans-
membrane signaling in T cells (43-48), however, prompted us to investigate the sig-
naling properties of this receptor as a functionally active molecule in a non-T cell
system . Using resting PMN, we have shown that oligovalent, but not univalent, li-
gation leads to a rapid increase in [Ca?+ ]i derived from intracellular stores through
a PT and CT insensitive process. This capacity to initiate changes in (Ca211, is dis-
tinct from that of FcyRII and is not simply a reflection of the relative difference
in cell surface density of the two Fc-yRg . The transmerl;brane signaling event initi-
ated by FcyRIIIpMN requires the engagement of only Fc-YRIIIPMN by crosslinked
Fab fragments . These data indicate that FcyRIIIpMN is not merely a focusing mol-
ecule for FcyRII but rather an active participant in integrated cell processes .
The mechanism of signal generation after ligation of FcyRIIIpMN differs from that

used by the FMLP receptor in several significant ways, Univalent ligation of the
FMLP receptor leads to both the generation of IP and a rapid initial increase in
[Ca2+ ]i derived from intracellular stores . Membrane depolarization is maximal at
2-3 min after stimulation and is followed by a transmembrane calcium flux and
a secondary increase in cytosolic calcium (29, 30, 49, 50). These FMLP-induced
changes are inhibitable by preincubation with PT (40, 41, 51-53) . In contrast, uni-
valent ligation of the FcyRIIIpMN ligand binding site by mob 3G8 does not elicit
any change in [Ca2+]; . Multivalent crosslinking of the receptor leads to a change
in [Ca2+ ]i derived from intracellular stores that is not sensitive to PT. While PT and
CT insensitivity does not exclude the involvement of G proteins, it does suggest a
receptor coupling pathway distinct from the FMLP receptor as well as from FcyRII,
both of which are PT sensitive (19, 40, 41, 51-59), If G proteins are activated by
FcyRIIIpMN, perhaps through another surface molecule, the rapidity of the response
would suggest that FcyRIIIpMN and this other molecule co-exist in close physical
association .
Transmembrane signaling and stimulation ofcell proliferation have been demon-

strated for other GPI-linked proteins, most notably in T cells (43-48). With both
Thy-1 andTAPthere is a requirement for coexpression ofthe T cell antigen receptor
complex (CD3TCR), implying the need for an additional molecular species for signal
transduction (54-57). Since shared binding of antigen with CD3 TCR is not required
for activation (43-47), a non-ligand-dependent interaction between Thy-1 (TAP)
and some shared component(s) of the CD3TCR may be important . For example,
the ~-chain of the TCR has been proposed as a more general signal-transducing
molecule (58). Interestingly, the r-chain has homology to the FcfRI -y-chain which
associates with the murine homologue ofthe transmembrane form ofhuman FcyRII
(59) . Given the incomplete removal of FcyRIIIpMN With PI--PLC treatment (1-3,
13, 14) and the lack of a decrement in the [Ca"];signal, it is tempting to speculate
that there may be a signal-transducing subpopulation of FcyRIIIpMN that is asso-
ciated with another integral membrane protein, such as the y-chain of FcfRI, and
that is thereby relatively PI-PLC resistant . However, incomplete removal of many
different GPI-anchored molecules by PI-PLC has been observed by many investiga-
tors (reviewed in references 60, 61), and recent data in the (,p-2 system, a GPI-anchored
class I molecule on murine T cells, suggests that it is the GPI anchor per se that
is essential for signal transduction (48) .
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No matter what molecular mechanism mediates signal transduction by FcyRIIIPMN,
the absence of a [Ca2,1], signal elicited by crosslinking of FcyRII alone with IV3
Fab fragments and F(ab')2 GAM highlights the potential for different roles served
by FcyRII and FcyRIIIPMN . For example, PMN have the capacity to use several
different pathways for FcyR-mediated phagocytosis . With resting PMN, EA phago-
cytosis is [Ca"]i-dependent and PT-insensitive like the anti-FcyRIII mAb-initiated
[Ca2+ ]i signal (31, 62). In contrast, activated PMN have both PTsensitive and in-
sensitive components of EA phagocytosis, and many FcyRII-initiated processes, such
as the generation ofreactive oxygen intermediates and enzyme release byPMN and
EA phagocytosis by monocytes, are also PT sensitive (19, 32). Thus, it may be pos-
sible that restingPMN primarily use a single signal transduction pathway while ac-
tivated PMN use several receptor and/or signal transduction systems for phagocy-
tosis. Of note, the occurrence of rapid [Ca2+ ]i responses with crosslinking of IV.3
IgG and the presumed formation of heterotypic clusters of both FcyRII (engaged
by Fab) and FcyRIIIPMN (engaged by the Fc region) suggest that synergism between
the two receptors may be important in PMN function .
The role of the [Ca"]; signal per se, generated by FcyRIIIPMN, may be as a

"priming" or "triggering" event that serves in conjunction with other events gener-
ated through FcyRIIIPMN or other surface molecules. The general model of a rapid
change in [Ca2, 1i as a "priming" event is applicable to a number of receptor sys-
tems . For example, in PMN, superoxide anion generation seems to require both
an initial rapid change in [Ca2+ ]i and a more sustained signal (63) . By analogy, the
intracellular calcium signal elicited by FcyRIIIPMN might serve as a triggering event
for interaction with another membrane molecule such as CR3 of the (32 int°grin
family, that can influence phagocytosis by FcyRs in PMN (64) . A physical interac-
tion between the FcyR and certain domains of CR3 may occur after engagement
ofthe FcyR by ligand, and CR3 may couple with the cytoskeleton to assist in FcyR
phagocytosis . Since FcyR and CR3 probably do not coexist in a multimolecular
receptor complex, it is possible that, as a consequence of engagement of FcyR by
ligand, atransmembrane signal and/or conformational change in the receptor initiates
the collaboration between FcyR and CR3. If applied preferentially to FcyRIIIPMN,
this model might explain the different roles for both [Ca"]i transients (62, 65) and
PT-sensitive G proteins in EA phagocytosis by resting PMN and monocytes (31) .
The full range of cell functions initiated by ligation of FcyRIIIPMN is not clearly

established . Evidence that both FcyRII and FcyRIIIPMN contribute to the genera-
tion of reactive oxygen metabolites has been presented (19, 34, 66). Given the PMN's
capacity to use different pathways for the same function (31) and to alter its biology
depending on the state of activation and/or adherence (67-69), interaction between
receptor systems can be anticipated . However, it is clear that FcyRIIIPMN, a GPI-
anchored molecule, can mediate transmembrane signaling independent of ligand-
mediated engagement of FcyRII . Analysis of the different transmembrane signals
initiated by FcyRIIIPMN and FcyRII in PMN and initiated by FcyRIII on PMN
and on NK cells may provide important insights into structure-function relation-
ships in human FcyR.
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Summary
To investigate the ability of FcyRIIIpMN, the GPI-anchored isoform of FcyRIII

(CD16) in polymorphonuclear leukocytes (PMN), to mediate transmembrane sig-
naling events, we measured changes in membrane potential with DiOC5 and in in-
tracellular calcium with indo-1 . FcyR were ligated by anti-FcyRIII mAb 3G8 (IgG
and Fab), anti-FcyRII mAb IV3 (IgG and Fab), and human IgG aggregates . Cell
bound mAbs were also crosslinked by goat F(ab')2 anti-mouse IgG . 3G8 IgG elic-
ited a rapid change in [Ca"]i, which was unaffected by EGTA, Vibrio cholerae toxin
(CT), or Bordetella pertussis toxin (PT), and was abolished by BAPTA . Univalent re-
ceptor binding with 3G8 Fab gave no response but crosslinking with F(aV)2 GAM
gave a rapid [Ca2, ]i response . Neither IV3 Fab, IV3 IgG, nor crosslinking of IV3
Fab elicited a calcium signal. PI-PLC-treated PMN with the density of FcyRIIIpMN
reduced to that of FcyRII showed an unattenuated change in [Ca21j, with a 3G8
stimulus . The effects of IgG aggregates paralleled those of 3G8 mAb. These data
indicate that multivalent ligation of FcyRIIIpMN initiates an increase in [Ca2 +] ;, de-
rived from intracellular stores, that is distinct from both the FMLP- and FcyRII-in-
duced responses . Ligand-dependent interaction with FcyRII is not required . Since
FcyRIIIpMN can internalize the FcyRIII-specific probe Con A-opsonized E and lyse
anti-FcyRIII heteroantibody-opsonized chick E, this GPI-anchored molecule medi-
ates both signal transduction and integrated cell responses .
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