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Objective: Collaborative brain–computer interfaces (cBCIs) can make the BCI output
more credible by jointly decoding concurrent brain signals from multiple collaborators.
Current cBCI systems usually require all collaborators to execute the same mental tasks
(common-work strategy). However, it is still unclear whether the system performance
will be improved by assigning different tasks to collaborators (division-of-work strategy)
while keeping the total tasks unchanged. Therefore, we studied a task allocation scheme
of division-of-work and compared the corresponding classification accuracies with
common-work strategy’s.

Approach: This study developed an electroencephalograph (EEG)-based cBCI which
had six instructions related to six different motor imagery tasks (MI-cBCI), respectively.
For the common-work strategy, all five subjects as a group had the same whole
instruction set and they were required to conduct the same instruction at a time. For
the division-of-work strategy, every subject’s instruction set was a subset of the whole
one and different from each other. However, their union set was equal to the whole
set. Based on the number of instructions in a subset, we divided the division-of-work
strategy into four types, called “2 Tasks” . . . “5 Tasks.” To verify the effectiveness of
these strategies, we employed EEG data collected from 19 subjects who independently
performed six types of MI tasks to conduct the pseudo-online classification of MI-cBCI.

Main results: Taking the number of tasks performed by one collaborator as the
horizontal axis (two to six), the classification accuracy curve of MI-cBCI was mountain-
like. The curve reached its peak at “4 Tasks,” which means each subset contained
four instructions. It outperformed the common-work strategy (“6 Tasks”) in classification
accuracy (72.29 ± 4.43 vs. 58.53 ± 4.36%).

Significance: The results demonstrate that our proposed task allocation strategy
effectively enhanced the cBCI classification performance and reduced the
individual workload.

Keywords: collaborative brain-computer interfaces, task allocation, division-of-work, common-work, motor
imagery
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INTRODUCTION

Brain–computer interface (BCI) systems could use human brain
signals for the direct control of external devices (Wang and Jung,
2011; Jiang et al., 2018). Compared with other ways of human
machine interaction (HCI), such as voice or gesture (Karpov
and Yusupov, 2018), BCI systems have the potential to provide
more efficient HCI channels by encoding brain signals directly.
It could express intended human actions and monitor human
physiological states by detecting and analyzing neural activity.
Brain–computer interface systems can be differentiated based
on the brain-sensing modality employed, such as functional
magnetic resonance imaging (fMRI) (Sokunbi et al., 2014), near
infra-red spectroscopy (NIRS) (Naseer and Hong, 2015), and
electroencephalography (EEG) (Abiri et al., 2019). Each of these
modalities has certain advantages, which render it more suitable
for specific applications. Due to the high time resolution and
portability of EEG-based BCI, it is usually employed in the
control of external devices (Luu et al., 2017; McCrimmon et al.,
2018).

For control purposes, it can be divided into two types: (A)
active BCI systems that do not require external stimuli which only
use consciously intended brain signals. Motor imagery BCI (MI-
BCI) is one of the mature representatives (Vourvopoulos et al.,
2019; Zapała et al., 2020). (B) Reactive BCI systems are driven
by indirectly modulated brain signals related to specific exxternal
stimulation, such as steady-state visually evoked potential BCI
(SSVEP-BCI) (Ma et al., 2017). However, most of them have not
been widely used so far in social and productive activities mainly
due to the following two reasons:

(1) Low information transmission rate: due to volume
conduction effects of the brain, the EEG signal-to-noise
ratio is relatively low (Liu, 2019; Wei et al., 2019).
Hence, EEG-based BCI systems are generally incapable of
extracting sufficiently effective neural features in a short
time window, which results in poor decoding performance.
On the other hand, for a high level of human–computer
hybrid intelligence, elaborate control operations with high
precision, short time delays, and long-term reliability are
needed. These performance requirements are hardly met by
current EEG-based BCI systems.

(2) Poor interpersonal collaboration: currently, the majority
of BCI systems are designed for a single user, which are
hard to meet the demands of social interactions and the
large-scale collaboration of social groups. Human social
interactions suggest that BCI systems should involve forms
of collaboration with multiple persons and computers
(Mattout, 2012).

To overcome the above limitations, collaborative BCI (cBCI)
systems have been proposed. It is defined as BCIs where data
from multiple users are integrated to achieve a common purpose
(Valeriani et al., 2017). The classification performance and
robustness could be effectively improved by fusing group EEG
features. Therefore, cBCI systems are more suitable for advanced

tasks of hybrid human–computer intelligence, especially group
interactions (Valeriani et al., 2015).

Current cBCI systems can be divided into two categories
based on their goals. One kind of cBCI systems is utilized to
perform visual target matching or search tasks, which seeks to
improve the system decision-making ability based on human
visual information (Matran-Fernandez and Poli, 2014; Valeriani
et al., 2015, 2017). The other kind of cBCI systems focuses on
the output by movement intentions, which can carry out active
control instructions much faster and more conveniently (Wang
and Jung, 2011; Zhou et al., 2019). These studies show that BCI
performance can be effectively improved by fusing the neural
responses of multiple users for the same task. However, they
did not explore how to design a better system architecture to
achieve more efficient fusion of multiple sources of human brain
information. We believe that two improvements are of vital
importance in optimizing system design:

(1) Task allocation strategy: for existing cBCI systems,
collaborators follow a common-work strategy, i.e., users
perform the same task together. Nevertheless, this strategy
does not fully consider the rationality of task allocation and
the differences in individual capabilities. It may result in
wasteful use of collaborative resources, without effectively
improving the overall performance. By contrast, group
performance might be improved through division-of-work
strategy. In fact, Adam Smith, one of the key founders
of free-market economics, suggested in his book “The
Wealth of Nations” (Smith, 1848) that division-of-work
greatly improves labor productivity. Hence, we designed the
cBCI system with an optimizing task allocation strategy of
division-of-work, in order to enhance the overall system
performance and reduce the individual workload as well.

(2) Data-fusing method: Wang and Jung (2011) presented two
paradigms of cBCI—centralized and distributed systems.
The biggest distinction between the two is whether the
brain information of multiple persons is processed centrally
on one data server (centralization) or not (distribution).
Different paradigms dictate distinct requirements of data
fusion methods. Thus, we designed a feature fusion
method for centralized paradigm which conducts unified
modeling and recognition through integrating the EEG
features of all collaborators. Besides, a decision fusion
method was developed to compute an overall decision
value of classification in the distributed paradigm. For
the classification performance of cBCI, a comparison was
undertaken between the two methods under multiple
strategies of task allocation in this work.

Motor imagery is the mental representation of movement
without any body movement (Dickstein and Deutsch, 2007). In
our previous research (Zhou et al., 2019), a MI-cBCI system
was successfully implemented by decoding event-related de-
/synchronization (ERD/ERS) features from multiusers. This
study still adopted the motor imagery paradigm, which is
suitable for active control. Through the pseudo-online process
of MI-cBCI, we explored the impact of two key factors: (1)
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TABLE 1 | Categories of motor imagery instructions for the MI-cBCI system.

Name Both hands Both feet Left hand Right hand Right hand left foot Left hand right foot

Abbreviation BH BF LH RH RHLF LHRF

Diagram

Symbol ↑ ↓ ← → ↗ ↘

No. 1 2 3 4 5 6

task allocation strategy and (2) data fusion method on system
classification performance.

MATERIALS AND METHODS

Subjects
The study involved 19 healthy volunteering subjects (11 females,
23–27 years). None of these participants had cognitive or physical
dysfunction. Nine subjects had previously participated in MI-BCI
studies. The rest of the subjects had no BCI experience prior to
this study. All participants read and signed the informed consent
form approved by the Institutional Research Ethics Committee of
Tianjin People’s Hospital before the experiment.

Paradigm Design
In this study, we aim to address the problem of classifying six
types of motor imagery instructions, namely, moving both hands
(BH), both feet (BF), the left hand (LH), the right hand (RH),
the right hand and the left foot (RHLF), and finally the left
hand and the right foot (LHRF). Table 1 shows the details for
these categories. For example, the name of the first type is “both
hands.” Participants were required to perform MI of both wrist
extensions. The command abbreviation is BH, the symbol is ↑
and the instruction number is 1. The motion associated with the
foot task is ankle dorsiflexion.

All 19 subjects independently performed the above six types
of motor imagery tasks with EEG data collected simultaneously.
Then, the MI-cBCI system based on the division-of-work strategy
was simulated by using offline EEG data from users. The whole
experiment for a single subject was divided into 14 blocks,
consisting of 36 trials (6 types × 6 trials) each, which led to
84 trials of each type of MI task. There was a break of about
5 min between the consecutive three blocks. Within each block,
MI tasks were performed in a random order. The task paradigm
is shown in Figure 1, which mainly includes a period of motor

FIGURE 1 | Experimental paradigm of a motor imagery task. At the beginning
of each trial, a red fixation cross was presented at the center of the screen to
remind subjects to prepare for the following task. At the first second, a symbol
of instruction appeared on the screen for 4 s, subjects were instructed to
perform the indicated motor imagery (MI) task up to the fifth second. This time
period of 4 s was defined as a MI epoch. Then, “Rest” was displayed for 2 s
to remind participants to have a rest.

imagery that lasts 4 s. The experiment was programmed using
Psychtoolbox on MATLAB platform.

Data Acquisition and Preprocessing
The EEG signal was recorded using a SynAmps2 system
(Neuroscan Inc., Charlotte, NC, United States) with a 64-
channel quick-cap at a sampling rate of 1,000 Hz, whose
electrode positioning follows the international 10/20 system.
The reference and ground electrode were placed at the
vertex and on the prefrontal lobe, respectively. A band-pass
filter between 0.5 and 100 Hz and a 50-Hz notch filter
were enabled during the data acquisition. All raw data were
downsampled to 200 Hz and re-referenced by the common
average reference (CAR). According to data labels, the EEG
data of all trials were extracted as data samples. Then, data
samples were band-pass filtered to obtain interested frequency
(8–28 Hz) by a fourth-order Butterworth filter. All 84 samples
of each class of MI are divided into two parts randomly.
One part is for offline training, including 72 samples, and
the other part includes 12 samples for the pseudo-online
classification of cBCI.

Algorithms
All the main algorithms applied in this study are described here,
in order to avoid disrupting the continuity of the introduction of
the overall workflow. The preprocessed EEG data collected from
the motor imagery tasks were analyzed in the succeeding sections.

Event-Related Spectral Perturbation
Event-related spectral perturbation can provide detailed
information about temporal and spatial ERD/ERS features
of various MI categories (Yi et al., 2017). It is a useful tool
to select the MI task with stronger feature separability from
six instructions as the reference instruction, rather than for
classification. The average event-related spectral perturbation
(ERSP) across the input data is defined as follows:

ERSP
(
f , t
)
=

1
n
∑n

k = 1

(
Fk
(
f , t
)2
)

(1)

where n is the number of trials, and Fk(f , t) indicates the
spectral estimation of the kth trial at frequency f and time t. To
produce the baseline-normalized ERSP, the spectral estimation
of a baseline period (1 s before the MI epoch) is subtracted
from the ERSP of tasks. To observe time–frequency domain
features, plots of the mean ERSP from two key electrodes C3
and C4 were displayed from -1 to 6 s between 8 and 28 Hz
for analysis. To investigate the topographical distributions of
ERD features, the average ERD values were computed within
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the specific frequency range and time window for each channel
according to the following equation:

ERDvalue =
1
N

∑
f∈F

∑
t∈T

(ERSP(f , t)) (2)

where F is the α band (8–13 Hz) or β band (14–25 Hz), and T
is the whole MI task duration of 4 s. N is the total number of
time–frequency bins decided by F and T.

Multiclass Common Spatial Patterns
Multiclass common spatial patterns (multi-CSP) was applied to
extract features from multichannel EEG data of MI epochs (Qian
et al., 2011; Yi et al., 2013). For the analysis, a single MI epoch
data is represented as an N by T matrix Xi, where iε{1,2,. . .,6}
indicates the ith class of MI, N is the number of channels (N = 60),
and T is the number of samples per channel (T = 800). We firstly
calculated the average covariance matrix Ri of every MI pattern.
The whitening matrix can be formed by

P = 3−1/2UT
0 (3)

where U0 is the N × N matrix of eigenvectors and 3 is the
diagonal matrix of eigenvalues from

R =
6∑

i = 1

Ri = U03UT
0 (4)

The strategy of one-versus-rest is adopted to acquire spatial
filter matrices. For the first class, we letR1

′
=

∑
6i = 2Ri. Then

R1 and R1
′ can be translated as

Y1 = PR1PT

Y ′1 = PR1
′PT (5)

And Y1 and Y1
′ share common eigenvectors

Y1 = U131UT
1

Y ′1 = U131
′UT

1 (6)

With the projection matrix W1 = UT
1 P consisting of spatial

filters corresponding to the first class, the other five projection
matrices also can be computed in a similar way.

Mutual Information Maximization
Mutual information maximization (MIM) (Khaleghi et al., 2015)
was used in the feature fusion method to select features from the
integrating features of all single users. The mutual information
(MI) between every feature and its class label separately was
calculated. Then features were ranked according to a decrease of
MI. MI is defined as:

MI (Y,X) = H (Y) + H (X)−H (Y,X)

= −

∑
i,j

P
(
yi, xi

)
log2

P
(
yi, xi

)
P
(
yi
)

P (xi)
(7)

where H function is the information theory,

H (X) = −
K∑

i = 1

P (xi)log2P (xi) (8)

H (Y) = −
K∑

j = 1

P
(
yi
)
log2P

(
yi
)

(9)

H (Y,X) = −
K∑

i = 1

K∑
j = 1

P
(
yi, xi

)
log2P

(
yi, xi

)
(10)

P (xi) and P
(
yi
)

are the ith priori probability of feature vector
X and label Y in all K values, respectively. P

(
yi, xi

)
is the joint

probability of them. After ranking the features, the first four
features are reserved for processing in this work.

Multiclass Classification Support Vector Machines
Multiclass classification support vector machines (multi-class
SVM) were employed to classify multiclass of features (Duan and
Keerthi, 2005; Aboalayon et al., 2015). It constructs M binary
classifiers, where M is the number of classes. Each classifier is
trained to separate one class as positive from the rest of the k - 1
classes as negative.

Next, we describe in detail the concepts of task allocation and
data processing flow in MI-cBCI systems.

Task Allocation Schemes Based on the
Division-of-Work Strategy
We propose an optimized task allocation scheme based on the
division-of-work strategy for MI-cBCI systems. This strategy
generates a feasible scheme to assign different MI tasks to
collaborators. The MI-cBCI system has the same instruction set
as a single-user MI-BCI system which has six MI instructions.
A collaborative group consisted of five users, denoted by the
letters A–E. In other words, the MI-cBCI system is operated by
five persons controlling six instructions together. All of the users
were randomly selected from 19 subjects. The workflow of the
division-of-work strategy in MI-cBCI is divided into four steps:

(A) Selection of the division-of-work strategy. As shown
in Figure 2A, there are four types of division-of-work
strategies. Based on the size of the instruction subset for one
person, they are categorized into “2 Tasks,” “3 Tasks,” and so
on until “5 Tasks.” In addition, “6 Tasks” is the common-
work strategy where each of the five users executes the
identical six MI tasks. Both feet (BF) instruction is selected
as the reference instruction that is involved in every single
users’ instruction set. Here, we choose the “3 Tasks” strategy
(in the solid black box) as an example to illustrate the
following workflow.

(B) Setting of the collaborative mode. The input of the MI-cBCI
system is defined as the required MI task, and the output is
the instruction obtained by decoding the EEG information
of all users. As shown in Figure 2B, six collaborative modes
are set up to indicate the designated tasks to users in line
with the input instructions. In most modes, two users are
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FIGURE 2 | Workflow of the division-of-work strategy for the proposed MI-cBCI system. Arrows indicate different types of motor imagery instructions as shown in
Table 1. [+]/[−] in “panel C” means taking the following instruction as a positive/negative class. +/− in “panel D” means a positive/negative decision label.

required to complete the tasks consistent with the system
input, while others execute the both feet task. Only mode
2 requires all users to perform both feet tasks together. As
an example, in the blue dashed box, the system input is ↑.
According to the task allocation scheme of mode 1, users A
and B should perform both hands MI (↑) and the remaining
users perform both feet MI (↓).

(C) Offline modeling of a single user. Across all modes, each
user executes a total of three types of tasks represented
by arrows, which is in accordance with the “3 Tasks”
strategy. Each arrow in Figure 2B matches a single-user
offline modeling pipeline in Figure 2C. For instance, in
the yellow shading area in Figure 2B, user A executes
three kinds of MI tasks (↑ ↗ ↓). For these tasks, three
data processing pipelines have been established, as shown
in the yellow shading area in Figure 2C. Each pipeline is
to complete the corresponding offline modeling of EEG
data in the light of the one-versus-rest strategy. It means

that one type of MI data is taken as the positive class [+],
and the other two types of data became the negative class
[−]. Features of two classes EEG data are extracted by the
CSP algorithm and classified by a SVM classifier. In all
pipelines of a single user, a total of three pairs of CSP filters
and SVM classifiers have been trained. In the next offline
phase of cBCI, they would be used as the submodels for
the collaborative model. Detailed information about data
processing of a single user have been described in the Offline
modeling of a single user section.

(D) Pseudo-online classification. The pseudo-online
classification of MI-cBCI is composed of two processes:
the offline phase for cBCI modeling and the pseudo-
online phase for recognition. In the offline phase, we
established six collaborative models for feature extraction
and classification, one for each of the collaborative modes
in Figure 2B. For each collaborative model (¬-±) in
Figures 2B,D shows what submodels it should entail. Every
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collaborative model is assembled from five submodels. The
submodels are generated by offline modeling of the users
in step (C). Take the collaborative model ¬ as an example;
it is set up with two submodels from pipeline 1 (users A
and B) and three submodels from pipeline 3 (users C, D,
and E), as shown in the blue dashed box in Figures 2C,D.
Other collaborative models are built in the same way. There
are two alternative fusion methods applied in constructing
collaborative models called feature fusion and decision
fusion, which are described in the Feature fusion method
and Decision fusion method sections.

In the pseudo-online phase, EEG data collected from five
collaborators are sent to the six collaborative models sequentially
for classification. The collaboration model that has the highest
number of submodels matched to the multiperson input data
is the winner, and its corresponding mode (i.e., the arrow that
immediately follows numbers ¬-± in Figure 2D) is selected
as the final system output. To illustrate the process of pseudo-
online recognition more specifically, we take the system input
of ↑ as an example in Figure 2D. It shows that users A and
B need to imagine both hands (↑) while the other users are
required to imagine both feet (↓) as defined in the task allocation
scheme in Figure 2B. Subsequently, pseudo-online EEG data
from all five users (marked as different colors) are processed
by the six collaborative models in sequence. Because the input
EEG data match to the positive classes of all five submodels
of collaborative model ¬, it should contain the largest number
of positive decision labels among all six collaborative models.
Therefore, the system output is both hands instruction (↑).

Data Processing of MI-cBCI
After describing the overall workflow, we will concentrate on
the details of data processing. Two data fusion methods for
MI-cBCI have been proposed in this study, which are called
feature fusion and decision fusion. The implementation of both
methods is based on the single-user modeling process and
differed on the subsequent cBCI offline modeling and pseudo-
online validation.

Offline Modeling of a Single User
The purpose of single-person offline modeling is to provide
the required submodels for cBCI, mainly including CSP filters
and SVM classifiers. Here, we continue with the example
of the “3 Tasks” strategy. According to the task allocation
scheme in Figure 2C, subject A should perform BH, BF, and
RHLF tasks (numbered 1, 5, and 2, respectively). Figure 3
illustrates the offline modeling process of EEG data related to
these instructions. Each class of EEG data is taken in turn
as a positive class [+], while others represent the negative
class [−]. All three data processing pipelines are made to
accomplish binary classifications. For example, in pipeline 1,
xA1 represents the data of executing instruction 1 and xRA1
represents two remaining data (xA5 and xA2). Feature matrices
FA1εR72 × 4 and FRA1εR144 × 4 are obtained by filtering 72
samples of xA1 and 144 samples of xRA1, respectively. A SVM
classifier with linear kernel function is trained using the two

classes of features. Leave-one-out cross-validation is applied to
obtain the offline accuracy accA1, and an accuracy-based weight
coefficient λA1 = accA1

2 is computed to guide subsequent offline
processing of cBCI.

Feature Fusion Method
Figure 4 demonstrates the data processing procedure of the
feature fusion method for MI-cBCI. In the multiperson cBCI
offline phase, X represents the EEG training dataset for five
collaborators. The selection of data processing pipelines of
users depends on the collaborative modes. We describe here
the offline and pseudo-online process of mode 1. The data
processing pipeline of each user is executed independently
using training datasets. As described in the previous section,
all submodels containing feature matrices of the two classes
Fi and FRi, CSP filters, and weight coefficients λi are
all obtained from five collaborators, i = {A1,B1,C3,D3,E3}.
FiεR72 × 4 and FRiεR144 × 4 are multiplied by their respective
coefficients λi and concatenated into matrices FXεR72 × 20 and
FRXεR144 × 20 in the column direction. After that, the features
are sorted in descending order by the mutual information
criterion, and the achieved feature ranking Rf is recorded.
Only the top 4 features are pick up as F′XεR72 × 4 and
F′RXεR144 × 4, respectively. Finally, a SVM classifier is trained
for offline modeling of mode 1 by taking F′X and F′RX as
positive/negative class.

In the cBCI pseudo-online phase, Y contains single-trial data
extracted from five users’ testing dataset. The CSP filters from
the offline modeling phase are applied to filter Y to calculate
single-user features fiεR1 × 4. Then, the multiuser features are
combined (following the offline processing approach) to gain the
selected features fYεR1 × 20. According to the feature ranking
Rf, the fusing features are rearranged and the first four features
are selected as f′YεR1 × 4. Then, the optimized features are
classified by the trained classifier SVMmodel1 to export the
decision value Dvmodel1. Using the same method, we process Y
with the other five models and subsequently acquire the outputs
Dvmodel2... Dvmodel6. The label associated with the maximum
positive decision value is considered to be the predicted label.

Decision Fusion Method
Figure 5 shows the data processing procedure of the decision
fusion method for MI-cBCI. It fuses information on the decision
value level, while the feature fusion method is on the feature
level. Specifically, in the offline phase, the training dataset X
is processed with different pipelines from collaborators. The
CSP filters and SVM classifiers are reserved, and the accuracy-
based weights λi are also calculated. In the pseudo-online
phase, multiple pairs of CSP filters and SVM classifiers are
utilized to conduct spatial filtering and classification on the
multiusers’ EEG testing data. The corresponding decision value
vector dviεR1 × 1 is calculated. In addition, decision values from
multiple users are fused to get the decision value vector of model
1 Dvmodel 1 =

1
5
∑

λidvi. In turn, the output value Dvmodel of
each model is calculated, and then the label corresponding to the
maximum positive value is chosen as the predicted label.
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FIGURE 3 | The data processing procedure of a single user for offline modeling. XA represents the training dataset of subject A. x means a certain class of data.
[+]/[−] means taking the following data as a positive/negative class. CSP and SVM indicate CSP filters and SVM classifiers, respectively. We use the symbol F to
represent the feature matrix. acc is the abbreviation of accuracy.

FIGURE 4 | The data processing procedure for the feature fusion method. means that m is processed by component k (a filter or a classifier) to obtain data n.
Mutual Info and Dv are the abbreviations of mutual information and decision value, respectively.

RESULTS

Event-Related Spectral Perturbation
The C3 and C4 electrodes are located in the sensorimotor cortex
of the brain (Li et al., 2019). As preliminary knowledge, they are
the primary electrodes for the neural response features induced
by MI (Tangwiriyasakul et al., 2013). Figure 6 shows the averaged
ERSP time–frequency maps of two electrodes across 19 subjects
performing six types of MI tasks. The two black dotted lines at
time points 0 and 4 represent the start and stop time of MI,
respectively. The color bar from blue to red represents the energy

ratio from low to high compared with the baseline energy. The
map presents clear spectral powers of ERD at α (8–13 Hz) and
β (14–28 Hz) bands under various MI tasks. They last until the
end of the MI task phase, especially for instruction 3-LH, 4-RH,
5-RHLF, and 6-LHRF. The ERD on both feet is the weakest,
as shown in Figure 6. It also could be seen that the ERD in
the α band is more obvious, and it has laterality with different
instructions. In order to explore spatial distribution, averaged
topographical maps of ERD are drawn in this study as well.

Figure 7 is the average topographic map of all 19 subjects,
and α (the first row) and β (the second row) bands for
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FIGURE 5 | The data processing procedure for the decision fusion method.

FIGURE 6 | Averaged time–frequency maps across 19 subjects for six types of MI tasks at the location of C3 and C4 electrodes. Blue indicates ERD; red indicates
ERS. Black dashed line indicates the onset and offset of motor imagery.

the MI period (4 s) are selected. It can be clearly observed
that the ERD of unilateral upper limb MI has obvious
contralateral dominance. Both hands’ movement induces marked
enhancement of ERD on both sides. As we can view in the
second column, the ERD of both feet is the weakest in the
six types of MI, which is consistent with the time–frequency

plot. The compound MI composed of one hand and one foot
had significant ERD enhancement on both sides. Moreover,
the whole brain has more significant energy attenuation than
other types of MI. By contrast, the contralateral activation
of the hand is stronger than that of foot MI, and the
activation area is larger.
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FIGURE 7 | Averaged topographical distribution for six types of MI tasks at α (8–13 Hz) and β (14–28 Hz) bands. Blue regions indicate the involved areas where ERD
occurs during the MI period.

FIGURE 8 | Classification accuracy curves of the feature and decision fusion methods for cBCI and single-user BCI.

By superimposing the averages of multiple trials of ERSP, we
can find that ERD features of 19 participants are actually induced
in general, and the ERD of six types of MI is mainly located
in the α and β bands with contralateral dominance, which is
consistent with the results of previous studies (Sollfrank et al.,
2015; Collazos-Huertas et al., 2020). Among the six types of MI
tasks, the ERD of both feet MI task is the weakest, which could
have the largest difference from other tasks. This is the reason
why we chose it as a reference instruction.

Classification Performance
In this work, we collected EEG data from 19 subjects who
independently performed the abovementioned six types of MI
tasks. We should select five persons as users A–E from 19
subjects to conduct the pseudo-online classification of MI-
cBCI. The maximum number of possible selections is the
number of five permutations of 19. To reduce the complexity,
we randomly picked 300 selections among them, and the
average classification accuracy of MI-cBCI was obtained for
simulated online classification, as shown in Figure 8. The
vertical coordinate shows the average classification accuracy of
six instructions, and the horizontal coordinate represents the
number of tasks performed by one collaborator; “2 Tasks” to

“5 Tasks” belong to the division-of-work strategy, while the
“6 Tasks” strategy is the conventional common-work strategy.
The classification accuracies of the cBCI systems using feature
fusion and decision fusion methods are depicted by the pink and
blue lines, respectively. The gray dotted line shows the six-class
average classification accuracy of 19 subjects by the single-user
BCI system. This accuracy is independent of the task allocation
and does not change with the horizontal coordinate.

These results show the following: (1) even at the lowest point
of the cBCI performance curves, the cBCI average classification
accuracy is more than 10% higher than the single-user BCI
(feature fusion cBCI at “2 Tasks”: 43.97 ± 3.96%, decision
fusion cBCI at “6 Tasks”: 58.53 ± 4.36%, single-user BCI:
31.37 ± 7.21%); (2) accuracy peaks of both classification curves
are at “4 Tasks” (division-of-work), which is higher than “6
Tasks” (common work): feature fusion cBCI (68.48 ± 3.85
vs. 60.93 ± 4.13%) and decision fusion cBCI (72.29 ± 4.43
vs. 58.53 ± 4.36%); (3) comparison of the cBCI performance
curves indicates the superiority of the decision fusion cBCI
system over the feature fusion for most of the division-of-
work strategies; (4) the standard deviation of the classification
accuracy is reasonably small which almost remains within 5%.
This low standard deviation shows that the subject selection
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may have little impact on the cBCI system performance.
Therefore, these results obtained by randomly selected users are
representative and authentic.

CONCLUSION AND DISCUSSION

In this work, a novel task allocation based on division-of-
work strategy for MI-cBCI system is proposed. The recognition
performance metrics indicated that the division-of-work systems
outperform the common-work system, and showed better
accuracy than the single-user BCI system. We believe that the
main reason for this is due to that division-of-work strategy
effectively reduced the number of classes in multiclassification
for single person, thereby improving the accuracy of it. Generally
speaking, the classification performance of cBCI is positively
correlated to the single-person performance and the number of
users executing the common tasks. Although the division-of-
work strategy reduces the number of users recognizing the same
instructions, it improves the classification performance of a single
person. The influences of these two factors on the system are
the reasons why the shape of the classification accuracy curves
are mountain-like in both methods. In the current system, the
accuracy peak is at the “4 Tasks” strategy.

Moreover, this paper compares the recognition performance
of two data-fusing methods and shows that the decision fusion
algorithm is generally superior to the feature fusion. Currently,
the literature suffers from the lack of extensive discussions on this
problem. We are aware of little relevant work on this problem,
except for the cBCI based on rapid serial visual presentation
(RSVP) which was designed by Matran-Fernandez and Poli
(2014). Moreover, they came to similar conclusions to ours in
spite of the employment of different potential features.

We are here to discuss the reasons for the difference in
performance between the two methods. Specifically, decision
fusion for distributed architecture is more direct, while feature
fusion for centralized architecture retains more EEG information
of individuals and may lead to degraded performance. If more
efficient multiperson EEG feature extraction algorithms can be
applied, e.g., algorithms based on deep learning or transfer
learning, feature fusion cBCI could capture more relevant
information and may thus have greater research potential.

We believe that future cBCI research should have more
hybridization and collaboration in the following aspects: (1)
hybrid tasks: the current cBCI tasks are usually single tasks,
which are basically enhancement tasks for motion control or
visual recognition (Liu et al., 2020). However, cBCI systems
may perform better in hybrid high-load tasks and have greater
advantages of collaboration; (2) Joint task allocation strategies
and data-fusing methods: more tasks lead to inferior performance
under a standalone task allocation scheme. Therefore, cBCI
systems should be adjusted continuously according to operation
characteristics and user capabilities. More specifically, cBCI
systems may be created with hybrid common-work and division-
of-work strategies, as well as hybrids of centralized and
distributed architectures. It can assign dynamic specific tasks
and data processing methods according to the status of each

collaborator; (3) fusion of multimodal signals: multiple neural
response features (e.g., potential and energy) should be deeply
mined and fused (Wang et al., 2020). Also, cBCI systems with
other physiological or behavioral signals might be exploited.
Furthermore, fusion strategies can be adjusted to achieve
automatic performance optimization.

On one hand, the development of the cBCI technology
indicates that the performance of existing BCI systems can be
substantially improved. On the other hand, cBCI technology
evolution promises the development of a new generation
of human–computer interaction systems with energy-saving
and networking modes. In addition to the abovementioned
cBCI systems, passive cBCI systems whose operation is based
on monitoring the interaction between multiple persons and
the external environment have been gradually emerging. This
technology is also known as hyperscanning. In recent years,
hyperscanning systems based on EEG, functional near-infrared
spectroscopy (fNIRS), and magnetoencephalography (MEG)
have been rapidly developed. Through designing joint tasks
to explore the brain activation characteristics and causality
(Konvalinka and Roepstorff, 2012; Sänger et al., 2012; Babiloni
and Astolfi, 2014; Nam et al., 2020), the conventional interaction
between individual subjects, tasks, and the environment has
been gradually transformed into the interaction between multiple
persons, multiple tasks, and different environments. Hence, the
cBCI technology is expected to spread more widely and be more
successful in novel and diverse engineering applications.
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