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Purpose: Obstructive sleep apnea (OSA) is associated with altered pairwise connections 
between brain regions, which might explain cognitive impairment and daytime sleepiness. 
By adopting a deep learning method, we investigated brain connectivity related to the 
severity of OSA and daytime sleepiness.
Patients and Methods: A cross-sectional design applied a deep learning model on 
structural brain networks obtained from 553 subjects (age, 59.2 ± 7.4 years; men, 35.6%). 
The model performance was evaluated with the Pearson’s correlation coefficient (R) and 
probability of absolute error less than standard deviation (PAE<SD) between the estimated and 
the actual scores. In addition, we investigated sex effects on deep learning outputs for OSA 
and daytime sleepiness and examined the differences in brain connectivity related to daytime 
sleepiness between OSA and non-OSA groups.
Results: We achieved a meaningful R (up to 0.74) and PAE<SD (up to 0.92) in a test dataset of 
whole group and subgroups. Motor, frontal and limbic areas, and default mode network were the 
prominent hubs of important connectivity to predict OSA severity and daytime sleepiness. Sex 
affected brain connectivity relevant to OSA severity as well as daytime sleepiness. Brain 
connectivity associated with daytime sleepiness also differed by the presence vs absence of OSA.
Conclusion: A deep learning method can assess the association of brain network character-
istics with OSA severity and daytime sleepiness and specify the relevant brain connectivity.
Keywords: convolutional neural network, obstructive sleep apnea, daytime sleepiness, 
diffusion tensor imaging, structural brain network

Introduction
Sufficient sleep of good quality is essential for optimal brain health. Nevertheless, 
sleep problems such as insufficient sleep, insomnia, and obstructive sleep apnea 
(OSA) are common.1,2 OSA is characterized by repetitive cessations or reductions 
in airflow due to upper airway collapse during sleep, resulting in intermittent 
hypoxia and sleep fragmentation.1 OSA not only causes harmful systemic responses 
including oxidative stress, inflammation, hypertension, and insulin resistance, but 
also leads to functional impairment and structural alteration of brain.3 OSA is 
related to diminished excessive daytime sleepiness by several mechanisms, includ-
ing blood–brain barrier dysfunction,4 brain edema,5 amyloid deposition,6 cerebral 
structure changes,7 and altered anatomical brain connections.8,9

Discrete brain areas communicate with each other for diverse functions through 
anatomical connections to generate and integrate information from multiple 
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sources.10 Structural network properties depend on the 
integrity of brain structure and connections as well as the 
efficiency of functional segregation and integration. 
Altered network properties and their topography can 
explain neurocognitive defects and symptom diversity in 
OSA.8,9 A good example of phenotypic diversity is exces-
sive daytime sleepiness that does not only impair daytime 
function and quality of life but also determines cardiome-
tabolic outcomes and therapeutic responses.11,12 For the 
same degree of OSA, the level of daytime sleepiness 
varies substantially. Its mechanisms are still elusive.

Previous neuroimaging studies highlight the need to 
address OSA and daytime sleepiness as a network disorder 
underpinned by brain structure or activity that connects 
heterogeneous regional function. One study analyzed 
structural brain networks constructed from diffusion tensor 
imaging (DTI) and found altered anatomical connections 
driven by white matter injury in OSA.8 Another study 
demonstrated that OSA led to alterations of global topolo-
gical characteristics in the brain network constructed by 
statistical associations of cortical volumes.9 Functional 
MRI studies also report that OSA severity is associated 
with abnormal functional connectivity as well as cognitive 
dysfunction.13–16 Although very few studies have exam-
ined the relationship between daytime sleepiness and brain 
connectivity, one study reported that daytime sleepiness is 
associated with functional connectivity in the default mode 
network (DMN), which has a crucial role in cognition.17 

An increased rate of β-amyloid accumulation particularly 
in the DMN areas is associated with sleepiness.18 Residual 
sleepiness in treated OSA patients may be partially 
explained by white matter abnormality on DTI.19,20 

However, it is still unclear which clusters of brain con-
nectivity (ie, pairwise connections between brain regions) 
specifically correlate with the degree of OSA and daytime 
sleepiness.

Prior methods for network analysis have limitations in 
specifying brain connectivity related to OSA severity and 
daytime sleepiness since it is a complicated task to solve 
the relationship between a nonlinear complex system (ie, 
brain network) and continuous measures (ie, degree of 
OSA severity and daytime sleepiness scale). Thus, it is 
necessary to develop novel approaches to estimate linear 
properties from a nonlinear complex system and to under-
stand which brain connections are linearly associated with 
OSA severity and daytime sleepiness. The deep learning 
algorithm is a computational technique to assess complex 
relationships between input features and target variables.21 

The purpose of this algorithm is to learn a mapping func-
tion from input features to targets, achieved by adjusting 
the weights of the neural network in response to the errors 
between predicted and actual outputs the model makes on 
the training dataset. The adjusting processes are intended 
to continually reduce errors until a good enough model is 
found.21 Contributions of individual input features to per-
formance of decision-making by a trained model can be 
calculated by gradient information associated with the 
change in weights in relation to the change in errors (eg, 
input features with a larger gradient can have a greater 
effect on the predicted output).22 Therefore, deep learning 
can determine brain connections that are the most suscep-
tible to OSA severity or sleepiness, by maximizing the 
relationship between predicted and actual scores based on 
structural network organization while minimizing the 
errors between the two scores.

The purpose of this study was to investigate anatomical 
brain connectivity related to OSA severity and daytime 
sleepiness in a representative sample from a general popu-
lation in middle-to-late adulthood by using structural net-
work analysis implemented with a deep learning model 
referred to as BrainNetCNN, which has been recently 
described as a powerful prediction model for structural 
brain networks.23 We also investigated differences in 
deep learning outputs according to sex and presence of 
OSA. Our specific hypothesis was that a deep learning 
analysis can be predictive of OSA severity and daytime 
sleepiness. Such an analysis could be an effective tool to 
improve our understanding of the neuroanatomical sub-
strates for OSA and daytime sleepiness in adult 
populations.

Methods
Study Subjects
Study procedures were approved by the Institutional 
Review Board of Korea University Ansan Hospital 
(approval no. 2006AS0045), which is a sub-study of the 
Korean Genome and Epidemiology Study (KoGES), an 
ongoing prospective community-based cohort study. In 
2001–2002, the original cohort was established in Ansan, 
South Korea, and consisted of 5012 adults aged 40–69 
years. Furthermore, it was performed in accordance with 
the principles of the Declaration of Helsinki. Written 
informed consent from all study participants was obtained. 
Participants in KoGES have been biennially evaluated for 
demographic characteristics, medical history, health status, 
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and sleep-related factors. As sleep and cognitive aging 
were adopted as an adjunct research agenda, polysomno-
graphy (PSG) and structural MRI were introduced in 2011. 
In contrast to the core KoGES evaluations performed 
every 2 years, MRI and PSG was aimed to cover all 
participants in a 4-year cycle.

For this cross-sectional analysis, we included 625 par-
ticipants (age, 59.5 ± 7.6 years; men, 34.7%) who com-
pleted both MRI and PSG evaluations in 2011. We 
excluded subjects with 1) major neurological disorders 
(stroke, n = 16; major head trauma, n = 4; dementia, n = 
1; hydrocephalus, n = 4), 2) incomplete Epworth 
Sleepiness Scale (ESS) assessment (n = 7), and 3) loss of 
MR image slices through the manual review of MRI image 
quality (n = 40). Finally, 553 participants (age 59.2 ± 7.4 
years, men 35.6%) were included in the present study.

To perform an analysis of brain connectivity related to 
apnea–hypopnea index (AHI), oxygen desaturation index 
(ODI), the minimum oxygen saturation (minSpO2) and ESS 
scores, all subjects were randomly assigned into one of 
three data-sets: a training set (n = 398) to perform deep 
learning of a connectivity matrix, a validation set (n = 100) 
to confirm convergence of the deep learning model estab-
lished in the training set, and a test set (n = 55) to evaluate 
the reliability of the deep learning model. In addition, 
a sex effect on the relationship of brain connectivity with 
OSA severity and ESS was examined in the subgroup 
analysis of men (n = 142/35/20 for training/validation/ 
testing sets) and women (n = 256/64/36). The ESS- 

associated connectivity was compared between non-OSA 
(n = 222/55/31 for training/validation/testing sets) and 
OSA (n = 176/44/25) groups.

All participants underwent overnight PSG. Apneas and 
hypopneas were defined according to standard methods.24 

The AHI was calculated by averaging the total number of 
obstructive apneas and hypopneas occurring per hour of 
sleep. OSA was defined as an AHI ≥ 5/hour of sleep and 
the non-OSA group had an AHI < 5/hour. Daytime sleepi-
ness was assessed using the ESS.25 The time interval 
between overnight PSG and brain MRI was within 2 
weeks. The characteristics and sleep variables were pre-
sented in Tables 1 and 2. Before the analysis, we investi-
gated the relationship between AHI and ESS to determine 
whether ESS should be regarded as an independent vari-
able and found no significant correlation (R = −0.1, P = 
0.12); therefore, ESS was considered as an independent 
variable.

Data Acquisition and Processing
DTI data was acquired using a 1.5-Tesla MRI scanner 
(General Electric, Milwaukee, WI) at TR = 15,000 ms, 
TE = 93.8 ms, 15 isotropic gradient directions with b = 
1000 s/mm2, and single b = 0 image acquisition. T1- 
weighted images were also obtained with the following 
parameters: TR = 7.7 ms, TE = 3.4 ms, flip angle = 12°, 
slice thickness = 1.6 mm. Artifacts including head motion, 
noise, physiological artifacts, susceptibility-induced distor-
tion, B1 field inhomogeneity, and eddy current-induced 

Table 1 Demographic Data from All Participants

Whole (n=553) Men (n=197) Women (n=356) P Non-OSA (n=308) OSA (n=245) P

Age (years) 59.2 ± 7.4 60.0 ± 7.3 58.7 ± 7.5 0.06 57.0 ± 6.4 61.9 ± 7.7 <0.01

Men 197 (35.6) 90 (29.2) 107 (43.7) <0.01

BMI (kg/m2) 24.7 ± 3.0 24.7 ± 2.9 24.7 ± 3.1 0.94 23.9 ± 2.6 25.6 ± 3.2 <0.01

Education

<6 years 101 (18.3) 18 (9.1) 83 (23.3) <0.01 43 (14.0) 58 (23.7) <0.01

7–9 years 113 (20.4) 32 (16.2) 81 (22.8) 0.07 69 (22.4) 44 (18.0) 0.20

10–12 years 240 (43.4) 87 (44.2) 153 (43.0) 0.79 139 (45.1) 101 (41.2) 0.36

13–16 years 90 (16.3) 53 (26.9) 37 (10.4) <0.01 53 (17.2) 37 (15.1) 0.51

> 16 years 9 (1.6) 7 (3.6) 2 (0.5) <0.01 4 (1.3) 5 (2.0) 0.49

Current smokers 47 (8.5) 41 (20.8) 6 (1.7) <0.01 24 (7.8) 23 (9.4) 0.50

Current drinkers 215 (38.9) 122 (61.9) 93 (26.1) <0.01 114 (37.0) 101 (41.2) 0.31

Hypertension 202 (36.5) 83 (42.1) 119 (33.4) 0.04 83 (26.9) 119 (48.6) <0.01

Diabetes mellitus 132 (23.9) 52 (26.4) 80 (22.5) 0.30 46 (14.9) 86 (35.1) <0.01

BDI 8.8 ± 7.4 6.8 ± 6.7 10.0 ± 7.5 <0.01 8.8 ± 6.7 8.9 ± 8.2 0.88

Notes: Data are presented as n (%) or mean ± SD, unless otherwise stated. 
Abbreviations: OSA, obstructive sleep apnea; BMI, body mass index; BDI, Beck Depression Inventory.
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distortion in DTI data were corrected by using the FSL 
eddy tool.26 Whole brain streamlines were then recon-
structed using second-order integration over fiber orienta-
tion distributions27 incorporating anatomically constrained 
tractography28 with 1000 dynamically randomized seeding 
points on the gray-matter/white-matter interface.

A parcellation scheme was applied to whole brain stream-
lines using an automated anatomical labeling (AAL) atlas,29 

segmented into 90 cerebral areas in order to construct 
a structural brain network. Each AAL region represented 
a node in the brain network, and an edge in the brain network 
was defined as the number of white-matter streamlines con-
necting the nodes normalized by volume of the nodes to 
stabilize inter-subject variability. Before training by using 
deep learning model, the strength of brain connections was 
adjusted for age, sex, education, drink, smoke, hypertension, 
and diabetes mellitus using a multiple linear regression model. 
For the subgroup analysis by sex, sex was not included in the 
model. To reduce the effect of inter-subject variability on the 
training process, the resulting residuals were used to substitute 
for the raw connection strength.

Conventional DTI Metrics
To investigate the correlation of conventional DTI metrics 
including diffusivity and network properties with OSA sever-
ity and daytime sleepiness, we employed fractional anisotropy 

(FA) and three network parameters including node strength, 
nodal efficiency, and node betweenness centrality. FA mea-
sures the microstructural integrity of white matter.5,8 Node 
strength is the sum of connection weights connecting neighbor 
nodes, assessing the ability of information interactions with 
these nodes.30 Nodal efficiency reflects the importance of the 
node for reciprocal communication within the brain network, 
estimated by the average path length between any node and 
other nodes.31 Node betweenness centrality is defined as the 
fraction of shortest paths between any two nodes that pass 
through a given node, and indicates the relative importance 
of a node on information flow in a complex network.32

Convolutional Neural Network 
Architecture
Before applying the deep learning algorithm to connectiv-
ity matrices, as overfitting which corresponds exactly or 
closely to target variables in the analysis model was 
expected due to the relatively small size of the training 
dataset (n = 398/142/256/222/176 for whole/men/women/ 
non-OSA/OSA group), we employed the synthetic minor-
ity over-sampling technique33 based on a randomly inter-
polated resampling procedure across the nearest neighbors, 
which enlarges the training dataset by triple augmentations 
for each subject.

Table 2 Sleep Variables of All Participants

Whole 
(n=553)

Men 
(n=197)

Women 
(n=356)

P Non-OSA 
(n=308)

OSA 
(n=245)

P

AHI (events/hour) 6.9 ± 8.5 8.5 ± 10.0 6.0 ± 7.4 <0.01 1.8 ± 1.4 13.2 ± 9.5 <0.01

Mild (5–14) 175 (31.6) 73 (37.1) 102 (28.7) 0.04 175 (71.4)

Moderate (15–29) 56 (10.1) 26(13.2) 30 (8.4) 0.07 56 (22.9)
Severe (≥30) 14 (2.5) 8 (4.1) 6 (1.7) 0.09 14 (5.7)

minSpO2 (%) 87.8 ± 4.9 86.8 ± 5.1 88.4 ± 4.7 <0.01 90.4 ± 3.1 84.6 ± 4.8 <0.01

meanSpO2 (%) 95.7 ± 1.3 95.5 ± 1.1 95.9 ± 1.4 <0.01 96.2 ± 1.2 95.1 ± 1.2 <0.01

TS90 (min) 4.7 ± 13.3 2.5 ± 5.5 2.5 ± 11.8 0.99 0.7 ± 9.5 4.7 ± 10.2 <0.01
PTS90 (%) 1.5 ± 3.9 0.7 ± 1.5 0.7 ± 3.2 0.99 0.2 ± 2.5 1.3 ± 2.8 <0.01

ODI (events/hour) 6.2 ± 8.0 7.6 ± 9.3 5.5 ± 7.1 <0.01 1.6 ± 1.4 12.0 ± 9.0 <0.01

ESS 5.0 ± 3.2 4.6 ± 2.8 5.3 ± 3.4 0.01 5.2 ± 3.4 4.9 ± 3.0 0.03
TST (min) 391.4 ± 74.2 384.8 ± 74.3 395.0 ± 74.0 0.12 395.1 ± 73.7 386.7 ± 74.8 0.19

Stage N1 (%) 6.1 ± 4.9 6.7 ± 5.8 5.5 ± 4.2 0.01 5.2 ± 3.8 6.9 ± 6.0 <0.01

Stage N2 (%) 56.9 ± 11.0 56.3 ± 12.3 57.4 ± 10.0 0.26 57.1 ± 10.7 56.7 ± 11.3 0.71
Stage N3 (%) 3.2 ± 4.1 2.4 ± 4.1 2.6 ± 3.7 0.51 2.7 ± 3.9 2.3 ± 3.8 0.23

Stage R (%) 20.8 ± 6.7 20.1 ± 6.9 21.2 ± 6.7 0.08 21.3 ± 7.0 20.0 ± 6.5 0.04

Notes: Data are presented as n (%) or mean ± SD, unless otherwise stated. 
Abbreviations: AHI, apnea–hypopnea index; minSpO2, minimum oxygen saturation; meanSpO2, mean oxygen saturation; ODI, oxygen desaturation index; ESS, Epworth 
Sleepiness Scale; TST, total sleep time; TS90, time spent with oxygen saturation below 90%; PTS90, percentage of time spent with oxygen saturation below 90%.
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Prior neural network techniques have a limitation when 
applied to brain network data to determine the relationship 
between anatomical brain connectivity related to OSA sever-
ity and daytime sleepiness. Fully connected neural networks 
may ignore the topological relationships between edges or 
nodes by treating the input connection weights as a vector of 
features.23 Conventional convolutional neural networks 
(CNNs) use traditional convolutional filters (ie, square fil-
ters) designed to capture the spatial 2D grid locality of 
images, which treat connectivity matrix as an image.23 It 
also cannot capture topological relationships in the brain 
network. Therefore, in the present study, we applied the 
BrainNetCNN,23 which is a novel type of CNN optimized 
for the connectivity matrix. It consists of three types of 
layers (Figure 1): an Edge-to-Node (E2N) layer, which 
works by assigning weights to the edges of the network, 
a node-to-graph (N2G) layer, which reduces the dimension-
ality of the input by taking a weighted combination of nodes 
to output a single response and a final fully connected (FC) 

layer. The E2N layer takes a 90×90 connectivity matrix 
derived from DTI and uses a 256×1 × 90 filter, which allows 
to extract topological features in the brain network. It gives 
a unique output value for each node i as it takes the average 
of weights of each edge connected to node i. The outputs of 
the E2N layer, 1×90 × 256 feature maps, are the inputs to 
N2G layer which acts as a 1D convolution to compress the 
node information. Finally, the number of features is reduced 
to the number of target variables through an FC layer with 
1×1 × 64 feature maps. To avoid overfitting on the training 
set, we engaged an additional measure, adopting a dropout 
layer of 0.5 before the FC layer and to prevent vanishing 
gradient a leaky rectified linear unit with a negative slope of 
0.2 was employed. Furthermore, we empirically set the 
number of training iterations as 30,000 for the whole 
group and 20,000 for other groups. To minimize the 
Euclidean distance loss with a weighted L2 regularization 
term between the predicted and actual scores on the training 
set, BrainNetCNN was trained using a stochastic gradient 

Figure 1 Schematic overview of the convolutional neural network architecture used to estimate the sleep variables. The convolutional neural network consists of an Edge- 
to-Node (E2N) layer, a node-to-graph (N2G) layer and fully connected (FC) layer. The E2N layer takes a 90×90 connectivity matrix and works by assigning weights to the 
edges of the network, a node-to-graph (N2G) layer reduces the dimensionality of the input by taking a weighted combination of nodes to output a single response and a final 
fully connected (FC) layer reduces the number of features for estimating a target variable. The saliency map is obtained by computing the partial derivatives of the output 
with respect to the input connectivity matrix for every input edge. Edges with a larger partial derivative were determined to be more predictive of the target variable.
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descent algorithm, which updates the weights by a linear 
combination of the negative gradient and the previous 
weight update at the learning rate of 0.01.

Statistical Analysis
The general characteristics are reported as means and stan-
dard deviations and proportions with group comparisons 
using t-tests and standard chi-squared test for continuous 
and categorical variables, respectively. The statistical signif-
icance was set at p<0.05. For the conventional DTI metrics 
analyses, statistical significance was set at p<0.05, after false 
discovery rate controlled for multiple comparisons.

To evaluate consistency and performance of the 
BrainNetCNN model, we performed Three-fold Cross- 
Validation on the training and validation sets, and calculated 
the mean absolute error (MAE), the Pearson’s correlation 
coefficient (R) and the probability of absolute error less than 
standard deviation (PAE<SD) between the predicted and the 
actual scores. In the present study, we report average and 
standard deviation of MAE, R and PAE<SD over cross- 
validation folds. The statistical significance for R was set 
at p<0.05 in all cross-validations. When the R between the 
predicted and actual scores met the statistical significance 
(p<0.05) in all cross-validations, the deep learning model 
was accepted as a meaningful prediction model. To deter-
mine which pairwise connections were learned by 
BrainNetCNN to be predictive of AHI, ODI, minSpO2 and 
ESS, we used the method of saliency visualization22 that 
computes the partial derivatives of the output (ie, predicted 
score) with respect to the input connectivity matrix for 

every input edge.23 Edges with a larger partial derivative 
were determined to be more predictive of the actual score, 
which have higher pairwise connections contributing to 
better prediction (Figure 1). The BrainNetCNN was imple-
mented with deep a learning framework (Caffe, https:// 
caffe.berkeleyvision.org/).

Results
Conventional DTI Metrics
There were no meaningful correlations (R < 0.3 and P > 0.05) 
between any conventional DTI metrics including FA, node 
strength, regional efficiency, and node betweenness centrality 
and OSA severity and daytime sleepiness in the whole dataset, 
and in all the subgroups. This suggests that conventional DTI 
metrics may not be a proper predictor of OSA severity and 
daytime sleepiness although they were different by group 
comparisons between non-OSA and OSA groups as reported 
in previous studies including our own, based on the same 
population.8,9

Prediction of OSA Severity
The results of using the BrainNetCNN model to predict 
AHI, ODI and minSpO2 scores are summarized in Table 3. 
We achieved meaningful Pearson’s correlation coefficients 
and PAE<SD for AHI, ODI and minSpO2 in the test dataset 
of whole group and the subgroups, suggesting that the 
deep learning method is better than conventional DTI at 
predicting the degree of OSA severity indicated by AHI, 
ODI, and minSpO2.

Table 3 Pearson’s Correlation Coefficient (R), Mean Absolute Error (MAE), and Probability of Absolute Error Less Than Standard 
Deviation (PAE<SD) Between Measured and Predicted Apnea–Hypopnea Index (AHI), Oxygen Desaturation Index (ODI), and Minimum 
Oxygen Saturation (minSpO2) Scores with Three-fold Cross-Validation

AHI ODI minSpO2

R* MAE PAE<SD R* MAE PAE<SD R* MAE PAE<SD

Whole group Train 0.74 ± 0.0 4.37 ± 0.3 0.89 ± 0.0 0.74 ± 0.0 4.09 ± 0.3 0.89 ± 0.0 0.73 ± 0.0 2.95 ± 0.3 0.83 ± 0.0
Valid 0.60 ± 0.1 5.01 ± 0.7 0.86 ± 0.0 0.61 ± 0.1 4.66 ± 0.6 0.86 ± 0.0 0.56 ± 0.0 3.42 ± 0.3 0.78 ± 0.1
Test 0.65 ± 0.0 6.10 ± 0.1 0.81 ± 0.0 0.67 ± 0.0 5.59 ± 0.3 0.84 ± 0.0 0.60 ± 0.0 3.61 ± 0.2 0.74 ± 0.0

Men group Train 0.95 ± 0.0 3.60 ± 0.3 0.95 ± 0.0 0.95 ± 0.0 3.13 ± 0.2 0.94 ± 0.0 0.92 ± 0.0 3.10 ± 0.5 0.83 ± 0.1
Valid 0.77 ± 0.1 5.05 ± 1.2 0.90 ± 0.1 0.76 ± 0.1 4.52 ± 1.1 0.90 ± 0.1 0.73 ± 0.1 3.85 ± 0.1 0.72 ± 0.0

Test 0.71 ± 0.0 5.01 ± 0.3 0.90 ± 0.1 0.69 ± 0.0 4.59 ± 0.2 0.92 ± 0.0 0.72 ± 0.0 3.60 ± 0.5 0.73 ± 0.0

Women group Train 0.86 ± 0.0 3.93 ± 1.4 0.87 ± 0.1 0.85 ± 0.0 3.87 ± 0.6 0.83 ± 0.1 0.84 ± 0.0 2.32 ± 0.1 0.89 ± 0.0

Valid 0.77 ± 0.0 4.47 ± 0.6 0.84 ± 0.0 0.75 ± 0.0 4.32 ± 0.5 0.82 ± 0.0 0.60 ± 0.1 2.86 ± 0.4 0.86 ± 0.1
Test 0.73 ± 0.1 4.22 ± 1.2 0.85 ± 0.1 0.74 ± 0.1 4.21 ± 0.5 0.82 ± 0.1 0.55 ± 0.0 3.04 ± 0.3 0.78 ± 0.0

Notes: *All Pearson’s correlation coefficients (R) were statistically significant at P < 0.01. Values are Listed for Three Different Groups/Subgroups: Whole Dataset (n = 553), 
Men Group (n = 197) and Women Group (n = 356).
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Anatomical Brain Connectivity Related to 
OSA Severity
The partial derivatives predictive of AHI, ODI and min 

SpO2 scores are plotted with edges connecting nodes of 
AAL atlas regions (see Figures 2 and 3). In the whole 
group, we could delineate the prominent hubs of 
important connections such as the left motor area, left 
fusiform gyrus, and the limbic system, for predicting 
OSA severity (Figure 2). In the subgroup analysis, 
anatomical connections related to OSA severity dif-
fered by sex (Figure 3). AHI and ODI were predicted 
by the connections of hubs located in left occipital and 
right prefrontal areas for men, and in left occipital, 

prefrontal areas and the limbic system for women. 
The lowest value of oxygen saturation, minSpO2, was 
closely related to left occipital areas and the limbic 
system in men, and to left occipital, temporal areas 
and limbic system in women.

Prediction of Degree of Daytime 
Sleepiness
The performance of the BrainNetCNN model to predict 
daytime sleepiness is summarized in Table 4. The deep 
learning method predicted ESS in the whole group analy-
sis as well as in the subgroup analysis by sex and presence 
of OSA.

Figure 2 The brain connectivity most predictive of the apnea–hypopnea index (AHI), oxygen desaturation index (ODI), and minimum oxygen saturation (minSpO2) scores in 
the whole group. The brain connectivity with the top 20 derivative magnitudes were chosen for clarity. On the 3D surface images, the thickness of individual edge (red) 
indicates the partial derivative magnitude and the size of each sphere (blue) indicates the sum of the partial derivative magnitude, with respect to AHI, ODI, minSpO2 scores, 
respectively. A complete list of the region labels is available in Table S1.

Figure 3 The brain connectivity to be most predictive of apnea–hypopnea index (AHI), oxygen desaturation index (ODI), and minimum oxygen saturation (minSpO2) score 
for two different subgroups: men and women. The brain connections with the top 20 derivative magnitudes were chosen for clarity. On the 3D surface images, the thickness 
of individual edge (red) indicates the partial derivative magnitude and the size of each sphere (blue) indicates the sum of the partial derivative magnitude, with respect to AHI, 
ODI, minSpO2 scores, respectively. A complete list of region names corresponding to the region labels is available in Table S1.
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Anatomical Brain Connectivity Related to 
Daytime Sleepiness
The partial derivatives to be predictive of ESS scores are 
plotted with edges connecting nodes of the AAL atlas regions 
(see Figure 4). In the whole group, prominent hubs were the 
left superior frontal areas, the cingulate, precuneus, angular, 
occipital temporal, prefrontal, hippocampal, and posterior 
inferior parietal areas known as components of the right 
DMN in a previous study.34 In the subgroup analysis, sex 
differences were found in brain connectivity related to daytime 
sleepiness. The right DMN appeared to be a prominent hub of 
important connectivity in men. In contrast, the right prefrontal 
areas and the left DMN were important in women. The pre-
sence of OSA also influenced the characteristics of anatomical 
connections. Important connectivity related to sleepiness were 
in the right DMN and the left limbic system in the OSA group, 
but in bilateral prefrontal areas and the right limbic system in 
the non-OSA group.

Discussion
This study was motivated by a desire to overcome the 
limitations of conventional approaches to brain network 

analyses, which could not readily estimate a continuous 
property (ie, OSA severity and daytime sleepiness) in 
relation to a nonlinear complex system (ie, structural 
brain network). For this goal, we applied a novel deep 
learning algorithm that can effectively discriminate subtle 
differences in the strength of anatomical brain connec-
tions. Three major findings in the present study support 
our hypothesis. First, while conventional DTI metrics did 
not predict OSA severity and daytime sleepiness (R < 0.3 
and P > 0.05), the deep learning technique accurately 
predicted AHI (R = 0.69 ± 0.1, P < 0.01), ODI (R = 0.66 
± 0.1, P < 0.01), minSpO2 (R = 0.62 ± 0.1, P < 0.01), and 
ESS (R = 0.70 ± 0.0, P < 0.01) for test datasets of all 
group/subgroup analyses. The high correlation as well as 
the high probability of absolute error within 1 standard 
deviation (up to 92%) indicate that the predicted OSA 
severity and daytime sleepiness is a close proxy of the 
actual OSA severity and daytime sleepiness. Second, the 
deep learning technique can determine anatomical brain 
connectivity associated with OSA and daytime sleepiness. 
Finally, our approach revealed the effects of sex and OSA 
on the relationship of anatomical brain connectivity with 
daytime sleepiness. Sex also influenced network connec-
tivity related to OSA severity. Although previous studies 
showed group differences, OSA vs non-OSA, in white 
matter integrity and network properties,5,8,9 we could not 
find any topographic features of FA values and network 
properties that explained incremental changes in OSA 
severity and daytime sleepiness with conventional network 
analysis in this study. The present findings suggest that 
deep learning techniques are promising tools to provide 
neuroimaging biomarkers of OSA severity and daytime 
sleepiness and to explain the phenotypic diversity in OSA.

OSA affects a wide range of brain areas related to 
medullary respiratory regulatory, cognitive and autonomic 
function.35 In the present study, OSA severity was related 
to brain connectivity including the left motor system that 
consists of the precentral gyrus, the supplementary area, 
and its connections and the left limbic system that includes 
amygdala, caudate, cingulate, putamen and its neighboring 
connections. These brain systems are susceptible to OSA 
and related to breathing control, mood, cognition, and 
cardiovascular regulation.35 These findings suggest that 
the neural substrates for common clinical manifestations 
of OSA such as cardiovascular dysregulation, cognitive 
dysfunction, and affective change can be better identified. 
Chronic exposure to repetitive hypoxia in OSA results in 
myelin and axonal damage as well as alterations in the 

Table 4 Pearson’s Correlation Coefficient (R), Mean Absolute 
Error (MAE), and Probability of Absolute Error Less Than 
Standard Deviation (PAE<SD) Between Measured and Predicted 
Epworth Sleepiness Scale (ESS) Scores with Three-fold Cross- 
Validation

Train Set Valid Set Test Set

Whole group R* 0.75±0.0 0.60±0.1 0.54±0.0
MAE 1.93±0.0 2.39±0.3 2.13±0.1

PAE<SD 0.82±0.0 0.72±0.1 0.76±0.0

Men group R* 0.92±0.0 0.70±0.0 0.68±0.1
MAE 1.73±0.3 1.94±0.4 2.39±0.6

PAE<SD 0.78±0.1 0.77±0.1 0.60±0.1

Women group R* 0.85±0.0 0.67±0.1 0.60±0.0
MAE 1.85±0.2 2.37±0.3 2.43±0.2

PAE<SD 0.85±0.0 0.77±0.1 0.74±0.0

Non-OSA group R* 0.87±0.0 0.74±0.0 0.73±0.0
MAE 1.55±0.1 2.03±0.2 2.70±0.1

PAE<SD 0.92±0.0 0.81±0.0 0.72±0.0

OSA group R* 0.91±0.0 0.73±0.0 0.74±0.0

MAE 1.25±0.1 1.91±0.1 2.35±0.1
PAE<SD 0.95±0.0 0.79±0.0 0.72±0.0

Notes: *All Pearson’s correlation coefficients (R) were statistically significant at P < 0.01. 
Values are Listed for Five Different Groups/Subgroups: Whole Dataset (n = 553), Men 
Group (n = 197), Women Group (n = 356), Non-Obstructive Sleep Apnea (OSA) Group 
(n = 308) and OSA Group (n = 245).
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cellular space that lead to changes in structural network 
properties in these brain areas.8 In addition, we found that 
excessive daytime sleepiness is associated with brain con-
nectivity in the left superior frontal areas and right DMN 

that consists of cingulate, prefrontal, angular, temporal, 
and parahippocampus areas. The DMN is closely tied to 
memory performance36 and the prefrontal cortex sub- 
serves several cognitive domains.37 DMN areas are 

Figure 4 The brain connectivity maps to be most predictive of the Epworth Sleepiness Scale (ESS) scores for five different groups/subgroups: whole dataset, Men group, 
Women group, non-OSA group and obstructive sleep apnea (OSA) group. The brain connectivity with the top 20 derivative magnitudes were chosen for clarity. On the 3D 
surface images, the thickness of individual edges (red) indicates the partial magnitude and the size of each sphere (blue) indicates the sum of the partial derivative magnitude, 
with respect to ESS scores, respectively. A complete list of region names corresponding to the region labels is available in Table S1.
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vulnerable to increased amyloid accumulation in older 
adults who experience daytime sleepiness.18 These find-
ings can be interpreted as one of the mechanisms for 
cognitive impairment in subjects with daytime sleepiness, 
especially in the elderly population.17

The men and women brains show anatomical, functional 
and biochemical differences across the whole life span.38 In 
the present study, we investigated sex differences in brain 
connectivity related to OSA severity and daytime sleepiness. 
Men and women had different patterns of brain connectivity 
related to AHI, ODI, minSpO2 and ESS. AHI and ODI was 
associated with prefrontal area-related connectivity, left side 
in women but right side in men. The prefrontal area is 
involved in decision-making and associated with sex differ-
ences in its response to stress.39 Prefrontal lesions impair 
decision-making by right-sided lesions in men but by left- 
sided lesion in women.40 In the women, but not in men, AHI 
and ODI were related to left limbic system-related connec-
tivity. Women have a larger deep limbic system, which has 
been proposed as one explanation for sex differences in the 
susceptibility to depression.41 Our findings may help explain 
why depression is reported more frequently as a presenting 
symptom in women than men with OSA.42

The range of excessive daytime sleepiness across seve-
rities of sleep apnea or pathological sleep in general remains 
a mystery. In our analysis, daytime sleepiness was asso-
ciated with right prefrontal areas and left DMN-related 
connectivity in women, but with right DMN-related con-
nectivity in men. Daytime sleepiness contributes to memory 
and mood impairment in OSA.43 Interestingly, left and right 
DMNs are associated with verbal and spatial memory per-
formance, respectively.44 In women, right prefrontal areas 
that play a key role in working memory and executive 
functioning were also associated with excessive daytime 
sleepiness, and might be related to the decline in OSA- 
related attention and executive function.45 Sex effects 
need to be considered when interpreting neuroimaging stu-
dies in OSA.

In both groups, anterior cingulate-, parietal-, and orbi-
tofrontal-related connections were common brain connec-
tions susceptible to daytime sleepiness. These areas are 
known to be vulnerable to daytime sleepiness and are 
associated with increasing amyloid accumulation.18 

Besides these areas, ESS was related to right limbic sys-
tem and bilateral prefrontal areas-related connectivity in 
the non-OSA group, but to right DMN and left limbic 
system-related connectivity in the OSA group. Affected 
brain connections were more widely distributed in the 

OSA group. In particular, the hippocampus-related con-
nections were susceptible to daytime sleepiness in the 
OSA group. Hippocampus damage caused by OSA may 
lead to worsening daytime sleepiness as well as cognitive 
impairments.46

The present study has several limitations. The DTI 
data had a limited number of isotropic gradient directions 
(n = 15) and were measured at a relatively low diffusion 
weight (b = 1000 s/mm2). Thus, the tractography analysis 
may not be fully resolved in voxels with crossing, kis-
sing, fanning, and curving fiber configurations although 
we utilized state-of-the-art algorithms.27,28 This may lead 
to incorrect and ambiguous estimates of fiber 
orientation.47 The sample size (n = 553) in this retro-
spective and observational study is not large enough to 
determine the heterogeneity of high dimensional struc-
tural brain network data by using the present deep learn-
ing technique. To minimize this limitation, we applied 
data augmentation. Since this approach may also cause 
model overfitting for the training dataset, our approach 
needs to be tested and refined in a larger independent 
sample including other institutional data sets. It is likely 
that different severities and clinical vs population-based 
differences exist, which our results do not address, nor 
the dynamics of network connectivity over time. Racial 
differences in connectivity and OSA impact will need 
assessments in a diverse population. Our subjects were 
a non-clinical population, mostly diagnosed with milder 
OSA (71.4%). Although our trained model successfully 
predicted OSA severity and found OSA severity-related 
brain connections, the number of severe OSA was quite 
small during the training process. Therefore, since there 
might be the probability of large absolute error for severe 
OSA, additional validation is needed for severe OSA. In 
addition, only 6.2% of our subjects experienced excessive 
daytime sleepiness (ESS > 10), which may result from 
underestimation in ESS domains in older adults.48 

Therefore, although our trained model successfully pre-
dicted ESS, the number of severe ESS was relatively 
small during the training process; additional validation 
is needed for severe subjective sleepiness. Finally, in the 
present study, we did not compare cognitive performance 
between groups. Although most brain connections sus-
ceptible to OSA severity and daytime sleepiness deter-
mined by deep learning model are related to cognitive 
performance, decline associated with OSA and sleepiness 
could not be quantitatively explained. It remains an 
important line of inquiry for future research.
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Conclusion
In summary, the present study provides a novel approach 
to determine the anatomical blueprint underlying OSA and 
daytime sleepiness-related brain connectivity in middle 
and late adulthood. This approach has clinical implications 
to delineate the mechanism of functional impairment and 
daytime sleepiness, and to predict the risk of subsequent 
cognitive impairment in OSA.
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