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Abstract

Transient species, which do not maintain self-sustaining populations in a system where they

are observed, are ubiquitous in nature and their presence often impacts the interpretation of

ecological patterns and processes. Identifying transient species from temporal occupancy,

the proportion of time a species is observed at a given site over a time series, is subject to

classification errors as a result of imperfect detection and source-sink dynamics. We use a

simulation-based approach to assess how often errors in detection or classification occur in

order to validate the use of temporal occupancy as a metric for inferring whether a species is

a core or transient member of a community. We found that low detection increases error in

the classification of core species, while high habitat heterogeneity and high detection

increase error in classification of transient species. These findings confirm that temporal

occupancy is a valid metric for inferring whether a species can maintain a self-sustaining

population, but imperfect detection, low abundance, and highly heterogeneous landscapes

may yield high misclassification rates.

Introduction

Understanding the processes underlying community assembly is one of the primary goals of

community ecology. Traditional approaches make inferences about community processes

based on the set of species identified as community members, typically those observed at a

study site [1, 2]. Data on communities are typically gathered via field surveys at a given site for

one or more time points. However, the record of species from such community surveys often

includes transient species that do not maintain self-sustaining populations in that community

[3]. A growing number of studies use temporal occupancy, or the proportion of a multi-year

time series over which a species is observed, to determine which species are "core" members of

their communities and which species are transient [3–9]. Temporal occupancy provides a
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quantitative measure of persistence within a community over time and its distribution tends

to be bimodal [3]. Previous studies have used arbitrary thresholds (e.g. core species are those

that occur in more than 50%, or 67%, or 75% of years [3, 5, 7], and Snell Taylor et al. (2018)

found that a wide range of ecological patterns were generally robust to the specific threshold

used. Nevertheless, ecological data collection is imperfect and using temporal occupancy to

infer core or transient classification is susceptible to classification error.

One type of error is inferring that a species is transient when it is actually a core member of

the community. A self-sustaining species that is present on the landscape every year may fail to

be observed in some years, and hence be misclassified as a transient species, for three primary

reasons (Table 1). These missed detections can occur due to low population densities [10–12],

less conspicuous morphology (e.g., drab plumage) or behavior (e.g., singing quietly or infre-

quently; [13, 14]), and habitat structure with characteristics that limit the distance over which

individuals can be detected (e.g., dense vegetation which may obscure sightings and attenuate

sound; [15–18]). This latter possibility in particular may lead to potentially confounding gradi-

ents of average detectability along large-scale environmental gradients that range from open,

low productivity deserts and grasslands to higher productivity forests. Although the effect of

imperfect detectability on temporal occupancy and species classification is qualitatively under-

stood, it is unclear how frequently and at what levels of detectability and abundance such

errors occur.

The opposite classification error is also possible, where a species is inferred to be a core

member of a community based on frequent occurrence in a time series, even though it does

not maintain a locally viable population (Table 1). Some individuals of a species are observed

regularly in habitats in which they do not successfully reproduce by dispersing in from adja-

cent suitable habitat [19, 20]. For example, in plants, seeds might be regularly dispersed into

inhospitable habitats [21] and in birds, younger and lower quality males are often displaced by

dominant males to adjacent, suboptimal habitats [22]. In such cases, the temporal frequency

with which a species is observed might be a poor indicator of the extent to which a species can

actually maintain a viable population in that location.

Understanding the frequency of classification errors and the factors that affect those errors

is critical for properly interpreting patterns based on temporal occupancy. Here, we use a sim-

ulation-based approach to examine community dynamics—based on death, birth, dispersal,

and establishment—on complex, dual-habitat landscapes in which species’ habitat associations

are known. We varied average species’ detectability and habitat heterogeneity of the simulated

landscapes to assess how these variables affect rates of misclassification. We expect that core

species are more likely to be misclassified as transients when either detectability or abundance

Table 1. Ways that species can be correctly or incorrectly (boxes in red) classified as maintaining a viable popula-

tion based on temporal occupancy.

Maintains a viable population R0� 1,

"core"

Does not maintain a viable population R0<

1, "transient"

Low temporal

occupancy, inferred to

be "transient"

A: Species that occur persistently at low

density or that have traits making them

difficult to detect

B: Species that only irregularly occur in the

local habitat because they are poorly suited

to that habitat

High temporal

occupancy, inferred to

be "core"

C: Core members of the community that

maintain viable populations and are

reliably observed almost every year

D: Species that occur regularly in the local

habitat despite failing to maintain positive

population growth rates due to repeated

immigration from adjacent source habitat

Error rates A / (A + C) D / (B + D)

R0 refers to the net reproductive rate of a species in a location.

https://doi.org/10.1371/journal.pone.0241198.t001
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is low. In contrast, we expect that species that do not successfully breed in a habitat are more

likely to be misclassified as core members when the local community is embedded within a

more heterogeneous landscape, which increases the likelihood of mass effects from adjacent

habitats.

Methods

Simulation model

Each simulation began by generating an initial landscape, species pool, and global species

abundance distribution (GSAD). The 32 x 32 pixel landscape was made up of two distinct hab-

itat types, A and B, with a parameter for the proportion of the landscape made up of habitat

type A (hA; Fig 1A). Each grid cell represented a local community with a fixed community car-

rying capacity of 100 total individuals of any species. The species pool contained 40 total spe-

cies, with half that could only reproduce successfully in habitat A and half that could only

reproduce successfully in habitat B. The GSAD was a vector of relative species abundances

assigned from a lognormal distribution that defined the relative probability that an immigrant

from outside the landscape would belong to each species. Initially, the landscape was filled to

carrying capacity with individuals drawn randomly from the GSAD.

In each time step, meant to represent one year, the following four processes were modeled:

1. Death. The probability of mortality for each individual at a time step was 0.5 (Fig 1B).

Death rates were independent of the habitat type in which the species occurred.

Fig 1. Schematic documenting the events that occur in a single time step of the simulation, including death, birth,

dispersal, and establishment. See text for details.

https://doi.org/10.1371/journal.pone.0241198.g001
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2. Birth. All individuals occurring within their preferred habitat type produced two offspring

per time step, while individuals occurring in a non-preferred habitat type did not repro-

duce. Offspring were termed “propagules” until they established in a community (see

below; Fig 1C).

3. Dispersal. Newly generated propagules dispersed in random directions by a distance drawn

from a half-Gaussian distribution with a mean of 1.24 grid cells (99% of movements result

in dispersal distances� 4 grid cells; Fig 1D). Established individuals (i.e. adults) only dis-

persed if they were in non-preferred habitats. We also explored dispersal kernels that were

narrower (99% of movements within 2 grid cells) or broader (99% of movements within 8

grid cells) to confirm that results were qualitatively similar. Results for these simulations are

presented in S1–S4 Figs, S1 and S2 Tables.

4. Establishment. Empty spaces in each community were colonized by either a migrant from

outside the community (drawn probabilistically from the GSAD) with a constant immigra-

tion rate probability (0.001) or by an individual selected randomly from the pool of new or

dispersing propagules. Once individuals became established, they only left their community

via dispersal or death (Fig 1E). Propagules that did not establish were eliminated at the end

of each time step.

We ran simulations for 200 time steps, which was long enough for species richness to

achieve equilibrium in the landscape, and used the last 15 time steps to calculate temporal

occupancy. Fifteen time steps represented an ecological dataset with a 15-year time series, a

sampling period used in several previous studies which provides a reasonably high resolution

estimate of temporal occupancy [7, 23]. Additionally, we calculated landscape-wide abun-

dances for each species at the end of the simulation.

We ran 50 replicate simulations for values of hA 2 {0.5, 0.6, 0.7, 0.8, 0.9} to generate land-

scapes that were more (high hA) or less (low hA) homogeneous. For each simulation, we also

imposed a stochastic detection process in which we varied the probability of detecting an indi-

vidual known to be present, p, from 0.1 to 1.0 in increments of 0.1. Detection probability was

assumed to be both species- and habitat-independent. This resulted in a vector of "observed"

species abundances in each grid cell at each time step.

Simulation analysis

We examined the temporal dynamics of species within a single, centrally located pixel for each

simulation run. Based on the habitat type of the focal pixel, all species either could (core) or

could not (transient) reproduce within that pixel and hence maintain a viable population. We

refer to this as their biological, or true, status. In addition, each species was classified as core or

transient based on temporal occupancy over the last 15 years of the simulation run. Species

observed in five years or fewer (� 33%) were classified as transient while species observed in

more than ten years (> 66%) were classified as core. For these analyses, we ignored the minor-

ity of species with intermediate temporal occupancy which could not be unambiguously

assigned to core or transient status. Thus, each of the species we considered fell into one of the

four categories shown in Table 1. For each simulation run, we calculated the rate of misclassi-

fying core species and the rate of misclassifying transient species (Table 1). Error rates were

examined as a function of average detection probability and landscape similarity in the 7 x 7

pixel region surrounding the focal pixel, which was calculated as the proportion of the regional

window that was the same habitat type as the focal pixel. We used this regional window size

because it reflects the area over which most colonization events to the focal pixel would origi-

nate. Number of species and classification error rates were predicted by detection probability
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and landscape similarity using ordinary least squares linear models. The relationship between

species abundance and core species classification at detection = 0.5 was assessed using a gener-

alized linear model with a logit link.

Code for running these simulations in R is archived at https://github.com/ssnell6/CT-sim.

Results

Communities in homogeneous landscapes (e.g., Fig 2a) typically had a large number of true

core species and only a few true transient species at any given point in time (Fig 2b). Turnover

in the identity of the transient species from one time step to the next resulted in a mode of low

temporal occupancy within an overall bimodal distribution of temporal occupancy (Fig 2c).

Communities in heterogeneous landscapes (e.g., Fig 2d) had more true transient species

appear in their non-preferred habitat type in any given time step due to the greater area of

potential sources of colonization (Fig 2e). Many of these transient species were maintained by

repeated dispersal from the alternate habitat type in the surrounding landscape such that they

had moderate to high values of temporal occupancy (Fig 2f).

Due to the large number of simulation replicates run, all statistical relationships examined

had p< 2e-16 (S1 and S2 Tables), so we focus here on reporting only the sign of effects and

Fig 2. (A) Sample landscape of one simulation run in which the proportion of the full landscape that was habitat A (in red) was set to 0.9. Landscape

similarity around the focal pixel is 0.92. (B) Number of core species (that can reproduce in the red habitat, red line) and transient species (that cannot

reproduce in the red habitat, gray line), plotted over time for the focal pixel from the landscape in (A). (C) Temporal occupancy distribution of the

species in the focal pixel from the landscape in (A). Colors of the bars indicate the number of species according to which habitat type they can

reproduce in. (D) Sample landscape of one simulation run in which the proportion of the landscape that was habitat A (red) was set to 0.5. Landscape

similarity around the focal pixel is 0.49. (E) Number of core species (red line) and transient species (gray line), plotted over time for the focal pixel from

the landscape in (D). (F) Temporal occupancy distribution of the species in the focal pixel from the landscape in (D). Colors of the stacked bars indicate

the number of species according to which habitat type they can reproduce in.

https://doi.org/10.1371/journal.pone.0241198.g002
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the variance explained. The number of true core species (those maintaining a locally viable

population) observed in a pixel increased with detection probability, and even more so with

landscape similarity (S5–S7 Figs). More variance in the number of true core species could be

explained by landscape similarity (R2 = 36%) than detection probability (R2 = 2%). The num-

ber of true transient species (those not maintaining a viable population) observed increased

with detection probability and decreased strongly with landscape similarity (S5–S7 Figs).

More variance in the number of true transient species could be explained by landscape similar-

ity (R2 = 74%) than detection (R2 = 5%).

Species that were true core members of the focal community were more likely to be incor-

rectly inferred as transient at low detection probabilities and low landscape similarities (Fig

3a). More variance in the proportion of misclassified core species could be explained by detec-

tion (R2 = 46%) than landscape similarity (R2 = 11%). Error rates were close to zero when land-

scape similarity was greater than 0.6 and detection probability was greater than 0.3 and

increased most noticeably when detection probability was 0.1, the lowest detection rate

examined.

Transient species that did not reproduce in the focal habitat but regularly occurred there

were incorrectly inferred as core most often at high detection probabilities and low landscape

similarities (Fig 3b). More variance in the proportion of misclassified transient species could

be explained by landscape similarity (R2 = 48%) than detection (R2 = 13%). Error rates for clas-

sifying transient species were zero or near zero when landscape similarity was greater than 0.5.

Transient species misclassification rates were greatest when landscape similarity was less than

0.4, where the majority of colonization events came from the opposite habitat type, such that

poorly adapted species appeared in the focal habitat repeatedly over time. This was exacerbated

at high detection probability, which ensured these true transient occurrences were observed

and therefore misclassified. Additionally, species with low landscape-wide abundance were

more likely to be misclassified as transient when they were truly core members of their

Fig 3. Percent of biologically core (A) species that were incorrectly inferred to be transient and biologically transient

(D) species that were incorrectly inferred to be core for each combination of detection probability and landscape

similarity. The x-axis is the average species detection probability for the simulation run, while the y-axis is the

proportion of a 7 x 7 landscape surrounding the focal pixel that is of the same habitat type. Line graphs (B, E) show the

percent of incorrect classifications of core species (B) or transient species (E) for each detection probability at low (0.3,

solid line) or high (0.8, dashed line) landscape similarity. Line graphs (C, F) show the percent of incorrect

classifications of core species (C) or transient species (F) with increasing landscape similarity at low (0.1, solid line) or

high (0.9, dashed line) detection probability.

https://doi.org/10.1371/journal.pone.0241198.g003
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community, while the odds of misclassifying a core species were less than 13% for species

whose abundance was at least 12% of the most abundant species (Fig 4).

Results were similar using both narrower and broader dispersal kernels (S1–S4 Figs, S1 and

S2 Tables), with narrow kernels having slightly more variance in classification rate than

broader kernels.

Discussion

Several studies have used temporal occupancy to infer the persistence of populations over time

and the degree to which a species can be considered a core member of a community in a par-

ticular location [3, 7–9, 23]. Our simulations showed that in many realistic scenarios, this is a

valid approach, but also confirmed that temporal occupancy is subject to misclassification

errors where core species are inferred to be transient and transient species are inferred to be

core. As expected, low detection probabilities resulted in more frequent misclassification of

core species as transient. Rare species were also more likely misclassified as transient. Low

landscape similarity, when combined with high detection probabilities, resulted in transient

species more frequently being misclassified as core.

Imperfect individual detection influenced the rate at which core species were misclassified

as transients through failing to detect species when they were actually present. These species

were more likely to be inferred as transient at lower detection probabilities. However, error

rates for core species misidentified as transients were quite low as long as detection probabili-

ties were greater than approximately 0.3. This threshold of 0.3 is at the low end of detection

probabilities observed for most bird species, with most species exhibiting substantially higher

rates of detection [24–26]. Specifically, Boulinier et al. (1998) found that across a range of habi-

tats in North America, average detection probabilities for species richness estimates using the

Breeding Bird Survey ranged from 0.65 to 0.85. Johnston et al. (2014) found that the least

detectable family of birds was Paridae, which had a median detectability of 0.27, and the

majority of other families had detection probabilities greater than 0.3. Overall, these findings

suggest that the misclassification of core species is unlikely to be common except at unusually

low detection probabilities that may be relevant for only a small minority of species.

Fig 4. Probability of correct classification of biologically core species based on temporal occupancy as a function

of the log of landscape wide abundance (relative to the abundance of the most abundant species, 100%). Dashed

line indicates the location of the inflection point.

https://doi.org/10.1371/journal.pone.0241198.g004
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Misclassification of core species as transients was also more common for species occurring

at low abundance across the landscape, and in particular, for species with abundances less than

12% of the most abundant species. The probability of detecting a species with n individuals

given an individual detection probability, p, will be 1 –(1 –p)n, and thus this link between

abundance, species detection, and potential misclassification of transient status is quite

expected. Also, species that occur at low density may have large home ranges relative to the

scale of the survey (e.g. woodpeckers, raptors), and may frequently be missed on surveys even

if they are on territory and have high detectability when present. This is one reason that rela-

tively small spatial scales have been shown to have fewer perceived core species and more per-

ceived transient species compared to larger scales [3, 27].

The opposite classification error, misclassifying transient species as core species, was associ-

ated with high habitat heterogeneity. Species occurred in habitats to which they were poorly

adapted because of dispersal from nearby source populations. The greater the surrounding

area containing source populations, the greater the chance of repeated dispersal into nearby

sink habitats causing the species to be regularly detected through time [20]. These errors

became prevalent when 60% or more of the surrounding landscape was different from the

focal habitat. Our simulation model assumed that dispersal of new propagules was random

with respect to habitat type, but if dispersal was biased toward the preferred habitat type

(which seems likely for organisms with active dispersal; i.e., Johnston et al. 2014), it would

reduce the frequency of transient occurrences and therefore reduce observed error rates. The

rate at which transient species were misclassified as core species also decreased with decreasing

detection probability because at low detections, errors caused by repeated dispersal from adja-

cent source habitats were canceled out by detection errors. Overall, these results suggest that

misclassification of transient species is unlikely to be common except in highly fragmented

landscape configurations with unbiased dispersal.

Geographic patterns in the relative prevalence of core and transient species can influence

our understanding of ecological communities when failing to recognize this distinction [7, 23],

especially if the probability of misclassification varies geographically. One likely source for this

is detection probability, which is thought to vary along environmental gradients. In particular,

it has been suggested that average detectability decreases along continental to global productiv-

ity gradients because species are more difficult to detect in more densely vegetated environ-

ments [17]. However, despite such a potential bias, past work has shown that there is typically

a positive relationship between either temporal occupancy or species richness and remotely

sensed proxies for productivity, meaning the observed patterns were opposite what would be

predicted purely from a detectability effect [7, 17, 23]. As such, these patterns of occupancy

and richness were observed despite, and not because of, geographic variation in detectability.

Other studies have suggested that birds sing more frequently in densely forested habitats so

aural-based sampling should not observe this effect in forests, but in open habitats [24]. In

these cases, variation in detection probability alone has the potential to generate apparent pat-

terns in richness or abundance, with misclassification rates of species varying across the

gradient.

While we parameterized our simulation model to loosely reflect the biology of songbirds

(e.g. reproductive rate, dispersal distance), the inferences that can be made from this simula-

tion model are more broadly generalizable. We chose to focus on birds because they are highly

mobile, can disperse widely, and have been studied empirically in this core-transient context

[3, 7, 23]. These first two attributes make temporal occupancy particularly useful for identify-

ing core and transient birds in communities, but also potentially more prone to errors due to

source-sink dynamics.

PLOS ONE Temporal occupancy simulations

PLOS ONE | https://doi.org/10.1371/journal.pone.0241198 October 23, 2020 8 / 12

https://doi.org/10.1371/journal.pone.0241198


Detectability is dependent on both species attributes and the environment. Some species

are inherently more detectable due to variation in species color, size, and behavior. A large,

colorful bird perched conspicuously or that sings loudly and frequently is detected more often

than a little brown bird in the undergrowth, given they occur at equal densities. Our study is

most relevant for considering how detection probability covaries along an environmental gra-

dient, where detection probability likely varies on average across all species, than for consider-

ing how detection probability varies among species. Nevertheless, species known to have low

detection probabilities will presumably require more targeted monitoring efforts, and tempo-

ral occupancy should be used with caution to infer population persistence and habitat suitabil-

ity for such species.

The aim of our simulation model was to capture how frequently species are misclassified

within the core-transient temporal occupancy framework. Therefore, we focused on land-

scape similarity and detectability, but other parameters could also play a role in determining

the effectiveness of temporal occupancy. In our study, birth rates and death rates were con-

stant, so increasing the birth rates or decreasing death rates of species occurring in their pre-

ferred habitats could allow specialists to reach equilibrium in a habitat more quickly,

decreasing the number of transient species in the community. Additionally, varying immi-

gration across species could enable one species to immigrate more effectively into new habi-

tats than other species, but in our study, immigration and dispersal were analogous because

both allowed species to colonize new habitats. We addressed alternative dispersal distances

into new cells by varying the dispersal kernels in supplementary analyses, which demon-

strated that only at very low dispersal do detection and landscape similarity affect core and

transient classification.

In general, we found that temporal occupancy can reliably be used to infer habitat associa-

tions, as well as the likelihood of a species maintaining a viable population in the location

where it was observed, under a broad range of conditions. Depending on the nature of the raw

data available, occupancy modeling approaches (sensu MacKenzie et al. 2002) may have the

potential to refine assignments of core and transient species status by directly accounting for

detectability, and deserve further research in this context. The use of raw temporal occupancy

may be most problematic in study systems made up of highly isolated habitat fragments where

species commonly disperse from the surrounding landscape matrix, or in habitats or for spe-

cies with uniformly low detection probabilities. Ecologists should explicitly consider whether

detection probabilities vary across the environmental gradients in their study systems before

using temporal occupancy. Considering the relationship of landscape similarity and detection

in specific study systems will provide a guide for when and how to include temporal occupancy

in ecological analyses.

Supporting information

S1 Fig. Percent of biologically core (A) species that were incorrectly inferred to be transient

and biologically transient (D) species that were incorrectly inferred to be core for each combi-

nation of detection probability and landscape similarity at a narrower dispersal kernel (99% of

movements result in dispersal distances� 2 grid cells). The x-axis is the average species detec-

tion probability for the simulation run, while the y-axis is the proportion of a 7 x 7 landscape

surrounding the focal pixel that is of the same habitat type. Line graphs (B, E) show the percent

of incorrect classifications of core species (B) or transient species (E) for each detection proba-

bility at low (0.3, solid line) or high (0.8, dashed line) landscape similarity. Line graphs (C, F)

show the percent of incorrect classifications of core species (C) or transient species (F) with
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