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Epilepsy is a chronic neurological disorder marked by recurrent seizures, significantly affecting the pop-
ulation in Saudi Arabia across all age demographics. The global prevalence of active epilepsy is around
6.38/1,000 persons and in the Arabian region, the median prevalence of active epilepsy is 4.4/1,000 per-
sons. However, over 75% of individuals are untreated. Consequently, the development of therapeutic
strategies with increased efficacy and safety profiles is essential to improve the survival rate among epi-
lepsy patients. The current study integrates network pharmacology along with Bioinformatics
approaches to explore the potential molecular mechanisms of local flora of Saudi Arabia including
Solanum incanum, Abrus precatorius, Withania somnifera, and Azadirachta indica in epilepsy treatment.
In the preliminary phase, data related to the bioactive components of the local plants and the associated
target genes of both these plants and epilepsy were gathered from scientific literature and open-source
databases. This data was then analyzed to identify common targets between the plants and ovarian can-
cer. Based on these common targets, a protein–protein interaction (PPI) network was constructed utiliz-
ing the STRING database, which was subsequently incorporated into the Cytoscape software for
identification of hub genes based on their degree of connectivity. Lastly, an interplay network depicting
the associations between the compounds and the overlapping genes was formulated via Cytoscape, to
study the potential network pharmacology implications of these active compounds in relation to ovarian
cancer. Following that, a compound-target protein-pathway network was constructed which uncovered
that namely abrectorin, genistin, (+)-catechin, precatorine, (+)-ascorbic acid, licoflavanone, skrofulein,
stigmasterone, 5,7-Dihydroxy-40-methoxy-8,30-di-C-prenylflavanone could potentially be used as antag-
onists for the therapeutic management of epilepsy by targeting TNF and TP53 proteins. Furthermore, the
implementation of molecular docking reinforces the binding affinity of the compound, indicating a robust
stability of the forecasted compounds at the docked site. This research lays both a theoretical and exper-
imental groundwork for more profound investigations and establishes a practical method for the strate-
gic employment of active compounds in the development of anti-epileptic therapeutics.
� 2023 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Epilepsy is a prevalent neurological disorder in Saudi Arabia
that holds a significant status among the most critical brain disor-
ders worldwide, influencing the lives of>70 million people (Thijs
et al., 2019). Epilepsy is not characterized by a singular manifesta-
tion or etiology; rather, it encompasses a myriad of symptoms
linked to an assortment of risk factors and demonstrates a notable
genetic inclination (Camfield and Camfield, 2015). Anxiety, depres-
sion, and cardiovascular disorders, migraines, and dementia are
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observed to be 8 times more prevalent in epilepsy patients. An esti-
mated 80% of individuals with epilepsy reside in developing coun-
tries (Beghi, 2020). This leads to a significantly amplified
comorbidity burden in those with this neurological disorder.
Despite the significant advancements in the development of over
20 antiepileptic drugs for seizure management, it remains perplex-
ing that a considerable proportion of individuals with epilepsy,
approximately one-third, continue to endure seizures that are
unresponsive to these medications (Löscher et al., 2020).

The Kingdom Saudi Arabia boasts a significant floral biodiver-
sity, with an estimated 2250 species distributed across its varied
ecosystems (Rahman et al., 2004). The region is distinguished by
its rich assortment of both indigenous and cultivated plant species
(Sher et al., 2010). Unfortunately, the progression of indigenous
knowledge across generations faces obstacles due to limited dis-
semination of information, a dearth of data concerning their prac-
tical uses, and the complexities in discerning wild medicinal
plants. These hurdles complicate the efforts to preserve and
employ traditional knowledge, potentially putting both cultural
heritage and potential therapeutic resources at risk. Previous stud-
ies has provided indications that native plants of Saudi Arabia,
including Solanum incanum, Abrus precatorius, Withania somnifera,
and Azadirachta indica, possess anti-epileptic properties (Worku,
2022, Attal et al., 2010, Anju et al., 2018, Birhan, 2022). Despite
these promising indications, it is imperative to highlight the com-
parative scarcity of rigorous clinical trials that investigate the effi-
cacy of these botanical entities in a clinical milieu for the
amelioration of epilepsy. Consequently, the present study is
designed to decipher the synergistic influence of these phytogenic
extracts in epilepsy management, thereby establishing a founda-
tion for prospective clinical exploration.

Recognizing the potential of phytoconstituents, Hopkins
(Hopkins, 2007) formulated an integrative computational
approach ‘‘network pharmacology”. Network pharmacology transi-
tioned the paradigm that single gene disordered required single
target drugs while complicated diseases where gene network is
involved required more holistic multiple-targeted therapies
(Noor et al., 2023, Noor et al., 2022). Thus, network pharmacology
has now been emerged as an asset in the process of drug develop-
ment, contributing significantly to the reinvigoration of traditional
knowledge (Chandran et al., 2017). This strategy is employed as a
foundation for the initial identification and screening of phytocon-
stituents, as well as the discovery of innovative therapeutic targets,
thereby advancing our understanding of disease mechanisms
(Noor et al., 2022). Therefore, it fundamentally aids in the interna-
tionalization and modernization of medicinal herbs, fostering a sig-
nificant change in the drug discovery paradigm. In essence, the
successful identification of potential drugs often necessitates a
comprehensive understanding of the complex domain of network
pharmacology. Numerous studies have highlighted the successful
application of network pharmacology in identifying new therapeu-
tic targets, repurposing existing drugs, and designing combination
therapies. These endeavors have resulted in significant advance-
ments in the treatment of various diseases, ranging from cancer
to neurological disorders. However, it is crucial to critically evalu-
ate and validate these approaches through well-designed clinical
trials and observational studies that assess their true impact on
patient outcomes. While clinical trials specifically focused on net-
work pharmacology interventions are limited, Ongoing research
endeavors are continuously exploring the clinical implications of
network pharmacology approaches across various disease areas.
Network pharmacology-based findings, although primarily based
on computational predictions and experimental evidence, provide
valuable insights into the potential clinical implications of network
pharmacology.
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This study endeavors to elucidate the active constituents, corre-
sponding targets, and complex pharmacodynamic mechanisms
driving the anti-epileptic potential of Solanum incanum, Abrus pre-
catorius, Withania somnifera, and Azadirachta indica through the
application of network pharmacology integrated with bioinformat-
ics techniques. Network pharmacology deploys multi-target
approaches to elucidate the complex interplay between bioactive
compounds and their respective protein targets from a network-
centric perspective. Later, the findings were further validated
through molecular docking analysis. To the best of our understand-
ing, this research marks the inaugural investigation into the thera-
peutic potential and mechanistic ac tion of native Saudi Arabian
flora in the treatment of epilepsy, thereby offering conceptual rein-
forcement and trajectories for subsequent fundamental research.
2. Materials and methods

2.1. Data mining

2.1.1. Construction of phytochemical database
Information on the constituents of the four indigenous plants -

Solanum incanum, Abrus precatorius, Withania somnifera, and Aza-
dirachta indica - were collected from scholarly literature and
open-source databases like KNApSAcK (Nakamura et al., 2013)
and Indian Medicinal Plants, Phytochemistry And Therapeutics
(IMPPAT) (Mohanraj et al., 2018) databases. Specific keywords
relating to these plants were employed for searches within the
KNApSAcK and IMPPAT databases. In parallel, an extensive review
of existing studies was undertaken via online scholarly platforms,
including PubMed and Google Scholar.

After retrieval of phytochemicals, these compounds underwent
a selection process on the basis of Drug Likeness (DL) and Oral
Bioavailability (OB) properties. OB, in pharmacological context,
indicates the percentage of an orally ingested drug that becomes
accessible in the circulatory system to exhibit its therapeutic influ-
ence (Sadaqat et al., 2023). An OB value equal to or>30% is typically
utilized as a benchmark in compound screening, as it implies that a
notable proportion of the drug administered orally can be effec-
tively absorbed and distributed throughout the circulatory system
(Yu et al., 2020). Consequently, a OB value > 0.30 augments the
drug-like potential of active constituents, and is thus considered
a crucial factor in the progression and optimization of drug devel-
opment. Furthermore, a qualitative assessment was performed
using DL analysis to evaluate the potential of the active con-
stituents to be transformed into oral drugs based on their drug-
like properties. We only considered active compounds having
OB > 0.30 and DL > 0.18 as potential candidates with drug-like
properties. Tools like MolSoft (DOĞAN et al., 2021) and SwissADME
(Daina et al., 2017a) were later utilized for screening of active com-
pounds based on their drug-like properties.
2.1.2. ADMET profiling
Though OB and DL are significant aspects in the evaluation of a

compound’s drug-like potential, they are not exclusive determinants
of a compound’s suitability for advanced development. Other critical
characteristics, including absorption, distribution, metabolism,
excretion, and toxicity (ADMET), are also necessitated to be assessed
for determining a compound’s potential to be used as drug. In rela-
tion to this, the SwissADME server (Daina et al., 2017b) and Protox II
(Banerjee et al., 2018) tools were employed to examine the ADMET
properties of active constituents. Those compounds demonstrating
non-active toxicity, superior absorption, and commendable solubil-
ity characteristics were selected for further study.
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2.1.3. Target prediction
The synergistic effect of compounds from the four indigenous

plants was evaluated by scrutinizing interactions derived from
two disparate platforms, STITCH (Gfeller et al., 2014) and Swiss
Target Prediction (Kuhn et al., 2007) databases, confining the spe-
cies to ‘‘Homo sapiens”. In both databases, those target proteins
having 0.7 or above combined score were selected as the statisti-
cally significant targets. In the similar vein, identifying disease-
associated genes is another essential initial step to investigate
the molecular mechanisms of medicinal herbs used in the treat-
ment of various diseases and disorders. A couple of databases,
namely GeneCard (Stelzer et al., 2016), Online Mendelian Inheri-
tance in Man (OMIM) (Amberger and Hamosh, 2017), DrugBank
(Wishart et al., 2018), PharmGkb (Barbarino et al., 2018), DisGeNET
(Piñero et al., 2020), and Therapeutic Target Database (TTD) (Li
et al., 2018)were explored with the term ’epilepsy’ to forecast
genes correlated with the disease. Subsequently, the anticipated
targets of the screened active ingredients and the epilepsy-
associated targets were compared, and a Venn diagram was con-
structed to identify the shared targets among plants and epilepsy.

2.2. Compound-target network construction

The shared targets of Saudi Arabian plants and epilepsy were
than considered as the putative targets of indigenous plants, hav-
ing ability to halt the pathogenesis of epilepsy. Subsequently, the
Cytoscape software (version 3.8) was used to construct a
compound-target interaction network (Shannon et al., 2003) to
analyze the interrelationship among these nodes. Within
compound-target network, the bioactive constituents and target
proteins were represented as the nodes, whereas the interaction
among these target proteins and compounds were indicated with
black lines (edges). Further, we used NetworkAnalyzer plugin of
cytoHubba (Chin et al., 2014) for the identification of those nodes
with highest connectivity in the network.

2.3. Functional annotation of overlapped genes

After successfully identifying the intersecting genes, we used
Gene Ontology (GO) and pathway enrichment analyses to reveal
their inherent cellular components (CC), biological processes (BP),
molecular functions (MF), as well as the central signaling path-
ways. To identify statistically significant Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways and GO terms, we employed
the Database for Annotation, Visualization and Integrated Discov-
ery (DAVID) database (Dennis et al., 2003). A rigorous screening
process was implemented by setting a threshold of p-value less
than 0.05. This ensured that only the most meaningful pathways
and terms were selected for further analysis. To visualize the out-
comes, we utilized the ggplot2 package in the R programming lan-
guage. The top GO terms and KEGG pathways were chosen based
on their p-value significance and counts, ensuring that only the
most relevant and significant findings were presented in the
visualization.

2.4. Protein-protein interaction (PPI) network construction

To explore the functional relationships among the identified
common genes, we employed the Search Tool for the Retrieval of
Interacting Genes/Proteins (STRING) database, which is known
for its comprehensive protein–protein interaction (PPI) informa-
tion (Von Mering et al., 2005). PPI networks are highly valuable
due to their versatility, specificity, and adaptability in uncovering
biological interactions. The resulting PPI network was then sub-
jected to network analysis using Cytoscape version 3.8 (Shannon
et al., 2003) for retrieval of hub genes, which are key players within
3

the network and have significant functional importance. Hub genes
are nodes within PPI network that exhibit extensive connections
and interact with multiple other proteins. These genes has a key
role to play in the PPI network, and thus contributing significantly
to the maintenance of network stability and integrity. In this study,
the degree method provided by CytoHubba (Chin et al., 2014) was
employed to select the hub genes from pool of overlapped target
genes.

2.5. Compound-target-disease network construction

To gain a better understanding of how Saudi plants exert their
therapeutic effects on epilepsy, we utilized Cytoscape version 3.8
[19] to construct two separate networks: the compound-target
protein network and the target protein-pathways network. These
networks were then merged to create a comprehensive
compound-target-pathways network. Within this network, nodes
represent proteins, targeted compounds, and the pathways in
which these proteins are involved while the connections between
them are represented by solid lines. By integrating these networks,
we can gain useful insights into the synergistic effects of com-
pounds when these native plants are used to treat epilepsy.

2.6. Molecular docking analysis

We performed molecular docking analysis to confirm the bind-
ing affinity among compounds and their target proteins. This anal-
ysis allows us to identify potential combinations of drugs that
could have synergistic effects in treating the disease. In this study,
we employed Autodock Vina 1.1.2 in PyRx 0.8 (Dallakyan and
Olson, 2015) for the docking analysis. Initially, the 3D structure
of the phytocompounds was obtained from the PubChem database
for docking studies. Ligands optimization was carried out using an
energy minimization parameter Universal Force Field (UFF) with a
conjugate gradient optimization algorithm at 2000 steps. Energy
minimization was carried out to attain the lowest free energy by
open babel in PyRx and converted them into PDBQT formats for
molecular docking analysis. Similarly, the 3D crystal structure of
TNF accession number 1o8m and TP53 with accession number
1qkt as target proteins retrieved from Protein Data Bank (PDB).
They are refined by preparing the protein for docking study, by
adding hydrogen atoms, heteroatoms and non-essential water
molecules are removed from the target protein structures Discov-
ery Studio (Studio, 2008) and saved as PDB format. These pro-
cessed protein structures are converted to the PDBQT file by
selecting make macromolecule using the PyRx tool. To identify
the binding pockets of the target proteins, an online CASTp tool
was utilized (Tian et al., 2018). After identification of binding pock-
ets, docking analysis was performed among proteins and active
constituents. The best results were assessed based on their binding
affinity, with a value below �5.00 kcal/mol indicating a good bind-
ing strength and a value below �7.00 kcal/mol indicating a very
good affinity. The docked complexes were visualized using Discov-
ery Studio (Studio, 2008), PyMOL (Yuan et al., 2017), and ChimeraX
(Goddard et al., 2018) programs. The complete methodology used
in current study was also presented in Fig. 1.
3. Results

3.1. Identification of bioactive components

After applying filtering criteria, we identified 6 compounds
from Solanum incanum, 9 compounds from Abrus precatorius, 13
compounds fromWithania somnifera, and 16 compounds from Aza-
dirachta indica. Duplicate compounds were eliminated from the



Fig. 1. Graphical synopsis representing the overall methdology used in current study.
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selection process, resulting in a total of 38 compounds considered
as potential components derived from Saudi Arabian plants. These
38 compounds fulfilled specific criteria, including DL � 0.18,
OB � 0.30, and a molecular weight below 500 g/mol, ensuring their
suitability for further analysis (Table 1).

Through ADMET analysis, 21 compounds namely Beta-Sitosterol,
Lanosterol, Kaempferol, Protocatechuic acid, Precatorine, Sophora-
diol, Abrectorin, Cycloartenol, Skrofulein, (+)-Catechin,
24-Methyldesmosterol, Campesterol, Fucosterol, Stigmasterol, Stig-
masterone, (+)-Ascorbic acid, Genistein 7-O-glucoside, 5,7-Dihy
droxy-40-methoxy-8,30-di-C-prenylflavanone, Licoflavanone, 5,7-
Dihydroxy-40-methoxy-8-C-prenyl-30-(3-hydroxy-3-methylbutyl)fla-
vanone, and alpha-Calacorene were found to have non-toxic effect
with minimal BBB permeant and high GI absorption (Table 2).
ADMET analysis includes the assessment of various factors, such as
hepatotoxicity, carcinogenicity, and mutagenicity, to evaluate the
potential risks and safety profiles of active compounds. Hepatotoxic-
ity refers to the capacity of compounds to induce liver damage, lead-
ing to impaired liver function or failure. In our study, it is important
to highlight that all selected compounds demonstrated inactive hep-
atotoxicity, indicating their low potential for causing liver-related
adverse effects. Additionally, our findings revealed that all selected
4

compounds exhibited inactive carcinogenicity and mutagenicity,
suggesting their favorable safety profiles in terms of these parame-
ters. In conclusion, these results further support the findings of our
study, emphasizing that Saudi Arabian plants possess active com-
pounds with drug-like properties. These compounds hold significant
potential in disease prevention and treatment, while exhibiting low
risks of hepatotoxicity, mutagenicity, and carcinogenicity.

3.2. Compound-target network construction

In our study, we utilized the Swiss Target Prediction database to
retrieve 907 potential target genes associated with 21 active con-
stituents. To further investigate the potential targets of these com-
pounds, we extracted a total of 8347 genes linked to epilepsy from
databases such as GeneCards and OMIM. Next, we employed a
Venn diagram analysis to identify the common targets shared
between the target genes of the compounds and the epilepsy-
related genes. This analysis yielded 368 potential anti-epileptic
genes specific to the indigenous plants under investigation. These
genes were subsequently considered as key targets, highlighting
their significance in the context of epilepsy and the potential ther-
apeutic effects of the compounds derived from these plants.



Table 1
Selected active compound, their Oral Bioavailiability(OB), Drug-Likeness (DL), Molecular weight (MW), and PubChem IDs.

Plant Source Phytochemical Names Drug Likeness
(DL > 0.28)

OBOral
(Bioavailability > 0.30)

MW(Molecular
Weight > 500)

Solanum
incanum

Ursolic acid 0.66 0.85 456.70
beta-Sitosterol 0.78 0.55 414.7
Lanosterol 0.55 0.55 413.64
Kaempferol 0.5 0.55 286.24
Quercetin 0.52 0.55 302.23
Protocatechuic acid 0.23 0.56 154.12

Abrus
precatorius

Abrisapogenol J 0.74 0.55 456.78
Precatorine 0.19 0.56 289.26
Sophoradiol 0.76 0.55 442.8
Abrectorin 0.31 0.55 314.31
Isoorientin 0.76 0.55 448.41
Cycloartenol 0.78 0.55 426.8
Amyrin 0.76 0.55 426.8
luteolin 0.25 0.55 286.25
Skrofulein 0.3 0.55 314.31

Withania
somnifera

(+)-Catechin 0.64 0.55 290.27
24-Methyldesmosterol 0.76 0.55 398.66
Beta-Sitosterol 0.78 0.55 414.7
Campesterol 0.59 0.55 400.7
Fucosterol 0.85 0.55 412.7
Kaempferol 0.5 0.55 286.24
Oleanolic acid 0.37 0.85 456.7
Quercetin 0.52 0.55 302.23
Stigmasterol 0.62 0.55 412.7
Stigmasterone 0.5 0.55 410.7
Withaferin A 0.37 0.55 470.6
Withanolide J 0.46 0.55 470.6
Withanone 0.45 0.55 470.6

Azadirachta
indica

(+)-Catechin 0.64 0.55 290.27
(-)-Epicatechin 0.29 0.55 290.27
(+)-Ascorbic acid 0.29 0.56 176.12
Genistein 7-O-glucoside 0.64 0.55 432.38
Ferulic acid 0.29 0.85 194.18
alpha-Copaene 0.29 0.55 204.35
Campesterol 0.59 0.55 400.68
Stigmasterol 0.62 0.55 412.69
Quercetin 0.52 0.55 302.24
5,7-Dihydroxy-40-methoxy-8,30-di-C-prenylflavanone 0.29 0.55 422.51
Licoflavanone 1.15 0.55 340.37
5,7-Dihydroxy-40-methoxy-8-C-prenyl-30-(3-hydroxy-3-
methylbutyl)flavanone

1.06 0.55 440.53

Flowerine 1.33 0.55 368.42
alpha-Calacorene 0.29 0.55 200.32
tau-Muurolol 0.29 0.55 222.37
Palustrol 0.29 0.55 222.37
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To analyze the interaction among compounds and their respec-
tive targets, we imported the compound-target data into Cytos-
cape. This allowed us to create a network representation where
the hub compounds were highlighted. The analysis of the
compound-target network unveiled the potential synergistic
effects of the predicted targets, indicating that the utilization of
these medicinal plants as anti-epileptic agents may result in a
combined and enhanced therapeutic impact. This visualization
provides valuable insights into the interactions among compounds
and their targets, supporting the potential efficacy of these plants
in combating epilepsy.
3.3. GO and KEGG enrichment analysis

For the identification of the biological characteristics of the
overlapped proteins, we performed functional annotation using
the DAVID. Through this analysis, we obtained a total of 749 BP
terms, 109 CC terms, and 201 MF terms. These terms were found
to meet the significance criterion of a p-value less than 0.05. The
GO and pathway enrichment analysis allowed us to gain insights
into the functional roles and molecular functions associated with
the overlapped proteins. The top GO terms indicated the over-
5

lapped gene mainly involved in inflammatory response, positive
regulation of MAP kinase activity, learning or memory, positive
regulation of kinase activity, intracellular receptor signaling path-
way, visual learning, and regulation of dopamine secretion, protein
tyrosine kinase activity, enzyme binding, carbonate dehydratase
activity, neurotransmitter receptor activity, serine-type endopepti-
dase activity, ubiquitin protein ligase binding, and neurotransmit-
ter transporter activity (Fig. 2). While a total of 170 KEGG
pathways were obtained which demonstrated that the overlapped
genes were mainly enriched in EGFR tyrosine kinase inhibitor
resistance, serotonergic synapse, HIF-1 signaling pathway, neu-
roactive ligand-receptor interaction, cAMP signaling pathway,
dopaminergic synapse, JAK-STAT signaling pathway, cGMP-PKG
signaling pathway,Alzheimer disease,GnRH signaling pathway,
Pathways of neurodegeneration, Cellular senescence, Parkinson
disease, and Wnt signaling pathway (Fig. 3).
3.4. Identification of hub genes

To construct the PPI network of the 368 targets, we utilized the
STRING database. The resulting network consists of 4511 edges
representing interaction among 349 nodes. Among these nodes,



Table 2
ADMET profiling of active compounds.

Plant
Source

Active compounds GI
absorption

BBB
permeant

P-gp
substrate

CYP1A2
inhibitor

CYP2C19
inhibitor

CYP2C9
inhibitor

CYP2D6
inhibitor

CYP3A4
inhibitor

Log Kp (skin
permeation)

Hepatotoxicity Carcinogenicity Mutagenicity Cytotoxicity

Solanum
incanum

Beta-Sitosterol Low ✗ ✗ ✗ ✗ ✗ ✗ ✗ �2.2 ✗ ✗ ✗ ✗

Lanosterol Low ✗ ✗ ✗ ✗ ✗ ✗ ✗ �2.58 ✗ ✗ ✗ ✗

Kaempferol High ✗ ✗ U ✗ ✗ ✗ ✗ �7.05 ✗ ✗ ✗ ✗

Protocatechuic acid High ✗ ✗ ✗ ✗ ✗ ✗ U �6.42 ✗ ✗ ✗ ✗

Abrus precatorius Precatorine High ✗ U ✗

✗ ✗ ✗ ✗

�7.21
✗ ✗ ✗ ✗

Sophoradiol Low ✗ ✗ ✗ ✗ ✗ ✗ ✗ �3.59 ✗ ✗ ✗ ✗

Abrectorin High ✗ ✗ U ✗ U U U �6.17 ✗ ✗ ✗ ✗

Cycloartenol Low ✗ ✗ ✗ ✗ ✗ ✗ ✗ �1.96 ✗ ✗ ✗ ✗

Skrofulein High ✗ ✗ U ✗ U U U

�5.86
✗ ✗ ✗ ✗

Withania somnifera (+)-
Catechin

High ✗ U ✗ ✗ ✗ ✗ ✗

�7.82
✗ ✗ ✗

✗

24-Methyldesmosterol Low ✗ ✗ ✗ ✗ U ✗ ✗ �2.55 ✗ ✗ ✗ ✗

Beta-Sitosterol Low ✗ ✗ ✗ ✗ ✗ ✗ ✗ �2.2 ✗ ✗ ✗ ✗

Campesterol Low ✗ ✗ ✗ ✗ ✗ ✗ ✗ �2.5 ✗ ✗ ✗ ✗

Fucosterol Low ✗ ✗ ✗ ✗ ✗ ✗ ✗ �2.53 ✗ ✗ ✗ ✗

Kaempferol High ✗ ✗ U ✗ ✗ ✗ ✗ �7.05 ✗ ✗ ✗ ✗

Stigmasterol Low ✗ ✗ ✗ ✗ U ✗ ✗ �2.74 ✗ ✗ ✗ ✗

Stigmasterone Low ✗ ✗ ✗ ✗ U ✗ ✗ �2.98 ✗ ✗ ✗ ✗

Azadirachta
indica

(+)-Catechin High ✗ U ✗ ✗ ✗ ✗ ✗ �7.82 ✗ ✗ ✗ ✗

(+)-Ascorbic acid High ✗ ✗ ✗ ✗ ✗ ✗ ✗ �8.54 ✗ ✗ ✗ ✗

Genistein 7-O-glucoside Low ✗ ✗ ✗ ✗ ✗ ✗ ✗ �8.33 ✗ ✗ ✗ ✗

Campesterol Low ✗ ✗ ✗ ✗ ✗ ✗ ✗ �2.5 ✗ ✗ ✗ ✗

Stigmasterol Low ✗ ✗ ✗ ✗ U ✗ ✗ �2.74 ✗ ✗ ✗ ✗

5,7-Dihydroxy-40-methoxy-8,30-di-C-
prenylflavanone

High ✗ ✗ ✗ ✗ U ✗ U �4.21 ✗ ✗ ✗ ✗

Licoflavanone High ✗ ✗ U ✗ U U U �5.22 ✗ ✗ ✗ ✗

5,7-Dihydroxy-40-methoxy-8-C-prenyl-
30-(3-hydroxy-3-methylbutyl)flavanone

High ✗ ✗ ✗ ✗ ✗ ✗ U �5.3 ✗ ✗ ✗ ✗

alpha-Calacorene Low ✗ ✗ ✗ ✗ ✗ U ✗ �4.39 ✗ ✗ ✗ ✗
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Fig. 2. Gene Ontology (GO) enrichment analysis. The square represented molecular functions (MF), triangle represents cellular components (CC), while circle indicates the
biological process (BP). Meanwhile, size and color of circle, square, and triangle within plot represents the count represents the count and p-value.
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we identified the top 10 nodes based on their degree of connectiv-
ity as the hub genes. The hub genes, ranked by their degree of con-
nectivity, are AKT1 (158 connections), ALB (149 connections), TNF
(134 connections), TP53 (132 connections), EGFR (122 connec-
tions), SRC (122 connections), MAPK3 (114 connections), JUN
(113 connections), CASP3 (110 connections), and ESR1 (110 con-
nections) (Fig. 4). These hub genes are highly interconnected
within the PPI network, suggesting their crucial roles in mediating
the anti-epileptic effects. Their central positions in the network
indicate their potential significance in modulating the biological
processes associated with epilepsy treatment.

3.5. Compound-target-disease network

In order to develop a thorough understanding of how indige-
nous plants influence epilepsy, we generated an integrated net-
work that encompasses compounds, targets, and the disease
itself. This comprehensive ‘‘compound-target-disease” network
assists in exploring the interconnected relationships between
these elements and gain insights into the underlying mechanisms
of the plants on epilepsy. This network was constructed based on
the information obtained from GO and KEGG pathway analyses
(Fig. 5).

After network analysis, TNF and TP53 were found to be targeted
by most of the active constituents as well as linked with various
disease-relevant pathways. Additionally, KEGG pathway analysis
highlighted the involvement of TNF and TP53 in various pathways,
such as the cAMP signaling pathway, neurotrophin signaling path-
7

way, Ras signaling pathway, calcium signaling pathway, HIF-1 sig-
naling pathway, and TNF signaling pathway, among others. These
findings offer valuable insights into the potential molecular mech-
anisms that underlie the impact of indigenous plants on epilepsy.
By shedding light on these mechanisms, we gain a deeper under-
standing of how these plants may exert their therapeutic effects
and contribute to the management of epilepsy. The identification
of key proteins and pathways strengthens our understanding of
the therapeutic effects of these plants in epilepsy treatment.

3.6. Molecular docking analysis

Molecular docking was performed to assess the binding affinity,
stability, and free energy between the selected 21 compounds and
TNF/TP53. Docking analysis enables us to predict the interaction
between the compounds and the active site of the target proteins.
In docking protocols, estimating the binding free energy is a key
objective. These factors collectively provide insights into the
strength and stability of the compound-protein interactions. Fol-
lowing the docking analysis, the top compounds exhibiting the
highest binding energy (less than �5.00 kcal/mol) were selected
for further analysis. These compounds are of particular interest
as they are predicted to have strong and favorable interactions
with TNF and TP53, suggesting their potential efficacy in modulat-
ing the activity of these proteins. Among the active compounds,
licoflavanone (-12.4 kcal/mol), skrofulein (-11.2 kcal/mol), (+)-
catechin (-10.2 kcal/mol), stigmasterone (-9.45 kcal/mol), and
5,7-Dihydroxy-40-methoxy-8,30-di-C-prenylflavanone (-9.42 kcal/



Fig. 3. Bar plot representing the KEGG pathways in which the overlapped genes are mainly enriched.

F. Falah Alshehri, Fuad M Alzahrani, A. Alkhoshaiban et al. Saudi Pharmaceutical Journal 31 (2023) 101732
mol) exhibited the highest binding affinity with the TNF protein
(Fig. 6). These compounds demonstrated strong interactions with
the TNF protein, suggesting their potential as effective modulators.
In the case of the TNF- licoflavanone complex, the binding affinity
was attributed to hydrogen bonding interactions with specific resi-
dues. licoflavanone formed hydrogen bonds with GLY B: 24, LYS B:
65, ASP B: 140 residues, indicating their involvement in stabilizing
the complex. Regarding skrofulein, it formed hydrogen bonds with
GLY B: 24, GLU B: 23, ASP B: 140 residues of the TP53 protein. (+)-
catechin exhibited hydrogen bond interactions with GLY B: 24, LYS
B: 65 residues of TP53 protein. stigmasterone showed hydrogen
bonding interactions with GLY B: 24, ASP B: 143 residues, while
l5,7-Dihydroxy-40-methoxy-8,30-di-C-prenylflavanone demon-
strated hydrogen bonding interactions with LEU B:26, ALA B: 22
residues of TP53 protein. These findings indicate that these com-
pounds have favorable binding affinities and specific hydrogen
bond interactions with key residues of the TP53 protein. This infor-
mation contributes to our understanding of the potential mecha-
nisms of action and therapeutic relevance of these compounds in
modulating TP53 protein activity (Table 3).

Among the active compounds, abrectorin (-10.7 kcal/mol), gen-
istin (-10.5 kcal/mol), (+)-catechin (-9.6 kcal/mol), precatorine (-
9.56 kcal/mol), (+)-ascorbic acid (-8.18 kcal/mol) exhibited the
highest binding affinity with the TP53 protein (Fig. 7). These com-
pounds demonstrated strong interactions with TP53, indicating
their potential as effective modulators. In the case of the TP53-
abrectorin complex, the binding affinity was attributed to hydro-
gen bonding interactions with specific residues. Abrectorin formed
hydrogen bonds with LYS A:249, LEU A:213, VAL A: 252 residues of
TP53 protein, indicating their involvement in stabilizing the com-
8

plex. For genistin, hydrogen bond interactions were observed with
LYS A:249, ASP A:212, VAL A: 252, PRO A:250, GLN A: 253 residues
of TP53 protein. (+)-Catechin demonstrated hydrogen bonding
interactions with Ile LYS A:249, LEU A:213, VAL A: 252 residues
of TP53 protein. Precatorine showed hydrogen bonding interac-
tions with LYS A: 214 residue, while (+)-ascorbic acid exhibited
hydrogen bonding interactions with LYS A: 214, VAL A: 252 resi-
dues of TP53 protein. These findings indicate that these com-
pounds have strong binding affinities and specific hydrogen bond
interactions with key residues of the TP53 protein. This informa-
tion contributes to our understanding of the potential mechanisms
of action and therapeutic relevance of these compounds in modu-
lating TP53 protein activity (Table 4).
4. Discussion

The prevalence of epilepsy in Saudi Arabia is relatively high
compared to other countries (Taha and Hussein, 2014). A recent
study has provided compelling evidence indicating a considerably
higher prevalence of epilepsy in Saudi Arabia compared to Iran and
Egypt (Benamer and Grosset, 2009). These findings highlight the
distinct epidemiological characteristics of epilepsy in Saudi Arabia
and emphasize the need for further research and targeted inter-
ventions in the region to address this significant public health con-
cern. To combat this significant health concern, the government
has implemented various initiatives aimed at managing and miti-
gating the impact of epilepsy. These initiatives encompass
improved diagnostic programs and easy availability of antiepilep-
tic drugs. However, continuous efforts are still necessary to further



Fig. 4. (A) The Venn plot exhibits the overlapping genes (368 anti-epileptic genes) between the plants and the disease (B) The compound-target network displays the
interactions between compounds and targets, with node size indicating their connectivity (C) The top 10 genes are ranked using the degree algorithm, highlighting their
significance in the network (D) A bar plot represents the degree of each hub gene, providing additional insights into their importance.
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advance the diagnosis, treatment, and public awareness surround-
ing epilepsy in Saudi Arabia. It is crucial to educate the public
about the condition, its causes, symptoms, and available treatment
options to dispel stigmas and misconceptions associated with epi-
lepsy. By increasing awareness and understanding, individuals
with epilepsy can receive better support and enhance their quality
of life. In summary, this prevalence rate underscores the ongoing
need for comprehensive approaches to address this health issue.
By focusing on diagnosis, treatment, and public education, signifi-
cant progress can be made in managing epilepsy and improving
the well-being of affected individuals in the country.

This study employed a network pharmacology approach to gain
a comprehensive understanding of the molecular interactions
underlying epilepsy. Initially, the anti-epileptic properties of four
plants, namely Solanum incanum, Abrus precatorius, Withania som-
nifera, and Azadirachta indica, were investigated based on their
drug-like properties. The native plants of Saudi Arabia possess sig-
nificant medicinal potential and offer promising benefits to indi-
viduals’ well-being. To investigate their therapeutic applications,
disease-related data on epilepsy were collected from public repos-
itories. The overlapping genes obtained from comparing the plants
with epilepsy data were then subjected to a network pharmacol-
ogy approach, which allowed for the analysis of the multi-target
effects of the selected active constituents against epilepsy. Addi-
tionally, pathway enrichment analysis revealed that the overlap-
ping genes primarily participate in various signaling pathways,
including the cAMP signaling pathway, neurotrophin signaling
9

pathway, MAPK signaling pathway, PI3K-Akt signaling pathway,
among others. These findings provide valuable insights into the
potential mechanisms underlying the anti-epileptic effects of the
identified compounds.

In the context of epilepsy, the role of cyclic adenosine
monophosphate (cAMP) and its downstream effectors, such as pro-
tein kinase A (PKA), is significant. They can influence the excitabil-
ity of neurons by modulating various processes, including ion
channel function, neurotransmitter release, and gene transcription.
For example, alterations in cAMP levels have been observed to
impact the activity of specific potassium channels, which has key
role to play in regulating neuronal excitability (Wasterlain and
Csiszar, 1980). Dysregulation of cAMP signaling could therefore
contribute to epileptogenesis by promoting abnormal neuronal
activity. Neurotrophins, including nerve growth factor (NGF) and
brain-derived neurotrophic factor (BDNF) are key players in the
development, functioning, and survival of neurons. Increased levels
of BDNF are often observed in the brain following seizures, and
BDNF has been implicated in the process of epileptogenesis, which
refers to the development of epilepsy, in various animal models.
Understanding the role of neurotrophins, particularly BDNF, in
epileptogenesis and neuronal excitability offers valuable insights
into the underlying mechanisms of epilepsy and may pave the
way for novel therapeutic approaches (Lin et al., 2020).

Further, dysregulation of PI3K-Akt signaling has been impli-
cated in various neurological disorders, including epilepsy. For
instance, mutations in genes that encode components of the



Fig. 5. Compound-Target-Disease network. The size of nodes indicates their degree of connectivity. The circle represents hub proteins, the square represents targeted
pathways, while arrows represent the active compounds.
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PI3K-Akt pathway have been identified in some forms of genetic
epilepsy. Furthermore, experimental evidence suggests that activa-
tion of the PI3K-Akt pathway could have neuroprotective effects in
epilepsy, potentially by promoting neuron survival and inhibiting
neuronal death (Xiao et al., 2017). Thus, understanding the intri-
cate interplay between these interconnected pathways and their
contributions to epilepsy pathogenesis is crucial for identifying
potential targets for therapeutic interventions.

After functional annotation and network analysis, TNF and TP53
were selected as the main target proteins for epilepsy. In the con-
text of epilepsy, studies have shown that TNF levels are elevated
during seizures and may contribute to increased neuron excitabil-
ity (Vezzani et al., 2008, Rana andMusto, 2018). Anti-TNF therapies
are being studied as potential treatments for epilepsy. These work
10
by blocking the action of TNF, therefore potentially reducing
inflammation and neuronal excitability, and preventing seizure
generation.TP53 Also known as p53, this protein plays a crucial
role in controlling cell division and apoptosis. When DNA damage
occurs, p53 halts the cell cycle to allow for repair or triggers pro-
grammed cell death if the damage is too severe. Mutations that dis-
rupt p53 function can contribute to uncontrolled cell proliferation,
leading to cancer. In the brain, p53 has been implicated in neu-
rodegenerative diseases and acute neurological disorders (Huang
et al., 2015, Teocchi and D’Souza-Li, 2016). Its role in epilepsy is
less clear but it’s believed that p53 might contribute to seizure-
induced neuronal death. Therefore, therapies that modulate p53
activity could potentially protect neurons from damage following
seizures. However, because p53 is also involved in suppressing



Fig. 6. The docked complexes of TNF protein along with their strongest binding compounds. (A) (+)-Catechin, (B) 5,7-Dihydroxy-40-methoxy-8,30-di-C-prenylflavanone, (C)
Licoflavanone, (D) Skrofulein, (E) Stigmasterone.

Table 3
Binding energy and interactions of active compounds with TNF protein.

Protein-ligand complex Binding Affinity (kcal/mol) RMSD Interacting residues

TNF_Licoflavanone �12.4931 1.738838 GLY B: 24, LYS B: 65, ASP B: 140
TNF_Skrofulein �11.2147 1.383699 GLY B: 24, GLU B: 23, ASP B: 140
TNF_(+)-Catechin �10.2839 2.247661 GLY B: 24, LYS B: 65
TNF_Stigmasterone �9.45824 2.158878 GLY B: 24, ASP B: 143
TNF_5,7-Dihydroxy-40-methoxy-8,30-di-C-prenylflavanone �9.4248 1.283021 LEU B:26, ALA B: 22

F. Falah Alshehri, Fuad M Alzahrani, A. Alkhoshaiban et al. Saudi Pharmaceutical Journal 31 (2023) 101732
tumor formation, such therapies would need to be carefully con-
trolled to avoid promoting cancerous growth. In conclusion, target-
ing TNF and p53 could provide a novel therapeutic strategy for
epilepsy. However, these proteins are involved in numerous bio-
logical processes and their manipulation could have widespread
effects. Therefore, a detailed understanding of their roles in epi-
lepsy and other physiological functions is required to exploit their
potential as therapeutic targets effectively.

More importantly, various phytochemical compounds present
in different plant species have been explored in current study for
their potential anti-epileptic properties. Specifically, compounds
such as abrectorin, genistin, (+)-catechin, precatorine, (+)-
ascorbic acid, licoflavanone, skrofulein, stigmasterol, and 5,7-Dihy
droxy-40-methoxy-8,30-di-C-prenylflavanone have demonstrated
11
promising effects. Flavonoids like abrectorin, genistin, (+)-
catechin, and precatorine are well-documented for their neuropro-
tective effects, acting through a myriad of mechanisms including
modulation of GABAergic and glutamatergic neurotransmission,
attenuation of oxidative stress, and suppression of inflammation
(Zhang et al., 2012). For instance, genistin has been shown to mod-
ulate neurotransmission and potentially suppress epileptic sei-
zures (Rebas et al., 2020, Huang et al., 2021).

As an antioxidant, (+)-ascorbic acid, commonly known as Vita-
min C, could play a pivotal role in preventing neuronal damage in
epilepsy. In fact, Covarrubias-Pinto et al. (Covarrubias-Pinto et al.,
2015) suggested that its antioxidant properties could mitigate
the oxidative stress often associated with epileptic seizures. In
the similar vein, Stigmasterol, a plant sterol, has been investigated



Fig. 7. The docked complexes of TP53 protein along with their strongest binding compounds. (A) Abrectorin, (B) Genistin, (C) (+)-Catechin, (D) Precatorine, (E) (+)-Ascorbic
Acid.

Table 4
Binding energy and interactions of active compounds with TP53 protein.

Protein-ligand complex Binding Affinity (kcal/mol) RMSD Interacting residues

TP53_Abrectorin �10.7851 1.641525 LYS A:249, LEU A:213, VAL A: 252
TP53_Genistin �10.5223 2.115034 LYS A:249, ASP A:212, VAL A: 252, PRO A:250, GLN A: 253
TP53_(+)-Catechin �9.68152 2.509125 LYS A:249, LEU A:213, VAL A: 252
TP53_Precatorine �9.56072 4.877544 LYS A: 214
TP53_(+)-Ascorbic Acid �8.18279 0.855859 LYS A: 214, VAL A: 252
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for its potent anti-inflammatory properties. In a study by Kumar
et al.(Kumar and Pandey, 2013), stigmasterol showed potential
for alleviating neuroinflammatory conditions, which are often
associated with epilepsy.

As for licoflavanone, skrofulein, and 5,7-Dihydroxy-40-methoxy-
8,30-di-C-prenylflavanone, the current body of literature is limited
regarding their specific role in epilepsy. However, as members of
the flavonoid and prenylflavonoid families, they could potentially
share the neuroprotective and anti-epileptic effects generally asso-
ciated with these classes of compounds. It is pertinent to under-
score that while these findings are compelling, they are primarily
derived from in vitro and animal studies. Rigorous clinical trials
are necessary to translate these promising preclinical findings into
viable therapeutic options for humans suffering from epilepsy.
12
In conclusion, our study provides a solid foundation for investi-
gating the multi-target effects of indigenous plants from Saudi Ara-
bia as potential treatment options for epilepsy. The combination of
bioinformatics and network approaches allows for the identifica-
tion of key molecular pathways and interactions involved in epi-
lepsy, leading to the discovery of potential drug targets for
intervention. However, it is important to acknowledge the limita-
tions of our study. Firstly, further experimental validation through
in vivo and in vitro studies is necessary to confirm the efficacy and
safety of the identified compounds and their interactions with the
target proteins. These studies will provide more concrete evidence
for the therapeutic potential of the indigenous plants. Secondly,
expanding the database of traditional medicines and target genes
would enhance the accuracy of network pharmacology analysis
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results. A broader and more comprehensive dataset would provide
a more robust foundation for the identification of potential targets
and pathways involved in epilepsy. In summary, while our study
provides valuable insights into the multi-target effects of indige-
nous plants for epilepsy treatment, further research is needed to
validate our findings, expand the dataset, and gain a deeper under-
standing of the precise therapeutic mechanisms involved. These
efforts will contribute to the development of effective and targeted
therapeutic strategies for epilepsy.

5. Conclusion

The burden of epilepsy in Saudi Arabia emphasizes the critical
need for effective strategies in preventing, diagnosing, and manag-
ing this neurological disorder and its associated complications. The
high prevalence of epilepsy in the country underscores the urgency
to develop new and improved treatments for epilepsy. In this con-
text, our study proposed a novel scientific methodology for evalu-
ating the multi-component, multi-target effects of active
compounds derived from local plants, particularly those found in
Saudi Arabia. Our study employed an integrated approach combin-
ing network pharmacology and bioinformatics techniques to iden-
tify and evaluate the potential therapeutic effects of active
compounds. Among the identified compounds, abrectorin, genistin,
(+)-catechin, precatorine, (+)-ascorbic acid, licoflavanone, skro-
fulein, stigmasterone, 5,7-Dihydroxy-40-methoxy-8,30-di-C-prenyl
flavanone were highlighted as potential candidates for treating
epilepsy. Furthermore, our findings shed light on the potential
therapeutic targets for reducing seizure activity and neuronal cell
death associated with epilepsy, namely TNF and TP53. These tar-
gets offer promising avenues for intervention and could contribute
to the development of more effective treatments for epilepsy. In
summary, our study has enriched our understanding of the chem-
ical composition of indigenous plants in Saudi Arabia and the syn-
ergistic mechanisms by which their active compounds may exert
therapeutic effects against epilepsy. By integrating network phar-
macology and bioinformatics approaches, we have identified
potential compounds and therapeutic targets, providing valuable
insights for further research and the development of improved epi-
lepsy treatments.
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