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ABSTRACT

Applications of conditional gene expression,
whether for therapeutic or basic research purposes,
are increasingly requiring mammalian gene control
systems that exhibit far tighter control properties.
While numerous approaches have been used to
improve the widely used Tet-regulatory system,
many applications, particularly with respect to the
engineering of synthetic gene networks, will require
a broader range of tightly performing gene control
systems. Here, a generically applicable approach is
described that utilizes intronically encoded siRNA on
the relevant transregulator construct, and siRNA
sequence-specific tags on the reporter construct,
to minimize basal gene activity in the off-state of a
range of common gene control systems. To demon-
strate tight control of residual expression the
approach was successfully used to conditionally
express the toxic proteins RipDD and Linamarase.
The intronic siRNA concept was also extended to
create a new generation of compact, single-vector,
autoinducible siRNA vectors. Finally, using improved
regulation systems a mammalian epigenetic toggle
switch was engineered that exhibited superior
in vitro and in vivo induction characteristics in mice
compared to the equivalent non-intronic system.

INTRODUCTION

An increasing number of therapeutic applications, as well
as basic research pursuits, require the highly controlled
expression of heterologous genes in a mammalian biolo-
gical setting (1). Nowhere is this more evident, than in the
emerging field of synthetic biology where the modular
linking of gene control components has already enabled
the creation of many sophisticated functional devices such

as an epigenetic toggle switch (2), hysteretic switch (3),
logic gates (4,5) and time–delay circuits (6,7) amongst
others. However, the creation of further devices, or at
least ones with more stringent properties, is still largely
dependent upon the underlying gene control systems
that are employed. For this reason, the search for new
forms of mammalian gene control, and the step-wise
improvement of existing systems, remains a valuable pur-
suit for the synthetic biology community.
Typical mammalian heterologous transcription control

systems consist of a DNA-binding protein (usually a bac-
terial response regulator) fused to an eukaryotic transcrip-
tional regulator such as the Herpes simplex virus VP16
transactivation domain, or the KRAB (Kruppel-
associated box protein) transsilencing domain (8–10).
Binding of the DNA-binding protein to its cognate
responsive promoter, which is engineered by adjoining
the regulator’s DNA-binding site to an eukaryotic promo-
ter, is dependent upon the presence or absence of an
appropriate effecter molecule (9,11,12). Depending upon
the system and genetic architecture employed, the addition
of an effecter either turns gene expression on or off (13).
The past decade has seen the continuous emergence of
such gene regulation systems that are responsive to an
ever-increasing range of effecters (14). The earliest systems
were based upon bacterial antibiotic response regulators
inducible by common antibiotics such as tetracycline (9),
streptogramins (11), macrolides (12) and coumermycin/
novobiocin (15). Later systems have been based on res-
ponse regulators sensitive to other signaling molecules,
metabolic compounds and drugs. Non-exhaustive exam-
ples include systems sensitive to the immunosuppressive
drug rapamycin (16), the hormone estrogen (17),
quorum-sensing butyrolactones (18), hypoxia (19,20), the
metabolite L-arginine (21), 6-hydroxy-nicotine (22), gas-
eous acetaldehyde (23) and biotin (vitamin H) (7,24)
amongst others.
Despite the development of many systems, and their

increasing adoption in gene-function studies, an inherent
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problem in most, if not all, mammalian systems is leaky or
residual expression when the systems are in their OFF
configuration. This is due to a combination of the promo-
ter’s basal activity and, or, the random interaction of
binding-incompetent transactivators with their cognate
operators. Compared to equivalent prokaryotic gene con-
trol systems, this leakiness is responsible for the relatively
poor induction factor (ratio of maximal to minimal gene
expression) exhibited by mammalian systems. Apart from
providing a challenge for simple on versus off gene control
in gene function studies or conditional therapeutic scenar-
ios, this also impacts the functionality of synthetic gene
networks that are based upon these modalities. Given the
primary importance of a strong induction factor for many
network applications, there is consequently a strong need
to develop more tightly regulable gene control systems.
Described here is a new approach that is generically
applicable to a wide variety of existing gene control sys-
tems. It can be used to not only improve the performance
characteristics of transcriptional control systems but also
of synthetic gene networks that are based upon these sys-
tems. Based upon a differential silencing effect that is
dependent upon the ratio of siRNA to target we have
been able to generically improve the induction profile of
many common gene control systems. These systems were
subsequently used to successfully conditionally express
highly toxic proteins such as the highly efficient apoptosis
inducing death domain of the RIP protein (RipDD)
(25,26), and Cassava (M. esculenta) derived linamarase
which hydrolyses the otherwise innocuous cyanogenic glu-
coside substrate linamarin into glucose, acetone and gas-
eous cyanide thereby mediating efficient cell killing
(27,28). In addition, the same approach of intronically
encoding an siRNA between a heterologous transactiva-
tor, when placed downstream of the transactivator’s
cognate promoter, can also be used to create simple,
single-construct, autoregulated siRNA vectors. Finally, it
was shown that improved gene control systems could be
used to engineer a much improved epigenetic toggle that
exhibited superior induction characteristics in vitro, and
in vivo within mice that had been implanted with encapsu-
lated stable toggle transfected cells.

METHODS

Vector design and construction

All plasmids used in this study as well as their cloning
strategies are listed in Table 1.

Cell culture, transfection and construction of stable cell lines

Wild-type Chinese hamster ovary cells (CHO-K1, ATCC
CCL 61), together with stable cell line derivatives, were
cultivated and transiently transfected using an optimized
calcium–phosphate-based method as previously described
(29). Human embryonic kidney cells transgenic for the
simian virus 40 large T antigen [HEK293-T (30)], African
green monkey kidney cells (Cos-7, ATCC CRL-1651),
human cervical carcinoma cells (HeLa, ATCC CCL-2)
and mouse fibroblast cells (NIH/3T3, ATCC CRL-1658)
were all cultivated in Dulbecco’s modified Eagle’s medium

(DMEM; Invitrogen, Basel Switzerland, Cat. No. 52100-
39) supplemented with 10% (v/v) fetal calf serum [Pan
Biotech GmbH, Aidenbach Germany, Cat. No. 3302 Lot
No. P251110] and 1% (v/v) penicillin/streptomycin solu-
tion (Sigma, St Louis USA, Cat. No. P4458). Transient
transfection of HEK293-T, Cos-7 and HeLa cultures was
performed using a standard calcium–phosphate-based
method previously described (31). Transient transfection
of NIH/3T3 was performed using FuGENE6 transfect-
ion reagent (Roche, Mannheim Germany, Cat. No.
11814443001) according to the manufacturer’s instruc-
tions. All cells were grown in a humidified 5% CO2, 378C
incubator. Unless otherwise indicated, all co-transfections
were performed in equimolar ratio with reporter gene activ-
ity assayed 48 h after transfection. Experiments utilizing
the linamarase–linamarin prodrug system were conducted
as previously described using T25 flasks (TPP, Trasadingen
Switzerland) to prevent evaporation of HCN (27).
Linamarin (2-OH-isobutyronitrile-b-D-gluco-pyranoside)
was used at final concentration of 750mg/ml.

The monoclonal CHO-K1-derived stable cell line con-
taining pDG168 and pDG161 was created in a two-step
sequential process. First, CHODG168 was created by
co-transfecting pDG168 (PETRON-TAGLuc-Pip-
siRNAGFP-KRAB-IRES-SEAP-pA) and pSV2neo in a
10 : 1 ratio into CHO-K1 followed by a 2-week cultivation
in G418-containing media (Calbiochem, La Jolla USA,
Cat. No. 345810; final concentration 400 mg/ml). Integra-
tion of the pDG168 expression cassette and suitability of
erythromycin induction kinetics, in the mixed stable popu-
lation, was tested by transient co-transfection with pWW43
(PSV40-E-KRAB-pA) followed by erythromycin (EM) dose
profiling of SEAP reporter gene expression. The mixed
stable cell line CHODG168 was subsequently co-transfected
with pDG161 (PPIRON-TAGGFP-E-siRNALuc-KRAB-
IRES-pA) and pPUR in a 10 : 1 ratio followed by a
2-week cultivation in G418 and puromycin-containing
media (Calbiochem, Israel, Cat. No. 540411; final concen-
tration 6 mg/ml) to yield the mixed double stable cell line
CHODG168/DG161. One hundred and sixty single cell clones
were subsequently isolated, cultivated and screened for
pristinamycin (PI)-repressible and EM-inducible SEAP
expression. Of these, a subset of six clones were further
profiled for their ability to maintain differential expression
upon antibiotic removal. Clone 58 was selected for all
further work and designated as CHOTOGGLE2.

Regulating antibiotics

Pristinamycin (Sanofi-Aventis Inc., Pyostacin�, Zurich
Switzerland), erythromycin (Fluka, Buchs Switzerland)
and tetracycline and doxycycline (Sigma Chemicals, St
Louis USA, Cat. Nos. T3383 & D9891) were prepared
as previously described stock solutions (29).

Quantification of reporter gene expression, cell
viability and apoptosis

Production of human placental-secreted alkaline phospha-
tase (SEAP) was quantified using a p-nitrophenylphos-
phate-based light absorbance kinetic assay as previously
described (32,33) with results expressed in units per liter
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Table 1. Plasmid constructs used and designed in this study

Plasmid Genotype and/or cloning strategy Reference or source

pBP62 PPIRON-E-KRAB-IRES-pA (2)
pBP139 PETRON1-Pip-KRAB-IRES-SEAP-pA (PETRON1, PhCMV-ETR) (2)
pDG1 PSV40-E-siRNAGFP-VP16-pA (29)
pDG54 PhEF1a-TAGLuc-SEAP-pA. TAGLuc-SEAP created by PCR amplification from pSEAP2-Control using

oligos ODG022 (CTTCGACTGAACTAGTGCGGCCGCCCGCTGGAGAGCAACTGCAgaattcac-
caccatgctgc; SpeI site underlined, annealing sequence in lower case, TAGLuc italicised) and
OLM073 (GTACGGAtatcttatcatgtctgctcgaagcgg; EcoRV site underlined, annealing sequence in
lower case), digested with SpeI/EcoRV, and cloned into similarly digested pWW276

This work

pDG97 PSV40-E-siRNAGFP-KRAB-pA (29)
pDG98 PSV40-E-siRNALuc-KRAB-pA. E-siRNALuc fusion with associated splice recognition sequences PCR

amplified from pWW35 using oligos OWW18 (TAcgaattcccaccatgccccgccccaagctcaa; EcoRI site
underlined, annealing sequence in lower case) and ODG45 (CTGGCGCGCGGGCACCTGTGG
AGAGAAAGGCAAAGTGGATGTCAGTACCGCTGGAGAGCAACTGCAATCGATTGCAGTTG
CTCTCCAGCGGACTTACCTGggctgtacgcggacgc; BssHII site underlined, annealing sequence in
lower case, siRNALuc italicised), digested with EcoRI/BssHII and cloned into similarly digested
pWW43

This work

pDG104 PETRON1-TAGLuc-SEAP-pA. TAGLuc-SEAP excised from pDG54 by SpeI/EcoRV digest and cloned
into SpeI/SmaI digested pWW72 (PETRON1, PhCMV-ETR)

This work

pDG131 PPIRON-E-siRNALuc-KRAB-IRES-pA. E-siRNALuc-KRAB excised from pDG98 by EcoRI/HpaI diges-
tion and cloned into EcoRI/NaeI digested pTRIDENT11

This work

pDG143 PSV40-Pip-siRNAGFP-VP16-pA (29)
pDG153 PSV40-TetR-siRNAGFP-VP16-pA (29)
pDG156 PhCMV�-1-E-VP16-pA. PhCMV�-1 excised from pMF111 by SspI/EcoRI digestion and cloned into similarly

digested pWW35
This work

pDG159 PhCMV�-1-E-siRNAGFP-VP16-pA. PhCMV�-1 excised from pMF111 by SspI/EcoRI digestion and cloned
into similarly digested pDG1

This work

pDG160 PETRON1-TAGLuc-Pip-pA. PETRON1-TAGLuc created by PCR-amplification from pBP139 using oligos
ODG053 (cgacacggaaatgttg, entire sequence annealing) and ODG55
(TCCGGAATTCTGCAGTTGCTCTCCAGCGGAGAtctgcaggatatccctaaatg; EcoRI site underlined,
annealing sequence in lower case, TAGLuc italicised), digested with SspI/EcoRI, and cloned into
similarly digested pWW87 (PETRON1, PhCMV-ETR)

This work

pDG161 PPIRON-TAGGFP-E-siRNALuc-KRAB-IRES-pA. PPIRON-TAGGFP created by PCR-amplification from
pTRIDENT11 using oligos ODG53 (cgacacggaaatgttg, entire sequence annealing) and ODG54
(TCCGGAATTCGTAGTTGTACTCCAGCTTGTGAGATCtcgaaatagcgctgtacag; EcoRI site under-
lined, annealing sequence in lower case, TAGGFP italicised), digested with SspI/EcoRI and cloned
into similarly digested pDG131

This work

pDG163 PSV40-Pip-siRNAGFP-KRAB-IRES-pA. siRNAGFP-KRAB fusion with associated splice recognition
sequences PCR-amplified from pWW43 using oligos ODG56 (CTGGCGCGCCAGGTAAGTCA
CAAGCTGGAGTACAACTACATCGATGTAGTTGTACTCCAGCTTGTGTACTGACATCCACTT-
TGCCTTTCTCTCCACAGGTGcgccagatccaaaaaag; BssHII site underlined, annealing sequence in
lower case, siRNAGFP italicised) and ODG57 (atcgaagcttggatccttac; HindIII site underlined, entire
sequence annealing), digested with BssHII/HindIII and cloned into similarly digested pMF167

This work

pDG164 PETR1-E-VP16-pA. PETR1 excised from pWW37 by SspI/EcoRI digestion and cloned into similarly
digested pWW35 (PETR1, ETR-PhCMVmin)

This work

pDG165 PETR1-E-siRNAGFP-VP16-pA. PETR1 excised from pWW37 by SspI/EcoRI digestion and cloned into
similarly digested pDG1 (PETR1, ETR-PhCMVmin)

This work

pDG167 PETRON1-TAGLuc-Pip-siRNAGFP-KRAB-IRES-pA. Pip-siRNAGFP-KRAB-IRES excised from
pDG163 by EcoRI/KpnI digestion and cloned into similarly digested pDG160 (PETRON1, PhCMV-
ETR)

This work

pDG168 PETRON1-TAGLuc-Pip-siRNAGFP-KRAB-IRES-SEAP-pA. SEAP excised from pLM177 by SpeI/MluI
digestion and cloned into similarly digested pDG167 (PETRON1, PhCMV-ETR)

This work

pDG178 PhCMV�-1-TetR-VP16-pA. TetR excised from pSAM200 by EcoRI/BssHII digestion and cloned into
similarly digested pDG156

This work

pDG179 PhCMV�-1-TetR-siRNAGFP-VP16-pA. TetR excised from pSAM200 by EcoRI/BssHII digestion and
cloned into similarly digested pDG159

This work

pDG181 PETRON1-GFP-pA. GFP was PCR-amplified from pLEGFP-N1 using oligos ODG62 (GATCGC
TAGCTTAAGCTTGGTACCGGATCCgccaccatggtgagc; NheI site underlined, annealing sequence
in lower case) and ODG63 (CTCGAGCGGCCGCCACTGTGCTGGATATCgctttacttgtacagctcgtcc;
NotI site underlined, annealing sequence in lower case), digested with NheI/NotI and cloned into
SpeI/NotI digested pWW72 (PETRON1, PhCMV-ETR)

This work

pDG182 PETR1-GFP-pA. GFP excised from pDG181 by EcoRI/NotI digestion and cloned into similarly digested
pDG183 (PETR1, ETR-PhCMVmin)

This work

pDG183 PETR1-TAGGFP-SEAP-pA. TAGGFP-SEAP excised from pLM65 by SpeI/NotI digest and cloned into
similarly digested pWW125 (PETR1, ETR-PhCMVmin)

This work

pDG191 PETRON1-TAGGFP-SEAP-pA. TAGGFP-SEAP excised from pLM65 by SpeI/NotI digest and cloned
into similarly digested pWW72 (PETRON1, PhCMV-ETR)

This work

pDG210 PSV40-rTetR-siRNAGFP-VP16-pA. rTetR excised from pTET-ON by EcoRI/BssHII digestion and
cloned into similarly digested pDG1

This work

(continued)
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Table 1. Continued

Plasmid Genotype and/or cloning strategy Reference or source

pDG211 PhCMV�-1-TAGGFP-SEAP-pA. PhCMV�-1 excised from pMF111 by SspI/XbaI digestion and cloned into
SspI/SpeI digested pDG183

This work

pDG213 PPIR-TAGGFP-SEAP-pA. PPIR excised from pMF189 by SspI/SpeI digestion and cloned into similarly
prepared pDG183

This work

pDG276 PETR2-TAGGFP-SEAP-pA. Phsp70min and TAGGFP excised from pDG213 by SbfI/BssHII digestion and
cloned into similarly prepared pDG183 (PETR2, ETR-Phsp70min)

This work

pDG280 PETRON2-TAGGFP-SEAP-pA. ETR operator module and TAGGFP excised from pDG191 by HindIII/
NdeI digestion and cloned into similarly prepared pLM189 (PETRON2, PPGK-ETR)

This work

pDG284 PETR3-TAGGFP-SEAP-pA. PSV40min PCR amplified from pSEAP2-Control using primers ODG092
(ACCGTACAAGGAGCCTGCAGgcgatctgcatctcaattagtc; SbfI site underlined, annealing sequence
in lower case) and ODG093 (ggaggcctaggcttttgcaaaCTAGTCACATGCTGG; SpeI site underlined,
annealing sequence in lower case), digested with SbfI/SpeI and cloned into similarly prepared
pDG183 (PETR3, ETR-PSV40min)

This work

pDG286 PETR1-TAGGFP-Lis-pA. PETR1 and TAGGFP PCR amplified from pDG183 using primers ODG085
(ggaaatgttgaatactcatactcttcc, entire sequence annealing) and ODG094 (cacaagctggagtacaactac
GCGCGCCCACCA, BssHII site underlined, annealing sequence in lower case), digested with
AatII/BssHII and cloned into similarly prepared pWW315 (PETR1, ETR-PhCMVmin)

This work

pDG287 PETRON1-TAGGFP-Lis-pA. PETRON1 and TAGGFP excised from pDG290 by AatII/BssHII digestion
and cloned into similarly prepared pWW315 (PETRON1, PhCMV-ETR)

This work

pDG289 PETR1-TAGGFP-RipDD-pA. PETR1 and TAGGFP PCR amplified from pDG183 using primers ODG085
and ODG094 (see above), digested with AatII/BssHII and cloned into similarly prepared pWW326
(PETR1, ETR-PhCMVmin)

This work

pDG290 PETRON1-TAGGFP-RipDD-pA. PETRON1 and TAGGFP PCR amplified from pDG191 using primers
ODG085 and ODG094 (see above), digested with AatII/BssHII and cloned into similarly prepared
pWW326 (PETRON1, PhCMV-ETR)

This work

pLEGFP-N1 PhCMV-GFP-pA Clontech
pLM65 PhEF1a-TAGGFP-SEAP-pA (35)
pLM177 PhEF1a-SEAP-pA (35)
pLM189 PNICON4-SEAP-pA (PNICON3, PPGK-ONIC) (49)
pmCMVmpA mPhCMV-mpA (34)
pmCMVsiGFPmpA mPhCMV-siRNAGFP-mpA (34)
pMF111 PhCMV�-1-SEAP-pA (61)
pMF167 PSV40-Pip-VP16-pA (62)
pMF189 PPIR-MCS-pA (36)
pPUR PSV40-Puro

r-pA Clontech
pSAM200 PSV40-TetR-VP16-pA (60)
pSEAP2-Control PSV40min-SEAP-pA-ESV40 Clontech
pSV2neo PSV40-Neor-pA Clontech
pTet-ON PhCMV-rTetR-VP16-pA Clontech
pTRIDENT11 PPIRON-MCS-IRES-MCS-IRES-MCS-pA (63)
pWW35 PSV40-E-VP16-pA (12)
pWW37 PETR-SEAP-pA (PETR1, ETR-PhCMVmin) (12)
pWW43 PSV40-E-KRAB-pA (12)
pWW56 PETRON1-SEAP-pA (PETRON1, PhCMV-ETR) (12)
pWW72 PETRON-MCS-pA (PETR1, ETR-PhCMVmin) (36)
pWW87 PETRON-Pip-pA (PETR1, ETR-PhCMVmin) (2)
pWW125 PETR-MCS-pA (PETR1, ETR-PhCMVmin) (36)
pWW276 PhEF1a-VEGF-pA (64)
pWW315 PhEF1a-Lis-pA (27)
pWW326 PhEF1a-RipDD-pA (27)

E, E. coli-derived repressor of the macrolide resistance gene mphA; E-KRAB, macrolide-dependent transsilencer; ESV40, SV40 enhancer; ETR,
operator sequence specific for E binding; E-VP16, macrolide-dependent transactivator; GFP, enhanced green fluorescence protein; IRES, internal
ribosome entry site; KRAB, human kox-1 gene transcriptional silencer; Lis, Cassava (M. esculenta) linamarase; Luc, firefly luciferase; MCS, multiple
cloning site; mPhCMV, modified PhCMV promoter; mpA, synthetic minimal pA; Neor, neomycin (G418) resistance conferring gene; pA, virus-derived
polyadenylation site; PETR1-3, macrolide-responsive OFF-type promoters containing a single ETR module upstream of either PhCMVmin, Phsp70min or
PSV40min respectively; PETRON1-2, macrolide-responsive ON-type promoters containing eight ETR modules downstream of either PSV40 or PPGK,
respectively; PPGK, constitutive murine phosphoglycerate kinase promoter; PhCMV, constitutive human cytomegalovirus immediate early promoter;
PhCMV�-1, tetracycline responsive promoter containing seven TetO modules upstream of PhCMVmin; PhCMVmin, minimal PhCMV; PhEF1a, constitutive
human elongation factor 1a promoter; Phsp70, constitutive Drosophila heat-shock gene hsp70 promoter; Phsp70min, minimal Phsp70; Pip, S. coelicolor-
derived repressor of the streptogramin resistance operon; PIR, operator sequence specific for Pip binding; PPIR, streptogramin-responsive OFF-type
promoter containing a single PIR module upstream of Phsp70min; PPIRON, streptrogramin-responsive ON-type promoter containing three PIR
modules downstream of PSV40; PSV40, constitutive simian-40 virus derived promoter with ESV40; PSV40min, minimal PSV40 promoter without ESV40;
Puror, puromycin resistance conferring gene; RipDD, human RIP death domain; rTetR, mutated TetR exhibiting reverse binding characteristics to
tetracycline; SEAP, human placental secreted alkaline phosphatase; siRNA, short interfering RNA (subscript denotes specificity); TAG, siRNA
specific target sequence (subscript denotes specificity); TetO, operator sequence specific for TetR binding; TetR, E. coli-derived repressor of the TN10
tetracycline resistance operon; VP16, Herpes simplex virus-derived transcriptional activator.
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(U/l) or, where relevant, relative to isogenic control vec-
tors (rU/l). Expression profiling of GFP was performed by
FACS analysis of harvested cells using a Cytomics FC500
flow cytometer with Beckman CFP analysis software
(Beckman Coulter, CA, USA) set for 488 nm excitation
and recording at 525 nm, with results expressed in either
fluorescence units (FU) or relative to isogenic control vec-
tors (%).

The total cell number and viability of harvested cells,
expressed as a percentage of living cells (%), was deter-
mined using a Casy1� cell counter (Schaerfe System,
Reutlingen, Germany). Apoptosis profiles were determined
after staining of harvested cells using an annexin V-FITC/
7-AAD apoptosis assay kit (Beckman Coulter, Marseille
France, Cat. No. PN IM3614) used according to the man-
ufacturer’s protocol. Dye incorporation and quantification
of apoptotic cells, expressed as the percentage of cells posi-
tive for either or both of annexin V-FITC or 7-AAD, was
also performed using the above flow cytometer and analy-
tical software which was set for 488 nm excitation and
recording at 525 nm (FITC) and 655 nm (7-AAD).

Encapsulation and in vivomethods

CHOTOGGLE2 cells were encapsulated in 400 mm alginate-
poly-(L-lysine)-alginate beads (alginate-PLL-alginate; 200
cells per capsule) using an Inotech Encapsulator Research
IER-20 (Inotech Encapsulation AG, Dottikon,
Switzerland) according to the manufacturer’s instructions
and the following specific parameters: 0.2mm nozzle, 405
unit flow rate using 20ml syringe, 1088Hz nozzle vibra-
tion frequency and 900V for bead dispersion. Seven hun-
dred microliters MOPS-buffered physiological salt
solution (Inotech Encapsulation AG, Dottikon,
Switzerland) containing 2� 106 encapsulated cells were
injected intraperitoneally into female OF1 mice (oncins
france souche 1; Iffa-Credo, Lyon France). Control mice
were injected with encapsulated wild-type CHO-K1 cells.
Starting 1 h after injection and continuing daily where
required, mice were administered either pristinamycin or
erythromycin at final doses of 50mg/kg. Both pristinamy-
cin and erythromycin were formulated for in vivo admin-
istration by dilution of stock solutions to appropriate
concentrations using a 0.9% (w/v) NaCl solution contain-
ing 5% (v/v) ethanol. At required time points, blood was
collected retro-orbitally and serum obtained using micro-
tainer SST tubes (Becton Dickinson, Plymouth, UK). All
experiments involving mice were approved by the French
Ministry of Agriculture and Fishery (Paris France) and
performed by M.D-E at the Institute Universitaire de
Technologie (IUTA), F-69200 Villeurbanne Cedex,
France.

RESULTS

Differential siRNA silencing improves dynamic range of
transgene control systems

The extent of siRNA-mediated gene-silencing during tran-
sient transfection is influenced, amongst other factors, by
the relative concentration of siRNA to target. This was
demonstrated by testing the silencing efficiency of a

common GFP-specific siRNA (34), constitutively
expressed from its own dedicated promoter
(pmCMVsiGFPmpA; mPhCMV-siRNAGFP-mpA), at vary-
ing siRNA to target (pLEGFP-N1, PhCMV-GFP-pA)
ratios in CHO cells (Figure 1). At siRNA to target
ratios lower than 1, silencing of GFP was undetectable
relative to isogenic control transfections (pmCMVmpA;
mPhCMV-mpA). At a 1 to 1 ratio, silencing of �50%
was observed. Increasing ratios thereafter resulted in
higher silencing efficiencies with maximal silencing in the
range of 80–90% occurring only at ratios greater than 10.
By targeting an siRNA against a reporter gene, itself

placed under expression control of a transcription control
system, it was speculated that the observed differential
silencing efficiency of siRNA could be used to improve
the induction ratio of a transcription control system.
Assuming siRNA is constitutively produced at a constant
level, the relative level of siRNA to reporter mRNA
should be much higher in the OFF configuration than in
the ON configuration; thus leading to disproportionately
higher silencing of residual OFF expression than maximal
ON expression. By expressing a functional siRNA as a
synthetic intron between the erythromycin (EM)-inducible
DNA-binding protein and the relevant transcriptional reg-
ulator we sought to test the hypothesis that differential
siRNA silencing could be used to improve the induction
characteristics of the EM-responsive (E.REX) EOFF and
EON systems (12,29) (Figure 2). Intronically encoded
GFP-specific siRNA (siRNAGFP), placed within the ET1
(pDG1; PSV40-E-siRNAGFP-VP16-pA) and ET4 (pDG97;
PSV40-E-siRNAGFP-KRAB-pA) transregulators were used
to directly target GFP which itself was placed under
expression control of either ET1-(pDG182; PETR1-GFP-
pA) or ET4-(pDG181; PETRON1-GFP-pA) responsive
promoters, respectively. Relative to the native transregu-
lators ET1 (pWW35; PSV40-E-VP16-pA) and ET4
(pWW43; PSV40-E-KRAB-pA), differential siRNA-
mediated silencing between the ON and OFF
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Figure 1. Impact of siRNA to gene target ratio on RNAi-mediated
gene silencing. GFP expression of CHO-K1 cells after co-transfection
with varying ratios of target GFP (pLEGFP-N1; PhCMV-GFP-pA) and
a siRNA directed against GFP (pmCMVsiGFP-mpA; mPhCMV-
siRNAGFP-mpA). For each ratio, GFP production was assessed relative
to equivalent co-transfections of pLEGFP-N1 and an isogenic (non-
siRNA containing) control (pmCMVmpA; mPhCMV-mpA).
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configurations improved the induction characteristics
of the EOFF and EON systems from 10- to 39-fold, and
19- to 60-fold, which represents a 4- and 3-fold incremen-
tal improvement, respectively.
The system thus described relies upon a specific siRNA

targeting a desired reporter gene (in this case GFP).
Further application to other reporter genes would require
de novo design of a reporter gene specific siRNA in each
case. To circumvent this issue, and make the system gen-
erically applicable to any reporter gene, the siRNAGFP

target sequence (TAG) was incorporated into the 50

untranslated region of another reporter gene, namely
SEAP, thereby rendering it capable of siRNAGFP

mediated silencing (35) (Figure 3). The performance of
the resulting system (For EOFF we used pDG183; PETR1-
TAGGFP-SEAP-pA, and for EON pDG191; PETRON1-
TAGGFP-SEAP-pA) with respect to differential silencing,
strong reduction of basal expression, and improvement in
induction characteristics (4-fold for ET1 and 3-fold for
ET4) was consistent with the improvement observed in
the directly targeted reporter system.
To ascertain whether a different intronic siRNA/TAG

combination would have the same effect, an EON system
utilizing an intronic siRNA against luciferase (pDG98;
PSV40-E-siRNALuc-KRAB-pA) with a corresponding

luciferase TAG on the reporter construct was also tested
(pDG104; PETRON1-TAGLuc-SEAP-pA). In direct com-
parisons of knockdown efficiency, siRNALuc has been
more efficient than siRNAGFP (93 versus 80%) (29).
When siRNALuc was used within the EON system in tran-
sient co-transfections of CHO-K1, maximal and minimal
SEAP reporter expression in the presence and absence, res-
pectively, of erythromycin were 6.4U/l (� 0.4) and 0.06U/l
(� 0.02). In comparison to the native EON system this cor-
responded to silencing ratios of 68 and 93%, respectively,
and an overall induction ratio of 99-fold which was
approximately 5-fold higher than the native EON system.
Despite significantly reducing maximal expression (i.e.
68%), this showed that the use of a more efficient siRNA
could also be used to improve induction characteristics
because of the higher reduction observed in minimal
expression (i.e. 93%). This suggests that differential
siRNA-mediated silencing is not dependent upon a partic-
ular siRNA per se, but rather the ratio of siRNA to target.

To further investigate the impact of different siRNAs
upon system characteristics, erythromycin dose response
profiles for the native, and intronic GFP- and intronic
Luc-containing siRNA EON systems were compared
(Figure 4). Apart from the change in induction character-
istics described earlier, a tightening of the inducer
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Figure 2. Schematic representation and comparison of E.REX (EOFF and EON) induction characteristics following inclusion within ET1 (pWW35;
PSV40-E-VP16-pA) and ET4 (pWW43; PSV40-E-KRAB-pA) of an intronically encoded siRNA (pDG1; PSV40-E-siRNAGFP-VP16-pA and pDG97;
PSV40-E-siRNAGFP-KRAB-pA, respectively) directed against a GFP reporter gene whose expression was placed under control of the relevant ET1 or
ET4 responsive promoter (pDG182; PETR1-GFP-pA and pDG181; PETRON1-GFP-pA, respectively). In each case erythromycin (EM) dose profiles
for either the native or intronic siRNA-containing transcriptional regulator ET1 (A) or ET4 (B) were determined in CHO-KI following
co-transfection with the relevant responsive GFP reporter construct. Also shown are expression levels resulting from transfection with just the
relevant reporter construct.
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concentration range (‘inducer window’) was observed for
both intronic siRNA containing systems. This was great-
est for the intronic siRNALuc system where the erythro-
mycin concentration at which the system began to switch
‘ON’ increased from 10 to �100 ng/ml. For both systems
there were minimal changes to the concentration at which
the system was fully induced (�1000 ng/ml). Referring
back to Figure 1 these results are consistent with the
impact of the siRNA to target ratio upon gene silencing.
For a relatively efficient siRNA such as siRNALuc, max-
imum silencing occurs at a relatively lower siRNA to
target ratio. Hence, maximal silencing does not require
ET4 to be entirely shut-off which accordingly shifts the
beginning of the inducer window to the right. However,
with respect to the end of the end of the induction
window, there is no equivalent shift as once ET4 is com-
pletely active there is no further change in siRNA-
mediated silencing levels. Taken together this results in
an overall compression of the inducer window.
To test the applicability of the approach to other mam-

malian systems, the performance of the native and intronic
siRNA containing versions of the EOFF and EON control
systems were also determined in several other mammalian
cell types; in particular the human cell lines HEK293-T
and HeLa, the monkey cell line Cos-7, and the mouse cell
line NIH/3T3 (Table 2). In each respective case, the
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Figure 3. Schematic illustration and comparison of induction performance of EOFF and EON systems containing intronic siRNA against a target that was
placed immediately upstream of a generic reporter gene. Native and intronic siRNA-containing erythromycin (EM) dose profiles for (A) EOFF and (B) EON

systems were determined after co-transfection of CHO-K1 with the relevant transcriptional regulator (pWW35—native ET1; PSV40-E-VP16-pA, pDG1—
ET1 containing intronically encoded siRNA against GFP; PSV40-E-siRNAGFP-VP16-pA, pWW43—native ET4; PSV40-E-KRAB-pA or pDG97—ET4
containing intronically encoded siRNA against GFP, PSV40-E-siRNAGFP-KRAB-pA) and the corresponding ET1/ET4 responsive SEAP reporter con-
struct containing the siRNA target sequence (TAGGFP) immediately upstream of the SEAP reporter gene (EOFF pDG183; PETR1-TAGGFP-SEAP-pA and
EON pDG191; PETRON1-TAGGFP-SEAP-pA). Also shown are expression levels resulting from transfection with just the relevant reporter construct.
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Figure 4. Comparison of erythromycin (EM) dose response profiles for
native and two different intronic siRNA-containing EON systems.
Reporter gene expression levels were determined after co-transfection
of CHO-K1 with either the native system (pWW43; PSV40-E-KRAB-
pA, and pWW56: PETRON1-SEAP-pA), an intronic siRNA system
utilizing intronic siRNAGFP and TAGGFP upstream of the reporter
(Intronic GFP: pDG97; PSV40-E-siRNAGFP-KRAB-pA, and pDG191:
PETRON1-TAGGFP-SEAP-pA), or an intronic siRNA system utilizing
intronic siRNALuc (luciferase) and TAGLuc upstream of the reporter
(Intronic Luc: pDG98; PSV40-E-siRNALuc-KRAB-pA, and pDG104:
PETRON1-TAGLuc-SEAP-pA). For each respective system, SEAP
reporter expression levels are stated relative (%) to the maximal gene
expression level observed for that system.
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intronic siRNA containing versions yielded superior
induction performance with the extent of residual expres-
sion in the OFF configuration generally approaching the
detection limit of the reporter gene assay. This confirmed
that differential silencing between ON and OFF configura-
tions occurred irrespective of whether the system was
placed in a highly expressing cell line (e.g. HEK293-T or
Cos-7) or a much lower expressing and tightly regulating
cell line such as NIH/3T3. Indeed for the latter, the reduc-
tion in residual expression in the OFF configuration to the
detection limit of the reporter assay (6 mU/l) for SEAP
(36) resulted in an almost infinite induction ratio (i.e.
>2000-fold). Significantly, for the EOFF system the
strong siRNA-mediated silencing of leaky expression in
the OFF configuration reduced expression levels to well
below that of equivalent transfections with just the repor-
ter gene alone. This was never achieved in the OFF con-
figuration with the native EOFF system.
Given the influence of different underlying promoters on

gene control system characteristics, the minimal PhCMVmin

and constitutive PSV40 promoters of the standard EOFF

(pDG183) and EON (pDG191) -TAGGFP-SEAP-pA repor-
ter constructs, were substituted withDrosophila heat shock
hsp70 (pDG276; PETR2-, ETR-Phsp70min�) and simian-40
virus derived (pDG284; PETR3, ETR-PSV40min�) minimal
promoters, and the murine phosphoglycerate kinase
(pDG280; PETRON2-, PPGKETR-) constitutive promoter,
respectively. A comparison of the performance of these
systems using both native and intronic siRNA containing
transregulators demonstrated that differential silencing
between ON and OFF configurations, and resulting

improved induction performance, existed for the intronic
siRNA systems irrespective of the underlying promoter
(Table 3). This occurred when the underlying promoter
was weaker (e.g. Phsp70min for EOFF) or stronger (e.g.
PSV40min for EOFF or PPGK for EON) with the overall
improvement ranging from 3- to 11-fold.

Exploiting the standard architecture andmodular nature
of many gene control systems, the generic intronic siRNA
concept was extended to improve the induction character-
istics of several other common transcription control sys-
tems. Therefore, intronically encoded siRNAGFP was
placed within the tetracycline (Tet)-dependent transactiva-
tor tTA (pDG153; PSV40-TetR-siRNAGFP-VP16-pA), the
reverse doxycycline (Dox)-dependent transactivator rtTA
(pDG210; PSV40-rTetR-siRNAGFP-VP16-pA), and the
pristinamycin (PI)-dependent transactivator PIT
(pDG143; PSV40-Pip-siRNAGFP-VP16-pA). Using appro-
priate reporter constructs containing a TAGGFP

(pDG211; PhCMV
�
�1-TAGGFP-SEAP-pA, pDG213; and

PPIR-TAGGFP-SEAP-pA, respectively) and relative to
native transactivators (pSAM200; PSV40-TetR-VP16-pA,
pTET-ON; PSV40-rTetR-VP16-pA, pMF167 and PSV40-
Pip-VP16-pA, respectively), all systems exhibited between
a 3- and 5-fold improvement in regulation performance
(Figure 5).

Improved transgene expression allows tight conditional
expression of toxic gene products

Irrespective of the cell type, underlying promoter or tran-
scription control system used, the generally observed 3- to

Table 2. Comparison of induction performance of native versus intronic siRNA containing EOFF and EON systems in different mammalian cell types

Cell type

HEK293-T Cos-7 HeLa NIH/3T3

EOFF system
Reporter alone 28.2� 0.4 3.7� 0.4 0.3� 0.0 0.04� 0.01
Native ET1 (�EM) 860.5� 33.4 653.4� 48.8 225.3� 10.8 20.66� 2.34
Native ET1 (+EM) 29.2� 1.9 7.6� 0.8 0.9� 0.1 0.10� 0.04
Intronic ET1 (�EM) 720.6� 20.6 633.9� 64.2 109.5� 6.4 11.59� 2.20
Intronic ET1 (+EM) 5.1� 0.6 1.9� 0.1 0.1� 0.1 0.01� 0.01

Induction factor (�)
Native ET1 29.5 86.4 240.2 208.9
Intronic ET1 140.5 333.8 1963.0 2074.5
Change 4.8 3.9 8.2 9.9

EON system
Reporter alone 5.28� 0.91 14.68� 0.64 2.07� 0.52 3.29� 0.06
Native ET4 (�EM) 0.92� 0.08 1.56� 0.11 0.16� 0.00 0.23� 0.17
Native ET4 (+EM) 5.32� 0.77 13.81� 1.64 2.26� 0.33 1.59� 0.42
Intronic ET4 (�EM) 0.17� 0.27 0.40� 0.05 0.02� 0.14 0.03� 0.02
Intronic ET4 (+EM) 2.44� 0.32 12.00� 1.18 0.86� 0.13 0.94� 0.17

Induction factor (x)
Native ET4 5.8 8.9 14.3 7.0
Intronic ET4 14.5 30.2 39.9 29.9
Change 2.5 3.4 2.8 4.3

ET1 or ET4 responsive SEAP reporter constructs containing the siRNA target sequence (TAGGFP) immediately upstream of the SEAP reporter gene
(EOFF pDG183; PETR1-TAGGFP-SEAP-pA and EON pDG191; PETRON1-TAGGFP-SEAP-pA) were transfected alone or together with either native
(ET1, pWW35; PSV40-E-VP16-pA and ET4, pWW43; PSV40-E-KRAB-pA) or intronic siRNAGFP containing (ET1, pDG1; PSV40-E-siRNAGFP-VP16-
pA and ET4, pDG97; PSV40-E-siRNAGFP-KRAB-pA) transregulators into different cell types, and scored for SEAP production (U/l) in the presence
or absence of 5 mg/ml erythromycin (EM). The resulting induction factor between OFF and ON expression levels is shown in each case.
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10-fold improvement in induction characteristics of the
intronic siRNA approach was sufficient to improve resi-
dual leakiness to less than, or close to, 1% of maximal
gene expression. To determine whether this improvement
in reducing basal leakiness was of significance we sought
to compare intronic siRNA mediated versus native tran-
scription control of two toxic gene products. In the first,
the highly toxic RIP death domain (RipDD) (25,26) was
cloned immediately downstream of TAGGFP containing
EOFF and EON responsive promoters (for EOFF we used
pDG289; PETR1-TAGGFP-RipDD-pA and for EON

pDG290; PETRON1-TAGGFP-RipDD-pA), and expres-
sion of RipDD in HeLa controlled with either native or
intronic siRNA containing ET1 (pWW35 or pDG1) or

Table 3. Comparison of induction performance within CHO-K1 of

native versus intronic siRNA containing EOFF and EON systems utiliz-

ing different minimal and constitutive promoters adjacent to the rele-

vant ETR operator module(s)

Minimal promoter following single
ETR operator

PhCMVmin Phsp70min PSV40min

EOFF system
Reporter alone 0.38� 0.05 0.12� 0.01 1.98� 0.10
Native ET1 (�EM) 39.63� 3.16 6.59� 3.25 80.48� 7.97
Native ET1 (+EM) 1.61� 0.29 0.78� 0.16 6.36� 0.47
Intronic ET1 (�EM) 21.24� 0.14 2.53� 0.07 66.05� 0.09
Intronic ET1 (+EM) 0.19� 0.04 0.03� 0.00 0.84� 0.04

Induction factor (�)
Native ET1 24.7 8.4 12.6
Intronic ET1 109.8 93.8 78.2
Change 4.4 11.2 6.2

Constitutive promoter preceding octet
ETR operator

PSV40 PPGK

EON System
Reporter alone 31.48� 1.16 87.48� 15.68
Native ET4 (�EM) 0.98� 0.10 3.16� 0.66
Native ET4 (+EM) 21.64� 2.90 51.91� 21.37
Intronic ET4 (�EM) 0.13� 0.04 0.15� 0.03
Intronic ET4 (+EM) 9.09� 0.63 23.06� 0.66

Induction factor (�)
Native ET4 22.0 16.4
Intronic ET4 71.0 158.9
Change 3.2 9.7

EOFF reporter constructs containing either the PhCMVmin (pDG183;
PETR1-, ETR-PhCMVmin-), Phsp70min (pDG276; PETR2-, ETR-Phsp70min�),
or PSV40min (pDG284; PETR3-, ETR-PSV40min-) minimal promoters, and
EON reporter constructs containing either the PSV40 (pDG191; PETRON1-,
PSV40-ETR-) or PPGK (pDG280; PETRON2-, PPGK-ETR-) constitutive
promoters, which drive transcription of a siRNA target sequence
(TAGGFP) immediately upstream of a SEAP reporter gene, were trans-
fected alone or together with native (ET1, pWW35; PSV40-E-VP16-pA and
ET4, pWW43; PSV40-E-KRAB-pA) or intronic siRNAGFP containing
(ET1, pDG1; PSV40-E-siRNAGFP-VP16-pA and ET4, pDG97; PSV40-
E-siRNAGFP-KRAB-pA) transregulators, and scored for SEAP
production (U/l) in the presence or absence of 5 mg/ml erythromycin
(EM). The resulting induction factor between OFF and ON expression
levels for each system is shown in each case.
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Figure 5. Extension of intronic siRNA/TAG concept to other gene reg-
ulation systems in CHO-K1. For each system the induction performance
of the native transactivator was compared against the same transactivator
containing an intronically encoded siRNAGFP, the target (TAGGFP) of
which was incorporated immediately upstream of a SEAP reporter gene
that was placed under control of the requisite transactivator responsive
promoter. (A) TetOFF tetracycline (Tet) dose response in which either
native tTA (pSAM200; PSV40-TetR-VP16-pA) or intronic siRNAGFP con-
taining tTA (pDG153; PSV40-TetR-siRNAGFP-VP16-pA) was co-trans-
fected with pDG211 (PhCMV

�
�1-TAGGFP-SEAP-pA). (B) TetON

doxycycline (Dox) dose response in which either native rtTA (pTET-
ON; PSV40-rTetR-VP16-pA) or intronic siRNAGFP containing rtTA
(pDG210; PSV40-rTetR-siRNAGFP-VP16-pA) was co-transfected with
pDG211. (C) PIOFF pristinamycin (PI) dose response in which either
native PIT (pMF167; PSV40-Pip-VP16-pA) or intronic siRNAGFP contain-
ing PIT (pDG143; PSV40-Pip-siRNAGFP-VP16-pA) was co-transfected
with pDG213 (PPIR-TAGGFP-SEAP-pA).
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ET4 (pWW43 or pDG97). Apoptosis profiling demon-
strated that only the intronic siRNA containing trans-
regulators enabled sufficiently tight OFF expression
in which apoptosis was at the same level as that observed
in negative control transfections (Figure 6). Importantly,
maximal expression of the intronic siRNA systems was not
overly compromised as evidenced by the roughly equiva-
lent levels of apoptosis in native versus intronic siRNA
systems in their respective ON configurations.
The utility of the intronic siRNA containing systems

was further tested in CHO-K1 using the linamarase–lina-
marin prodrug system (27). In this system linamarase
expression enables conversion of the otherwise harmless
prodrug linamarin into highly toxic and readily diffusible
gaseous cyanide. While linamarase is only expressed intra-
cellularly, any produced gaseous cyanide can readily dif-
fuse to neighboring cells thereby resulting in highly
efficient cell killing through a ‘bystander effect (27)’.
Similarly to RipDD, Linamarase (Lis) was expressed
downstream of the requisite TAGGFP containing EOFF/
EON responsive promoters (EOFF pDG286; PETR1-
TAGGFP-Lis-pA and EON pDG289; PETRON1-TAGGFP-
Lis-pA) and assessed for native and intronic siRNA
containing ET1 and ET4 performance (Figure 7). As evi-
denced both by microscopic imagery (Figure 7A) and cell
viability assessment (Figure 7B), the difference between
native and intronic siRNA containing transregulation in
either OFF configuration (+EM for EOFF and –EM for
EON) was highly evident. It was only by using intronic
siRNA-mediated regulation that basal expression of lina-
marase was sufficiently abrogated to prevent high cell
death. Indeed for the EOFF system, and consistent with
results described earlier using the quantitative SEAP
reporter gene, the intronic siRNA containing system in
its OFF configuration resulted in lower cell death than
equivalent experiments with the linamarase expressing

plasmid alone (Rpt. Only, Figure 7). This succinctly
demonstrated the ability of intronic siRNA to reduce
basal expression levels below that inherent to the regulable
promoter, and most critically, how this relatively small
effect can equate to a major difference at a biological
process level.

Simple, one-step autoinducible siRNA vectors

To fully explore the concept of intronically encoded
siRNA within a transregulatory control system the con-
stitutive PSV40 promoter of pDG1 and pDG153 (intronic
siRNAGFP containing ET1 and tTA, respectively) were
switched for the respective cognate promoters for each
transactivator thereby generating EM- (pDG165; PETR1-
E-siRNAGFP-VP16-pA) and Tet- (pDG179; PhCMV

�
�1-

TetR-siRNAGFP-VP16-pA) responsive autoregulatory
vectors (Figure 8). In each case the respective transregu-
lator not only positively drives its own expression, but also
its intronically encoded siRNA. Addition of the respective
inducer shuts off both transactivator and siRNA expres-
sion. Significantly, each vector contains all the necessary
elements to enable controllable siRNA expression within a
single compact format. The ET1-based vector is encoded
within 3.5 kb; the tTA-based vector within 3.9 kb. In
co-transfections with a GFP target (pLEGFP-N1), and
relevant to the appropriate isogenic controls (pDG164;
PETR1-E-VP16-pA, and pWW35), the autoregulated
EM-responsive system was capable of mediating GFP
silencing to almost the same degree as constitutively
expressed intronic siRNA (pDG1). Importantly, the addi-
tion of EM was sufficient to shut-off ET1 expression with
a consequent decrease in siRNA expression and GFP
silencing. Similarly, the Tet-responsive system was capable
of mediating strong silencing of a co-transfected GFP
TAGed reporter construct (pLM65; PhEF1a-TAGGFP-
SEAP-pA), relative to isogenic controls (pDG178;
PhCMV

�
�1-VP16-pA), which could be alleviated across a

relatively broad Tet concentration range.

A higher-fold in vitro and in vivo epigenetic toggle switch
using intronically encoded siRNA

The utility of tighter gene control systems was demon-
strated by applying the earlier concepts to improve the
performance of a synthetic gene network; in particular,
the mammalian epigenetic toggle switch (2). In its native
configuration this network consists of the PIPON and EON

antibiotic-inducible transrepressor control systems
arranged such that they repress each other’s expression
(Figure 9). The system is capable of two stable expression
states depending upon which transrepressor is actively
repressing the other. Critically, and to distinguish it
from a typical on versus off gene control system,
the switch from one state to the other only requires the
transient administration of an appropriate inducer.
Co-transfection of native toggle components pBP62
(PPIRON-E-KRAB-IRES-pA) and pBP139 (PETRON1-
Pip-KRAB-IRES-SEAP-pA) into CHO cells, followed
by incubation with either EM or PI for 24 h, results in
two distinct expression levels which are maintained for
the subsequent 24 h after substitution with inducer-free
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Figure 6. Comparison of constitutive, and conditional native and intronic
siRNA containing EOFF and EON, RIP death domain (RipDD) expression
inHeLa cells. The proportion of apoptotic cells (cells positively stained for
either or both of annexin V or 7-AAD) was determined after transient
co-transfection of ET1/ET4 responsive RipDD expression constructs,
containing an siRNA target sequence (TAGGFP) immediately upstream
of the RipDD gene (EOFF pDG289; PETR1-TAGGFP-RipDD-pA and EON

pDG290; PETRON1-TAGGFP-RipDD-pA), and the relevant native
(Nat. ET1 pWW35; PSV40-E-VP16-pA and Nat. ET4 pWW43; PSV40-
E-KRAB-pA) or intronic siRNAGFP containing (Int. ET1 pDG1;
PSV40-E-siRNAGFP-VP16-pA and Int. ET4 pDG97; PSV40-E-siRNAGFP-
KRAB-pA) transregulator, and grown for 72 h in the presence or absence
of 5mg/ml erythromycin (EM). Mock-transfected cells (Ctrl.) and cells
transfected with constitutively expressed RipDD (pWW326; PhEF1a-
RipDD-pA) were used as respective controls.
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media (Figure 9B). Using intronically encoded siRNAGFP

and siRNALuc [luciferase-specific siRNA (29)] placed
between each transrepressor, and targeting a siRNA-spe-
cific TAG placed immediately upstream of each opposing
transrepressor, a variant of the native toggle was engi-
neered which used both transrepression as well as gene
silencing to control expression of the opposing construct
(Figure 9A). Upon co-transfection of this network,
encoded on pDG161 (PPIRON-TAGGFP-E-siRNALuc-
KRAB-IRES-pA) and pDG168 (PETRON1-TAGLuc-Pip-
siRNAGFP-KRAB-IRES-SEAP-pA), into CHO a bistable
expression pattern also resulted which was maintained
following the withdrawal of relevant inducers
(Figure 9B). Significantly, the use of gene-silencing
through intronically encoded siRNA increased the
dynamic range of the two stable states. The initial presence
of PI (for the first 24 h only), which induces the lower

expression state, resulted in SEAP expression levels of
0.25 and 0.47U/l after 24 and 48 h, respectively, whereas
the native toggle resulted in 0.55 and 0.76U/l, respectively.
This demonstrated that intronically encoded siRNALuc

reduced Pip-KRAB and SEAP expression further than
E-KRAB-mediated repression could alone, thus effectively
lowering the leakiness of the system. Conversely, in the
initial presence of EM (for the first 24 h only), the intronic
toggle yielded SEAP levels of 1.83 and 3.03U/l, and the
native toggle 1.71 and 1.51U/l, again at 24 and 48 h. In
this instance, intronic siRNAGFP minimized leaky
E-KRAB expression, thus enabling higher Pip-KRAB
and SEAP expression compared to the native configura-
tion. In relation to the dynamic range, the intronic toggle
exhibited an induction factor of 7- and 6-fold, compared
to 3- and 2-fold for the native toggle at 24 and 48 h,
respectively.
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Figure 7. Impact of constitutive and EOFF/EON regulated linamarase (Lis) expression, with linamarin (Lin) application, on CHO-K1 cell viability. (A)
Light microscopy (scale bar 50 mM) and (B) cell viability of harvested cells after ET1/ET4 responsive Lis expression constructs containing an siRNA
target sequence (TAGGFP) immediately upstream of the Lis gene (EOFF pDG286; PETR1-TAGGFP-Lis-pA and EON pDG287; PETRON1-TAGGFP-Lis-
pA) were transfected alone (Rpt. Only) or together with the relevant native (Nat. ET1 pWW35; PSV40-E-VP16-pA and Nat. ET4 pWW43; PSV40-E-
KRAB-pA) or intronic siRNAGFP containing (Int. ET1 pDG1; PSV40-E-siRNAGFP-VP16-pA and Int. ET4 pDG97; PSV40-E-siRNAGFP-KRAB-pA)
transregulator and grown for 96 h in the presence of Lin, and the presence or absence of 5 mg/ml erythromycin (EM). Mock-transfected cells (Ctrl.)
and cells transfected with constitutively expressed Lis (pWW315; PhEF1a-Lis-pA), grown in either the presence or absence of Lin were used as
respective controls.
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To enable longer-term validation, reversibility and
in vivo studies we constructed a double transgenic cell
line, CHOTOGGLE2, stable for pDG161 and pDG168
(Figure 10). After an initial 3-day period to set popula-
tions to either a high or low SEAP expression state
(using EM or PI), each population was subjected to a
further 9-day incubation phase in inducer-free media
(Figure 10A). Analysis of expression levels every 3 days
showed that the differential expression state of each popu-
lation was maintained over this period. In a similar experi-
mental setup, cell populations were initially exposed to
one inducer to set expression patterns before multiple
switching of inducer regimes (Figure 10B). In each case
the cell populations exhibited full reversibility in the pre-
sence of a different inducer thus indicating that the net-
work retained its superior bistable characteristics even
after repeated switching between states. Finally, to demo-
nstrate that the intronic toggle was also capable of impro-
ved in vivo performance CHOTOGGLE2 cells were
microencapsulated and intraperitoneally implanted into
mice. All mice were initially dosed with either PI and
EM, following which only a subset were exposed to
ongoing inducer dosing (Figure 10C). For either PI or

EM dosed mice, serum SEAP expression levels were simi-
lar regardless of whether dosing was continuous or only
transient. Secondly, the induction ratio between transient
EM versus PI dosed mice of 7- (3d), 9- (6d) and 7-fold (9d)
remained higher at all times in the intronic siRNA net-
work compared to the previously published native toggle
network (2).

DISCUSSION

Typical mammalian heterologous gene control systems
consist of a regulable promoter controlled by a constitu-
tively expressed transregulator (13). In this work an intro-
nically encoded siRNA was simultaneously co-expressed
with a functional transregulator that controlled expression
of a reporter gene that was itself targeted by the siRNA.
Significantly, in the ON configuration the ratio of siRNA
to target mRNA was lower than where the same promoter
is in the OFF configuration. Computational models, refer-
enced to the molecular and biochemical parameters of
RISC-based siRNA interference processes, and experi-
mentally validated using synthetic transcription-
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translation networks, have previously shown that both the
rate of mRNA disappearance and eventual mRNA steady
state level are directly influenced by the relative concentra-
tions of siRNA to target mRNA (35,37). This feature was
exploited in the above configuration with the resulting
differences in gene silencing used to increase the induction
window of several common gene control systems.
Significantly, this differential silencing effect was observed
across many tested mammalian cell types, and occurred
irrespective of the underlying regulable promoter thus
demonstrating the broad applicability of the approach.

Since the development of mammalian gene control sys-
tems, many strategies have focused upon improving induc-
tion characteristics by eliminating residual expression.
Given its early development and subsequent widespread
adoption much of this work has been specifically aimed
at the Tet-responsive system. Thus incremental

improvements to the original Tet configuration have
been achieved by mutational enhancement of the Tet
DNA-binding domain to improve its binding and sensitiv-
ity (38–40), by modifying the Tet-cognate promoter
(41,42), and finally by combining non-heterodimerizing
reverse Tet-transactivators with antagonizing Tet-repres-
sors (43–47). While successful on their own or in combi-
nation, each of these enhancements is specific to the Tet-
system and not easily reproducible for other gene control
systems. At a more general level it is possible to alter the
properties of any gene control system through multimer-
ization and alternate spacing of operator sites, choice of
underlying promoter, as well as selection of transregula-
tory protein (41,48–51). However, the systems described to
date have generally explored these avenues and are
already optimized. An alternate, but time-consuming
and poorly scalable, avenue is to stably transfect a gene
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Figure 9. (A) Schematic depiction of an intronic siRNA-containing genetic toggle network consisting of two transpressors [pristinamcyin (PI)-
inducible Pip-KRAB and erythromycin (EM)-inducible E-KRAB] configured in a mutually oppressing manner whereby each repressor is under
the transcriptional control of the opposing repressors cognate promoter (PETRON1 and PPIRON, respectively). Each transrepressor contains an
intronically encoded siRNA [either GFP- (siRNAGFP) or Luc- (siRNALUC) specific] directed against a TAG placed immediately upstream of the
opposing transrepressor. SEAP, encoded downstream of Pip-KRAB via an internal ribosome entry site (IRES), provides a read-out of the network’s
expression status. (B) Regulation performance of the native (non-siRNA intron nor TAG containing) toggle switch (pBP62; PPIRON-E-KRAB-
IRES-pA, and pBP139; PETRON1-Pip-KRAB-IRES-SEAP-pA) versus the intronic siRNA toggle switch (pDG161 and pDG168) following transient
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repressor to be maximally transcribed until, in a self-perpetuating manner, it stably represses the originally active promoter. Either of the two steady
states are maintained in a following removal of relevant effecter molecules (non-shaded region) by substitution with fresh media.
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control system and select cells with high regulation perfor-
mance by single cell cloning (11,12). Finally, several
attempts have also been made to explicitly reduce leaki-
ness through the engineering of synthetic gene networks.
Early networks were based on transcriptional cascades of
several independently operating gene control systems
(52,53). Later attempts have built upon these networks
and sought to utilize conditional RNA interference to
actively eliminate basal reporter expression (35,54). In
some cases, however, the required number of interacting
elements and associated complexity has rendered each
system relatively user unfriendly and not readily adaptable
to new systems. In contrast a far simpler generic solution
is presented here that does not entail significant added
complexity and which can be applied to most gene control
systems that share the same essential architecture. This
was illustrated by improving the performance characteris-
tics of three common antibiotic responsive control systems
for which the only manipulation required was the inser-
tion of an intronically encoded siRNA on the transregu-
lator and placement of a siRNA target immediately
upstream of the desired reporter gene.

By placing a transactivator containing an intronically
encoded siRNA under transcriptional control of the trans-
activator’s cognate promoter it was also possible to engi-
neer a highly effective autoregulable silencing vector. This
tool enables one-step genetic engineering of eukaryotic
cells for adjustable expression of a siRNA. Significantly,
these vectors contain all the necessary elements for self-
regulation within a single cistron on a single plasmid that
is less than 4 kb in size. Over the past 5 years mammalian
gene regulation technology has been progressively applied
to siRNA expression (55–59) and indeed autoregulated
siRNA expression vectors have also been developed (58).
However, such vectors typically encode the regulatory
component (e.g. tTA) and the siRNA responsive compo-
nent as two independent cistrons, with associated promo-
ters and mRNA processing sequences, on the one plasmid.
Here, issues associated with cross-promoter competition
or interaction are circumvented, and the number of intro-
duced genetic elements minimized, by simultaneously
expressing the siRNA and regulatory component from
the same cistron. Importantly, by applying the design
using two different systems (i.e. EOFF and TetOFF) it was
demonstrated that the architecture is also generically
applicable. Thus, it could used to create autoinducible
vectors responsive to other effective molecules by simply
switching both the DNA-binding protein and cognate pro-
moter for one specific to the desired gene control system.
This technology could also easily be combined with multi-
cistronic expression technology to enable autoregulated
expression control of several siRNAs and transgenes all
off a single vector (29,60). This could be a useful tool for
the study or engineering of combinatorial effects of differ-
ent genes in mammalian cells.

While the generic strategy described earlier was used to
improve the induction window of several gene control
systems it did nonetheless also result in a reduction in
maximum expression levels. Arguably the most common
problem with existing mammalian gene control systems is
not with maximum expression levels, but with leaky
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Figure 10. (A) Long-term bistability of transgenic CHO-K1 cells
(CHOTOGGLE2) engineered for an intronic siRNA containing genetic
toggle network by stable transfection of pDG161 (PPIRON-TAGGFP-
E-siRNALuc-KRAB-IRES-pA) and pDG168 (PETRON1-TAGLuc-Pip-
siRNAGFP-KRAB-IRES-SEAP-pA). Two cell populations were grown
for 3 days in the presence of either pristinamycin (PI) or erythromycin
(EM) to set initial SEAP expression levels (presence of effecters indi-
cated by shading). Cells were subsequently harvested, reseeded in effec-
ter-free media, and assayed for SEAP activity every 3 days over a total
period of 9 days. (B) Expression reversibility in CHOTOGGLE2. Again,
two cell populations were initially grown for 3 days in the presence of
either PI or EM to set expression levels, followed by a further 3-day
cultivation in effecter-free media. At days 6 and 12, effecter dosing was
switched. SEAP was scored immediately prior to each media change
and at day 15. (C) In vivo expression control of microencapsulated
CHOTOGGLE2 cells implanted intraperitoneally into mice. Serum
SEAP levels were quantified at days 3, 6 and 10 for four groups of
mice which were initially exposed to 3 days of either daily PI or EM
effecter injections. Effecter injections were subsequently halted for two
groups of mice (3d) whereas the remaining two groups served as con-
trols in which respective effecter administration was maintained daily
over the following 7 days (10d). Shown are mean values including SD
of at least six mice per timepoint.
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residual expression. To that end, foregoing some maximal
expression for tighter residual expression may be an accep-
table compromise that will be of significant benefit to many
applications. We have demonstrated this by using introni-
cally encoded siRNA-based regulation to conditionally
express highly biologically toxic genes such as the RipDD
and linamarase–linamarine prodrug system. Critically in
both cases, siRNA silencing of residual expression enabled
tight suppression in OFF configurations which produced
outcomes equivalent to control experiments. While siRNA
silencing also occurred during the respective ON configura-
tions it was not sufficient to unduly compromise the affect
of highly potent gene products such as RipDD and lina-
marase. To further illustrate the utility of differential silen-
cing we have also utilized intronic siRNA technology to
engineer an improved epigenetic toggle that exhibits a far
greater induction window than the equivalent native (non-
intronic) version (2). This was demonstrated in not only
transiently transfected mammalian cells, but also encapsu-
lated stably transfected cells that were implanted into mice.
Significantly, we believe that the in vivo demonstration of
the superior mammalian toggle characteristics substanti-
ates its future utility for therapeutic and other applied
usage.
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