
Academic Editor: Anna Kawiak

Received: 27 November 2024

Revised: 17 December 2024

Accepted: 18 December 2024

Published: 24 December 2024

Citation: Kaye, A.D.; Shah, S.S.;

Johnson, C.D.; De Witt, A.S.;

Thomassen, A.S.; Daniel, C.P.;

Ahmadzadeh, S.; Tirumala, S.;

Bembenick, K.N.; Kaye, A.M.; et al.

Tacrolimus- and Mycophenolate-

Mediated Toxicity: Clinical

Considerations and Options in

Management of Post-Transplant

Patients. Curr. Issues Mol. Biol. 2025,

47, 2. https://doi.org/10.3390/

cimb47010002

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Review

Tacrolimus- and Mycophenolate-Mediated Toxicity:
Clinical Considerations and Options in Management of
Post-Transplant Patients
Alan D. Kaye 1 , Shivam S. Shah 2 , Coplen D. Johnson 2 , Adalyn S. De Witt 3, Austin S. Thomassen 2,
Charles P. Daniel 2 , Shahab Ahmadzadeh 4, Sridhar Tirumala 4, Kristin Nicole Bembenick 4, Adam M. Kaye 5

and Sahar Shekoohi 4,*

1 Departments of Anesthesiology and Pharmacology, Toxicology, and Neurosciences, Louisiana State
University Health Sciences Center Shreveport, Shreveport, LA 71103, USA

2 School of Medicine, Louisiana State University Health Sciences Center at Shreveport,
Shreveport, LA 71103, USA; sss002@lsuhs.edu (S.S.S.); cdj002@lsuhs.edu (C.D.J.); cpd002@lsuhs.edu (C.P.D.)

3 School of Medicine, Indiana University, 340 W 10th St., Indianapolis, IN 46202, USA
4 Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport,

Shreveport, LA 71103, USA
5 Department of Pharmacy Practice, Thomas J. Long School of Pharmacy, University of the Pacific,

751 Brookside Road, Stockton, CA 95207, USA
* Correspondence: sahar.shekoohi@lsuhs.edu

Abstract: Tacrolimus and mycophenolate are important immunosuppressive agents used
to prevent organ rejection in post-transplant patients. While highly effective, their use
is associated with significant toxicity, requiring careful management. Tacrolimus, a cal-
cineurin inhibitor, is linked to nephrotoxicity, neurotoxicity, metabolic disturbances such as
diabetes mellitus and dyslipidemia, and cardiovascular complications such as hyperten-
sion and arrhythmias. Mycophenolate, a reversible inhibitor of inosine monophosphate
dehydrogenase, frequently causes gastrointestinal disturbances, including diarrhea and
colitis, as well as hematologic side effects like anemia and leukopenia, which increase
infection risk. Therapeutic drug monitoring (TDM) and pharmacogenomics have emerged
as essential strategies for mitigating these toxicities. TDM ensures tacrolimus trough levels
are maintained within a therapeutic range, minimizing the risks of nephrotoxicity and rejec-
tion. Pharmacogenomic insights, such as CYP3A5 polymorphisms, allow for personalized
tacrolimus dosing based on individual metabolic profiles. For mycophenolate, monitoring
inosine monophosphate dehydrogenase activity provides a pharmacodynamic approach to
dose optimization, reducing gastrointestinal and hematologic toxicities. Emerging tools,
including dried blood spot sampling and pharmacokinetic modeling, offer innovative
methods to simplify monitoring and enhance precision in outpatient settings. Despite their
utility, the toxicity profiles of these drugs, including those of early immunosuppressants
such as cyclosporine and azathioprine, necessitate further consideration of alternative
immunosuppressants like sirolimus, everolimus, and belatacept. Although promising,
these newer agents require careful patient selection and further research. Future directions
in immunosuppressive therapy include integrating individual pharmacogenetic data to
refine dosing, minimize side effects, and improve long-term graft outcomes. This narrative
review underscores the importance of personalized medicine and advanced monitoring in
optimizing post-transplant care.
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1. Introduction
Tacrolimus and mycophenolate mofetil are commonly used immunosuppressive

agents, being primarily indicated to prevent acute organ transplant rejection and occasion-
ally used for autoimmune conditions [1,2]. Each drug has distinct mechanisms of action,
pharmacokinetics, and side-effect profiles, allowing for their use either alone or in combi-
nation, depending on clinical needs. Tacrolimus, a calcineurin inhibitor, is mainly used in
kidney, liver, and heart transplants. It has shown advantages over cyclosporine, another
calcineurin inhibitor, by providing improved long-term graft survival in kidney and liver
transplants [3,4]. Although tacrolimus is nephrotoxic, it is less so than cyclosporine, making
careful dose management and renal monitoring crucial [5]. Mycophenolate mofetil, on the
other hand, is often used in combination with other immunosuppressants related to its
ability to inhibit lymphocyte proliferation effectively while preserving kidney function, an
advantage over more nephrotoxic drugs [6].

Post-transplant immunosuppression is essential for graft survival, as it prevents the
recipient’s immune system from recognizing and attacking the transplanted organ as
foreign [7]. Immunosuppressive drugs like tacrolimus and mycophenolate mofetil work by
downregulating the immune response to prevent acute rejection, a common and potentially
severe complication [8]. Hyperacute and chronic rejection are other complications of
organ transplant; however, immunosuppressive therapy mainly seeks to modulate acute
rejection [9]. Acute rejection is an immune-mediated response that can arise within weeks
to months after transplantation or later if immunosuppression is insufficient [10]. T-cell-
mediated rejection, the most common form, occurs when recipient T cells recognize donor
antigens as foreign, leading to inflammation and graft damage [11]. Symptoms vary by
organ; for instance, kidney rejection may manifest as increased serum creatinine, reduced
urine output, and tenderness, while liver rejection may cause elevated liver enzymes,
jaundice, and fatigue [9,12]. Immunosuppressive regimens must be carefully managed
to prevent rejection while minimizing infection risks, as immune suppression increases
susceptibility to infections (viral, bacterial, and fungal) and certain malignancies [13].
Striking the right balance in immunosuppressive therapy optimizes graft survival and
ensures a manageable infection risk for the patient.

This narrative review, therefore, aims to introduce the roles of tacrolimus and my-
cophenolate mofetil in transplant medicine, with a focus on their pharmacokinetics, phar-
macodynamics, and toxicity profiles. It will explore how these toxicities impact patients,
examine drug–drug interactions between tacrolimus, mycophenolate mofetil, and other
immunosuppressants, and discuss strategies for minimizing adverse effects. Finally, we
will highlight emerging therapies and novel immunosuppressive agents that may offer
reduced side-effect profiles, enhancing patient outcomes and graft longevity in the field of
transplant medicine. Figure 1 provides a comprehensive visual summary of the general
toxicities, drug-specific effects, and mitigation strategies for tacrolimus and mycophenolate.
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Figure 1. Comprehensive summary of general toxicities, tacrolimus-specific and mycophenolate-
specific toxicities, and mitigation strategies.

2. Pharmacokinetics and Pharmacodynamics of Tacrolimus
and Mycophenolate

Tacrolimus binds to FK506-binding protein, forming a complex that inhibits cal-
cineurin, a calcium/calmodulin-dependent serine–threonine phosphatase essential for
activating nuclear factor of activated T cells (NFAT) [14]. Calcineurin achieves this by
dephosphorylating NFAT, allowing it to enter the nucleus [15]. Once inside, NFAT pro-
motes the transcription of interleukin-2 (IL-2), a key cytokine that stimulates cytotoxic
CD8+ T cells and natural killer (NK) cells, both of which are involved in acute transplant
rejection [16]. By inhibiting calcineurin, tacrolimus indirectly suppresses IL-2 production,
thereby reducing T-cell-mediated responses against transplanted organs, although it also
results in a weakened immune system [17].

Mycophenolate mofetil is a reversible inhibitor of inosine monophosphate (IMP) de-
hydrogenase, the enzyme that converts IMP into xanthosine monophosphate (XMP), a
precursor for guanosine monophosphate (GMP) synthesis [18]. GMP is a vital purine nu-
cleotide required for DNA synthesis in rapidly dividing cells like T and B lymphocytes [19].
By inhibiting IMP dehydrogenase, mycophenolate mofetil disrupts lymphocyte prolifera-
tion, effectively helping to prevent acute transplant rejection, although it also suppresses
immune function [20].

With regard to pharmacokinetics, tacrolimus is variably absorbed in the gastrointesti-
nal tract, with a bioavailability of 11.2–19.1% in one study [21]. It is highly lipophilic and
extensively binds to plasma proteins, such as albumin, resulting in a high volume of distri-
bution and good tissue penetration, especially in the liver and kidneys [22]. Tacrolimus is
primarily metabolized by the cytochrome P450 enzymes CYP3A4 and CYP3A5, leading to
significant drug–drug interactions, and it is mainly excreted in bile [23,24]. Variability in
hepatic function can affect tacrolimus’s half-life, which is typically 12 h in adults [25].

Mycophenolate mofetil, a prodrug, converts to its active form, mycophenolic acid
(MPA), upon absorption, with a high bioavailability of approximately 94% [26]. MPA binds
to plasma proteins, limiting its free fraction and ability to exert therapeutic effects [27].
Widely distributed to tissues, MPA is metabolized in the liver to the inactive mycophenolic
acid glucuronide (MPAG) through glucuronidation [28]. MPAG undergoes enterohepatic re-
circulation, resulting in a secondary peak in plasma levels about 6–12 h post-administration,
and is excreted via the kidneys with a half-life of 9–17 h [29,30]. Both drugs require care-
ful monitoring, as their absorption, metabolism, and elimination are influenced by other
medications and individual patient factors.



Curr. Issues Mol. Biol. 2025, 47, 2 4 of 22

3. General Toxicity of Immunosuppressants in Post-Transplant Patients
Immunosuppressant-related toxicity is a significant concern in transplant patients, as

these medications, while crucial for preventing organ rejection, can have adverse effects on
various organ systems. Nephrotoxicity is common with drugs like calcineurin inhibitors
(e.g., tacrolimus and cyclosporine), which can cause kidney damage over time, potentially
leading to chronic kidney disease in patients with heart, lung, or liver transplants [31].
Infections are also a major risk, as immunosuppressive therapy, including tacrolimus,
weakens the immune system, increasing susceptibility to bacterial, viral, protozoal, and
fungal infections, particularly during the early post-transplant period when higher doses
are used [32]. This immunosuppression also heightens the risk of opportunistic infec-
tions, including cytomegalovirus (CMV) and Epstein–Barr virus (EBV), as well as certain
cancers like skin cancer and post-transplant lymphoproliferative disorder (PTLD) [33,34].
Additionally, all immunosuppressants, including tacrolimus, elevate the risk of cancers,
especially skin malignancies, and developing lymphomas [35]. This risk is more closely
associated with the intensity and duration of immunosuppression than with the specific
medication used.

Beyond infections and cancer risk, immunosuppressants can lead to cardiovascular tox-
icity. Corticosteroids, cyclosporine, and tacrolimus can elevate blood pressure, cholesterol,
and blood glucose levels, increasing the risk of cardiovascular disease [36]. Hematologic
toxicity can also occur, with drugs like mycophenolate mofetil potentially causing bone
marrow suppression, leading to anemia, leukopenia, or thrombocytopenia [37,38]. Gas-
trointestinal toxicity is common as well, with mycophenolate mofetil frequently causing GI
symptoms like nausea, vomiting, diarrhea, and gastritis, which may limit its tolerability in
some patients [39].

Additionally, neurotoxicity is a notable side effect with calcineurin inhibitors, which
can lead to tremors, headache, confusion, and, in severe cases, seizures [40]. Hepatotoxicity
may also occur with some immunosuppressants, especially azathioprine and tacrolimus,
which can affect liver function and necessitate close monitoring of liver enzymes [41,42].
Managing these toxicities requires careful monitoring, dose adjustments, and sometimes
switching medications to achieve a balance between preventing organ rejection and mini-
mizing adverse effects.

Tacrolimus and mycophenolate mofetil share several common adverse effects, primar-
ily due to their immunosuppressive action. Both increase the susceptibility to infections,
including bacterial, viral, and fungal infections, as well as certain opportunistic infec-
tions [43,44]. Gastrointestinal symptoms are also common, especially with mycophenolate
mofetil [39]. Both drugs can lead to hematologic toxicity, causing leukopenia and anemia,
leading to fatigue [45]. Additionally, long-term use of these drugs enhances the risk of
cancers, such as skin cancers and PTLD, due to weakened immune surveillance [46,47].
Regular monitoring and dose adjustments are important to minimize these toxicities while
effectively preventing organ rejection.

4. Tacrolimus-Related Toxicity in Post-Transplant Patients
Tacrolimus, a key part of post-transplant immunosuppressive therapy, is associated

with a wide range of toxicities that impact multiple organ systems, requiring careful moni-
toring and management to mitigate risks (Table 1). For over two decades, tacrolimus nephro-
toxicity has been a well-documented side effect in post-transplant patients. Tacrolimus
exerts its immunosuppressive effects via calcineurin inhibition by binding to cyclophilin A
and FK506 binding protein 12 (FKBP12) [48], which is also implicated in its nephrotoxic
properties. It has been postulated that calcineurin inhibition is also related to the mech-
anism for nephrotoxicity [48]. The incidence of nephrotoxicity ranges from 17 to 44% in



Curr. Issues Mol. Biol. 2025, 47, 2 5 of 22

renal transplant patients and 18 to 42% in liver transplant patients [48]. There is a high
prevalence of FKBP12 in the kidney in relation to the liver and spleen, which may be an
indicator of increased nephrotoxicity in tacrolimus users compared to hepatotoxicity [48].

Renal biopsies in tacrolimus-treated patients often reveal distinct morphological
changes, including epithelial vacuolization, vasospasm, and interstitial fibrosis [48]. These
changes present with an increase in blood urea or serum creatinine levels and are isolated
from other causes of the clinical presentation [48]. A diagnosis of tacrolimus nephrotoxicity
is usually made via exclusion and supported by a decrease in serum creatinine after the
tacrolimus dosage is decreased [48]. It has been found that tacrolimus nephrotoxicity is cor-
related to the dosage of tacrolimus that the patient is receiving [49]. Prescribing the proper
dose of tacrolimus is vital, as the toxicity threshold has been seen to be 20 ng/mL2 [49].
Although tacrolimus dosage is critical, other factors, such as the donor’s CYP3A5 non-
expressor genotype, increase the likelihood of calcineurin inhibitor (tacrolimus) nephrotox-
icity [50]. This is a logical effect, as the cytochrome P450 system metabolizes tacrolimus
and determines its serum concentration.

Beyond nephrotoxicity, tacrolimus is associated with significant neurotoxicity, in-
cluding symptoms like altered consciousness, tremors, headaches, posterior reversible
encephalopathy syndrome, optic neuropathy, and psychosis [51–54]. Posterior reversible
leukoencephalopathy syndrome has a variable presentation that may include white matter
lesions affecting the parieto-occipital lobes and is documented to be the most common
neurotoxic effect of tacrolimus [55,56]. This displays clinically as seizures, confusion, and
altered vision [55,56]. In the event of cortical blindness, the reversal of symptoms was
found in a case study with the discontinuation of tacrolimus [55]. Optic neuropathy is a
rare side effect of tacrolimus that exhibits decreased visual acuity, changes in color vision,
pupillary defects, and decreased visual fields [54]. Optic neuropathy may also present with
hyperintensities along the optic nerves, optic chiasm, and anterior brainstem [54]. Case
reports document that neurotoxicity including optic neuropathy is reversible with discon-
tinuation of tacrolimus [57]. However, it is important to consider the systemic effects of
discontinuation considering the vital importance of tacrolimus in the immunosuppressive
regimen of transplant patients.

Among the varied toxicities of tacrolimus are cardiovascular toxicities. There are
many etiologies of hypertension, including age, nervous system effects, renin–angiotensin–
aldosterone system changes, the upregulation of peptides, kidney transplant dysfunction
or rejection, renal artery stenosis, and others, in addition to drug-related toxicity [58,59].
In the case of tacrolimus, calcineurin inhibition can potentiate hypertension, particularly
as it relates to vascular and neural causes of hypertension [60]. There are drug-mediated
effects of tacrolimus that increase the likelihood of hypertension, including salt reabsorp-
tion in the tubules, vasoconstriction, and sympathetic nervous system activation [58].
Rarely, tacrolimus has also been associated with causing drug-induced myocardial hyper-
trophy [61]. Higher blood levels of tacrolimus were linked to a greater risk of developing
myocardial hypertrophy; however, this was found to be reversible. While a less common
side effect, tacrolimus has been documented to cause several potentially life-threatening
arrhythmias [62–64]. There are several case reports citing QT prolongation and supraven-
tricular arrhythmias in both pediatric and adult transplant patients [62–64]. Tacrolimus
may also prolong the QT/QTc interval and cause Torsade de Pointes. It should be avoided
in cases with congenital long QT syndrome [65]. Periodic electrocardiograms and elec-
trolyte monitoring should be considered during the treatment of patients with congestive
heart failure, electrolyte imbalances, bradyarrhythmia, and those on certain antiarrhythmic
medications that may cause QT prolongation [66]. In addition, patients should avoid
eating grapefruit or drinking grapefruit juice, as it may increase tacrolimus whole blood
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trough concentrations and elevate the risk of serious adverse reactions, including QT
prolongation [67].

Furthermore, there are not only cardiotoxicities associated with tacrolimus use but also
metabolic effects. One such effect is dyslipidemia, which is present in 40–66% of liver trans-
plant patients and is a contributing factor in the immunosuppressive role of tacrolimus [68].
With the demonstrated increase in total cholesterol, tacrolimus demonstrates an increase
in low-density lipoprotein cholesterol, a decrease in high-density lipoprotein cholesterol,
and an increase in triglycerides [69]. In addition, there has been a documented increase in
the incidence of diabetes mellitus in post-transplant patients. The risk of post-transplant
diabetes mellitus was 53% greater in patients initially treated with tacrolimus after kidney
transplantation [70]. African-American and Hispanic kidney transplant recipients are at
higher risk [71]. In some cases, new-onset diabetes may be reversible. Blood glucose levels
should be closely monitored in patients using tacrolimus, especially given the increased
risk of diabetes. Patients with new-onset diabetes post-transplant using tacrolimus were
found to be more likely to develop significant hypomagnesemia [72].

Hypomagnesemia has also been found to predict the onset of diabetes mellitus in
post-transplant patients with either kidney or liver transplants [58,71–73]. Tacrolimus
use increases the risk of hyponatremia and hyperkalemia [74]. The malabsorption of
magnesium, sodium, and potassium suggests that tacrolimus contributes to renal tubular
dysfunction, which may be linked to its nephrotoxic effects [74].

Immunosuppression is necessary in transplant patients to prevent graft-versus-host
disease, but it is a careful balancing act, as immunosuppression increases the suscepti-
bility to infection. It has been documented that a higher tacrolimus trough level may
indicate a greater immunosuppression level and, thus, increase the risk of infection by
rare viruses such as JC virus, BK polyomavirus, and co-infections [75]. Some studies have
demonstrated an association between Gram-negative bacilli and pneumonia in patients
receiving tacrolimus therapy [76]. There was also an increase in CMV infections among
liver transplant recipients [76]. It was also found that the increased risk of infection with
pathogens such as Gram-negative bacilli causing pneumonia or CMV infections can be
prevented if the patient takes appropriate prophylactic medications [76].

Tacrolimus is commonly used in pediatric transplant patients. Its use is associated with
a range of adverse effects that are magnified by the unique physiological characteristics of
children. Pediatric patients, especially those younger than 2 years old, often metabolize
tacrolimus at faster rates compared to older children or adults, leading to lower weight-
adjusted doses but potentially higher exposure to tacrolimus-related toxicities [77]. A
retrospective study by Prusinskas et al. found that younger pediatric liver transplant
recipients are more likely to be rapid metabolizers, with the tacrolimus concentration-
to-dose ratio being a helpful tool in predicting individualized dosing and minimizing
complications such as PTLD, especially in the presence of EBV infections [77]. Although
severe neurotoxicity is more prevalent in adults than children, mild neurotoxicity, such
as myalgias, headaches, and fatigue, is prevalent in younger children [78]. However,
these neurotoxic adverse events generally do not require patients to discontinue their
tacrolimus regimen. Renal toxicity is also a concern in pediatric patients taking tacrolimus.
Children are more vulnerable to dose-dependent renal dysfunction. It is estimated that up
to 20% of pediatric liver transplant patients experience hypertension, a well-recognized
adverse effect of calcineurin inhibitors, which may be under-recognized due to challenges in
accurate blood pressure monitoring in children [79]. The hypertensive effect of tacrolimus
contributes to its nephrotoxicity because it tends to be less frequently recognized in children
and leads to a progressive decline in renal function. Tacrolimus has also been linked to
metabolic complications, like post-transplant diabetes mellitus, with a higher risk observed
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in older pediatric patients [80]. Genetic factors, such as variants in the POR and ABCB1
genes, have been associated with an increased risk of PTDM, which emphasizes the need
for personalized management strategies. Additionally, tacrolimus can lead to other adverse
effects in pediatric transplant recipients, including dyslipidemia and food allergies, which
are less common in adults [79].

Table 1. Overview of tacrolimus-related toxicities in post-transplant patients.

Toxicity Category Manifestations Mechanism and Risk Factors Clinical Management

Nephrotoxicity

Increased serum creatinine,
epithelial vacuolization,
vasospasm, and interstitial
fibrosis [48]

Calcineurin inhibition; high
prevalence of FKBP12 in the
kidney; associated with high-dose
tacrolimus (>20 ng/mL) and
CYP3A5 non-expressor
genotype [48,50]

Reduce tacrolimus dose;
monitor renal function; avoid
nephrotoxic co-medications [49]

Neurotoxicity

Altered consciousness, tremors,
headaches, posterior reversible
encephalopathy syndrome
(PRES), optic neuropathy, and
psychosis [51–54]

Calcineurin inhibition affecting
the CNS; optic neuropathy linked
to structural changes in optic
pathways [54]

Discontinue or reduce
tacrolimus dose; symptoms like
PRES and optic neuropathy are
reversible with early
intervention [55,57]

Cardiotoxicity

Hypertension, myocardial
hypertrophy, QT prolongation,
Torsade de Pointes, and
arrhythmias (supraventricular
and bradyarrhythmias) [60–67]

Vascular effects of calcineurin
inhibition; electrolyte imbalances;
grapefruit juice interaction
increasing drug levels [66,67]

Monitor blood pressure,
electrolytes, and ECG; avoid
grapefruit products; consider
alternatives in high-risk patients
[66,67]

Metabolic effects

Dyslipidemia (increased LDL,
triglycerides, and decreased
HDL), post-transplant diabetes
mellitus, hypomagnesemia,
hyponatremia, and
hyperkalemia [68–70,72,74]

Dysregulation of lipid and
glucose metabolisms; renal
tubular dysfunction leading to
electrolyte imbalances [74]

Monitor lipid profile, blood
glucose, and electrolytes;
manage dyslipidemia and
diabetes mellitus with
appropriate medications [69,71]

Infectious susceptibility

Increased risk of infections (e.g.,
JC virus, BK polyomavirus,
Gram-negative pneumonia, and
CMV infections) [75,76]

High tacrolimus trough levels
leading to
overimmunosuppression;
increased susceptibility to rare
and opportunistic infections [75]

Use prophylactic antimicrobials;
monitor for infection markers;
optimize tacrolimus dose to
balance immunosuppression
and infection risk [75]

5. Mycophenolate-Related Toxicity in Post-Transplant Patients
Mycophenolate mofetil is an immunosuppressive drug used to prevent organ rejection

in post-transplant patients [20,81,82]. While its efficacy in immunosuppression is well
established, the drug is not without adverse effects (Table 2). In addition to its teratogenic
effects, which increase the risk of congenital malformations and pregnancy loss, mycophe-
nolate is associated with a range of toxicities that can affect multiple organ systems [83–85].
These include gastrointestinal tract effects, hematologic system effects, immune responses
to infection, and the development of malignancies [19,86–88].

Gastrointestinal side effects are some of the most common complications associated
with mycophenolate therapy occurring in up to 45% of patients [89,90]. Mycophenolate acts
by inhibiting IMP dehydrogenase, a key enzyme in the synthesis of guanine nucleotides [18].
This action suppresses immune function by slowing the proliferation of lymphocytes,
but it also affects the rapidly dividing cells of the GI tract, leading to villous atrophy.
Additionally, the drug is metabolized by enterocytes, producing toxic metabolites that can
directly damage the gastrointestinal mucosa leading to erosive enterocolitis. This action is
exacerbated by enterohepatic recirculation, where the drug is glucuronidated in the liver to
form MPAG. MPAG is then excreted into the bile and released into the intestines, where
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the bacterial enzyme β-glucuronidase converts it back into the active form, which can be
reabsorbed increasing the duration of exposure of the gut to the drug [91].

Diarrhea is the most commonly reported gastrointestinal side effect of mycophenolate,
accounting for 50 to 90% of related toxicities [89]. This is attributed to enterocyte depen-
dency on purine synthesis, leading to defective growth and the replication of small bowel
epithelial cells, causing the disruption of fluid absorption [90]. The severity of the diarrhea
can range from mild, manageable with dose adjustments, to severe, requiring discontinua-
tion of therapy [92]. The diarrhea is typically dose dependent and concentration dependent,
often presenting as high-volume stools accompanied by abdominal pain or cramping [93].
If the upper gastrointestinal tract is involved, patients might also develop nausea (29%),
vomiting (23%), and anorexia [90]. These symptoms may mimic other causes of GI distress,
making it crucial for clinicians to differentiate between drug-related side effects and other
possible causes such as inflammatory etiologies, infections, or graft-versus-host disease [94].

It has been reported that up to 45% of patients experience gastrointestinal complica-
tions following mycophenolate therapy [89,90]. This can impair clinical outcomes, because
many of these complications can lead to sub-therapeutic dosages of mycophenolate or its
discontinuation [95]. This led to the development of an alternative formulation of mycophe-
nolate that could reduce these complications, called enteric-coated mycophenolate sodium
(EC-MPS). EC-MPS is a delayed-release medication that works by avoiding the release of
mycophenolate into the stomach and instead releases in the small intestines, which has
a neutral pH [96]. Compared to the traditional mycophenolate, EC-MPS has been found
to significantly reduce gastrointestinal complications, improve well-being, and increase
the maximum tolerated dose of mycophenolate [97–99]. Additionally, there was minimal
difference in efficacy between mycophenolate and EC-MPS, which demonstrates that EC-
MPS is a viable alternative to mycophenolate in patients struggling with gastrointestinal
complications [100,101].

Mycophenolate therapy can also induce hematologic toxicities, primarily affecting the
bone marrow’s ability to produce blood cells. This can manifest as anemia, leukopenia,
or thrombocytopenia, occurring in 15–60%, 10–45%, and 8–14% of cases, respectively [88].
Patients may experience fatigue, weakness, and pallor due to anemia, while leukopenia
can lead to increased susceptibility to infection, and thrombocytopenia may present as
bruising, petechia, and mucosal bleeding [102–104]. These effects are mostly mild in
nature, dependent on the concentration of the drug, and reversible after dose reduction or
pharmacotherapy modifications [88]. Differences in the incidence of hematological toxicity
may be attributable to the degree of myelosuppression, genetic predisposition, and the
composition of the multi-drug regimen [45,105,106].

Anemia is the most common of the hematological toxicities and is particularly impor-
tant, as it has been associated with increased mortality and a higher risk of graft failure in
transplant recipients [107]. In kidney transplant patients, anemia is further complicated by
reduced erythropoietin production due to progressive renal disease and decreased graft
excretory function, as well as a high prevalence of iron deficiency. Thus, it becomes diffi-
cult to investigate whether the adverse effect can be solely attributable to mycophenolate
therapy [108,109].

Leukopenia is one of the most significant concerns with mycophenolate therapy, as it
suppresses lymphocyte proliferation. While this suppression is desirable to prevent trans-
plant rejection, it compromises the body’s ability to mount an immune response, increasing
the risk of infection [19]. Infections are the leading cause of mortality among cases in the
early post-transplant period, and the immunosuppressive effects of mycophenolate render
these patients vulnerable to both common infections and opportunistic pathogens [110].
CMV is the most frequently associated infection with mycophenolate occurring in a dose-
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dependent fashion, leading to various complications including colitis, meningoencephalitis,
pneumonitis, and retinitis [111–114]. Other associated viral infections include EBV, which
can result in PTLD; Herpes simplex virus, which may lead to herpes simplex encephalitis;
BK virus, which is associated with nephropathy and viremia; and Varicella-zoster virus,
which can cause shingles and disseminated disease [115–118]. Invasive fungal infections,
including aspergillosis and candidiasis, are also commonly seen and present a significant
risk. Aspergillosis can cause pneumonitis, while candidiasis may lead to esophagitis, with
both conditions increasing the risk of invasive and disseminated disease when associated
with mycophenolate use [119–122].

Additionally, the immunosuppressive effects of mycophenolate have been shown to
increase the risk of malignancies, primarily by reducing the body’s immune surveillance
capabilities [123]. Through inhibited lymphocyte proliferation, abnormal cell lines can
evade detection and proliferate unchecked [124]. The diminished immune response not only
weakens the body’s defense against carcinogens but also impairs its ability to repair UV-
damaged cells and eliminate oncogenic viruses [125–127]. As a result, there is an increased
susceptibility to malignancies such as non-melanoma skin cancer, specifically squamous
cell carcinoma and PTLD [47,125,128]. PTLD is a spectrum of lymphoid proliferative
conditions that range from benign hyperplasia to aggressive lymphomas, with most cases
being associated with EBV infection. Mycophenolate’s immunosuppressive effects allow
EBV-infected B cells to proliferate unchecked, increasing the risk of development and
progression. This risk is further amplified in patients who are EBV seronegative at the time
of transplant, as they are more likely to develop primary EBV infection post-transplant [129].
Balancing the benefits of immunosuppression with the potential of serious complications,
especially in relation to the duration and dosage of mycophenolate therapy, is essential for
optimizing patient outcomes [130].

Mycophenolate is widely used in pediatric transplant patients as part of immunosup-
pressive regimens, but it is associated with several adverse events. One of the most common
and concerning side effects is hematologic toxicity, particularly leukopenia, which has been
reported in a significant proportion of pediatric patients. A retrospective study by Varnell
et al. found that 24% of pediatric kidney transplant recipients developed mycophenolate-
related leukopenia, which typically improved after dose adjustments or discontinuation
of the drug [106]. Genetic variants, such as UGT2B7-900A>G and SNPs in IMPDH1, were
also found to influence the risk and timing of leukopenia. This suggests that genetic testing
may help predict which children are more susceptible to this side effect. Gastrointestinal in-
tolerance is also a common adverse effect caused by mycophenolate usage. A retrospective
review by Ohmann et al. found that 35.6% of pediatric patients experienced gastrointestinal
intolerance to mycophenolate, which led to dose holding or discontinuation, with vomiting,
nausea, diarrhea, and abdominal pain being the most common symptoms [131]. Infections
are another significant risk associated with mycophenolate treatment, with CMV being
the most frequently reported infection in pediatric transplant recipients [132]. While CMV
infections are more commonly observed in adult patients, they are less common in pediatric
cases, and no significant association between mycophenolate and infections has been found
in the pediatric population.
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Table 2. Overview of mycophenolate-related toxicities in post-transplant patients.

Toxicity Category Manifestations Mechanism and Risk Factors Clinical Management

Gastrointestinal effects

Diarrhea (50–90% of GI
toxicities), nausea, vomiting,
anorexia, abdominal pain, and
erosive enterocolitis [89,90,93]

Inhibition of IMP
dehydrogenase affecting rapidly
dividing GI cells; toxic
metabolites from enterohepatic
recirculation increase gut
exposure [18,91]

Dose adjustments; differentiate
from other GI causes (e.g.,
infections and GVHD);
supportive therapy [93,94]

Hematological effects

Anemia (15–60%), leukopenia
(10–45%), and
thrombocytopenia (8–14%);
fatigue, pallor, increased
infection risk, bruising, and
petechiae [87,102–104,107]

Myelosuppression reduces
blood cell production; anemia
may also relate to renal
dysfunction and iron deficiency
in transplant patients [105,107]

Monitor blood counts regularly;
dose reduction or
pharmacotherapy modification;
address underlying anemia
causes [87,107]

Infectious susceptibility

CMV (colitis, pneumonitis,
and retinitis), EBV
(post-transplant
lymphoproliferative disorder,
PTLD), BK virus
(nephropathy), and fungal
infections (aspergillosis and
candidiasis) [111–122]

Suppressed lymphocyte
proliferation impairs immune
response; dose-dependent
infection risk; opportunistic
infections increase due to
reduced immune
surveillance [19,110]

Prophylactic antivirals and
antifungals; monitor for
infection markers; adjust
immunosuppressive therapy as
needed [110]

Malignancy susceptibility

Non-melanoma skin cancers
(e.g., squamous cell
carcinoma) and PTLD
(EBV-associated lymphomas)
[47,125–129]

Impaired immune surveillance
reduces ability to detect and
repair abnormal cells;
EBV-infected B cells proliferate
unchecked, especially in
EBV-seronegative patients at
transplant [123,124,129]

Regular skin checks; minimize
immunosuppression when
possible; consider EBV
monitoring and
prophylaxis [130]

Teratogenic effects
Increased risk of congenital
malformations and pregnancy
loss [85]

Mycophenolate crosses the
placenta and affects rapidly
dividing fetal cells [84]

Avoid in pregnancy; use
effective contraception for
patients of childbearing
potential; switch to safer
agents [83]

6. Drug–Drug Interactions and Risk Factors for Enhanced Toxicity in
Post-Transplant Patients

Tacrolimus has a narrow therapeutic index, with a high risk of toxicity if serum levels
become elevated. Its metabolism and, therefore, its bioavailability is highly sensitive to
drug interactions, particularly with medications that inhibit the CYP3A4 and CYP3A5 en-
zymes, which play key roles in tacrolimus metabolism in the liver and small intestine [133].
Established drug interactions with tacrolimus include those with calcium channel block-
ers (CCBs), azole antifungals, macrolide antibiotics, protease inhibitors, amiodarone, and
certain selective serotonin reuptake inhibitors (SSRIs). Given the high prevalence of hyper-
tension in renal transplant patients (70–85%), CCBs are commonly co-administered but can
inhibit CYP3A enzymes, potentially leading to toxic tacrolimus accumulation [134]. Azole
antifungals, like fluconazole, are potent CYP3A inhibitors and have been shown to cause
toxic blood levels of tacrolimus in liver transplant patients, even with dose reductions of
over 50% [135]. Macrolide antibiotics, such as clarithromycin and erythromycin, similarly
inhibit CYP3A, slowing tacrolimus metabolism and increasing the risk of toxic buildup and
hospitalization [136]. Protease inhibitors, which also inhibit CYP3A and P-glycoprotein,
further prolong tacrolimus’s half-life, requiring careful dose adjustments to avoid toxic-
ity [137]. Amiodarone, metabolized through CYP3A, has been linked to increased mortality
and graft dysfunction when combined with tacrolimus in transplant patients [138]. Addi-
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tionally, adverse events have been associated after cardiac and liver transplants in patients
using both tacrolimus and sirolimus [139,140]. Liver transplant patients experienced higher
rates of hepatic artery thrombosis, sepsis, graft loss, and death when using both sirolimus
and tacrolimus compared to tacrolimus alone [140]. Increased rates of renal dysfunction
and impaired wound healing were found in patients using sirolimus and tacrolimus af-
ter cardiac transplants [139]. Finally, SSRIs like nefazodone, which also rely on CYP3A
metabolism, can result in toxic tacrolimus levels unless dosing adjustments are made [141].

Mycophenolate, primarily metabolized by UDP-glucuronosyltransferase, has a narrow
therapeutic window, making it susceptible to toxicity or reduced efficacy if its absorption
and metabolism are altered by drug interactions. Proton pump inhibitors, antacids, and
bile acid sequestrants are known to interfere with mycophenolate’s gastrointestinal ab-
sorption, reducing its bioavailability and potentially increasing the risk of transplant
rejection [142–144]. Additionally, acyclovir and ganciclovir can elevate the serum levels of
both the antiviral agents and mycophenolate by competitively inhibiting mycophenolate’s
renal excretion [145,146]. Furthermore, antibiotics such as metronidazole and ciprofloxacin
can disrupt gut flora, decreasing mycophenolate absorption and leading to lower serum
levels [147,148].

Tacrolimus and mycophenolate are commonly co-administered in transplant immuno-
suppression regimens, but their combined use can present risks of toxicity or reduced
efficacy due to overlapping metabolic pathways and interactions [144,149]. Both drugs
rely on UDP-glucuronosyltransferase, cytochrome P450 enzymes, and P-glycoprotein for
metabolism, with renal excretion as a primary route. Studies indicate that co-administration
can lead to elevated mycophenolate levels and reduced tacrolimus bioavailability, poten-
tially resulting in myelosuppressive side effects like anemia and leukopenia, or, in severe
cases, transplant rejection [150]. Alternatively, if tacrolimus reaches toxic levels, nephro-
toxicity and neurotoxicity may occur. However, many patients tolerate this combination
well within the therapeutic range, experiencing only mild to moderate side effects such
as diarrhea, headache, dyspepsia, and vomiting. To ensure effective immunosuppres-
sion and minimize risks, regular monitoring of plasma concentrations of both agents is
essential [151–153].

When assessing the toxicity risks of mycophenolate and tacrolimus, it is essential to
consider additional patient-specific factors. Genetic polymorphisms affecting key trans-
port and metabolizing enzymes such as CYP3A4, CYP3A5, P-glycoprotein, and UDP-
glucuronosyltransferase can significantly impact the bioavailability and clearance of these
immunosuppressants, potentially leading to toxicity [154–156]. Age is also a notable risk
factor; older patients often have reduced hepatic and renal functions, which can result in
drug accumulation and toxicity, while younger patients may need higher doses to achieve
therapeutic levels [157]. Similarly, any patient with renal or hepatic impairment faces an
elevated risk of toxic drug accumulation. For these individuals, close monitoring of blood
levels is necessary to ensure the dosages are carefully adjusted within the therapeutic
range [158,159].

7. Strategies to Mitigate Post-Transplant Toxicity
The use of tacrolimus and mycophenolate in post-transplant immunosuppression

is essential for preventing transplant rejection but is associated with significant risks of
toxicity. Strategies to mitigate these adverse effects include monitoring protocols for early
detection, personalized therapeutic adjustments, and using pharmacogenomics.

Effective monitoring protocols for tacrolimus and mycophenolate focus on maintain-
ing target drug levels to prevent toxicity and rejection. For tacrolimus, achieving trough
levels of 7–12 ng/mL early post-transplant (at the first month) reduces the risk of acute
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rejection (AR) by 86% compared to trough levels of 4–7 ng/mL, while levels between
5.35 and 7.15 ng/mL manage to balance AR prevention and infection risk [160,161]. For
mycophenolate, strategies like pharmacokinetic monitoring and target concentration in-
tervention help ensure appropriate exposure [162]. Insufficient levels can lead to rejection,
while excessive levels increase the risk of toxicities, including anemia, leucopenia, and
diarrhea [163].

These protocols highlight the importance of personalized therapeutic drug monitoring
(TDM) for optimal transplant outcomes [164]. Newer methods like dried blood spot (DBS)
sampling and immunobiograms have shown promise for accurate TDM by improving
efficiency and predicting patient sensitivity to immunosuppressants, simplifying outpa-
tient management [164,165]. For tacrolimus, area-under-the-concentration (AUC)-based
monitoring using capillary sampling with pharmacokinetic model-derived Bayesian esti-
mators was found to be an accurate and precise measure of exposure that can be conducted
at the patient’s home [166]. Similarly, limited sampling strategies have been developed
for MPA to estimate the AUC, aiding in precise dose adjustments [167]. Alternative ap-
proaches, such as intracellular monitoring or assessing calcineurin pathway activity (e.g.,
NFATc1 amplification), may correlate with better clinical outcomes but require further
validation [168,169].

Pharmacogenomics offers an emerging avenue for mitigating drug toxicity by tai-
loring immunosuppressive therapy based on genetic predispositions. Variations in the
CYP3A5 gene significantly influence tacrolimus metabolism, where CYP3A5 expressers
exhibit a 1.48-fold higher clearance rate compared to non-expressers, which demonstrates
the need for genotype-guided dosing adjustments to improve therapeutic outcomes [170].
However, pharmacogenetic variability appears to have a limited effect on the metabolism
of MPA, potentially due to low allele frequencies. The efficacy of mycophenolate has been
linked to its action on IMP dehydrogenase. A post-transplant study showed that MPA
strongly inhibits IMP dehydrogenase activity in stimulated peripheral blood mononu-
clear cells (PBMCs), and it found that enzyme capacity was significantly reduced after
dosing [171]. Moreover, a lower baseline IMP dehydrogenase capacity in non-stimulated
PBMCs early post-transplant was associated with dose adjustments, which demonstrated
the potential of pharmacogenomics to optimize mycophenolate therapy based on individual
enzyme responses.

8. Future Directions and Emerging Therapies
As research into immunosuppression evolves, new strategies and therapies are being

developed to minimize the toxicity of tacrolimus and mycophenolate, aiming to improve
patient outcomes and reduce the burden of adverse effects. For post-transplant patients,
individualized treatment strategies for tacrolimus and mycophenolate are essential to
minimize toxicity and optimize clinical outcomes. Given the high variability in tacrolimus
pharmacokinetics, TDM is critical, but dosing algorithms, which utilize factors such as
CYP3A genotype and hematocrit, are increasingly used to refine dosing [172]. While some
algorithms perform better than weight-based dosing in terms of achieving target concentra-
tions more efficiently, their clinical benefit in reducing tacrolimus-related toxicity remains
unclear, highlighting the need for external validation and the consideration of additional
biomarkers (e.g., unbound plasma tacrolimus levels) for more accurate monitoring [173].
Although no dosing algorithms have been found for mycophenolate, the future of individ-
ualized treatment for its therapy relies on integrating pharmacogenetic, pharmacokinetic,
and pharmacodynamic approaches to optimize patient outcomes [173,174]. By monitoring
IMP dehydrogenase enzyme activity in PBMCs, clinicians can better assess the biological
response to MPA, offering a more personalized approach compared to traditional drug
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level monitoring [173]. Although practical implementation remains challenging, these ad-
vanced strategies hold promise for reducing transplant rejection and improving long-term
graft survival.

Alternative treatments for post-transplantation toxicity may involve switching im-
munosuppressive agents based on specific patient needs. For instance, replacing MPA with
everolimus in patients with neutropenia has shown to be a safe and effective strategy, with
a reduction in neutropenia episodes and stable renal function over the long term [175].
Additionally, sirolimus has been proposed as a substitute for tacrolimus in various trans-
plant settings, with studies indicating comparable or even improved outcomes in terms of
survival and chronic rejection, particularly in lung transplant recipients [176,177]. However,
while newer alternatives like belatacept may offer some benefits, such as a reduced inci-
dence of new-onset diabetes, they are associated with a higher risk of acute rejection and
worse allograft survival compared to tacrolimus [178]. Careful consideration of individual
patient factors, including rejection risk and long-term outcomes, is essential for optimizing
and selecting immunosuppressive therapy.

9. Conclusions
Tacrolimus and mycophenolate are essential immunosuppressive agents for prevent-

ing organ rejection in post-transplant patients, but their use is associated with significant
toxicity that requires careful management. Tacrolimus can cause nephrotoxicity, neurotoxic-
ity, and metabolic disturbances such as diabetes mellitus and dyslipidemia. Its nephrotoxic
effects, which are often dose-dependent, may lead to chronic kidney injury, while its neuro-
toxic effects range from tremors and headaches to severe conditions like posterior reversible
encephalopathy syndrome. Cardiovascular risks, including hypertension and arrhythmias,
further complicate its use. Similarly, mycophenolate is associated with gastrointestinal
toxicity, manifesting as diarrhea, nausea, and, in severe cases, erosive colitis. It also poses
risks of hematologic complications like anemia and leukopenia, which increase infection
susceptibility and compromise immune function.

Emerging strategies, including TDM and pharmacogenomics, offer valuable tools
for mitigating these adverse effects. For tacrolimus, maintaining optimal trough levels
through TDM can help minimize nephrotoxicity and other dose-related toxicities. Genetic
insights, such as identifying CYP3A5 polymorphisms, allow for individualized dosing
to reduce variability in drug metabolism and exposure. For mycophenolate, monitoring
IMP dehydrogenase activity provides a pharmacodynamic measure that can guide dose
adjustments, potentially reducing gastrointestinal and hematologic side effects.

While alternative newer immunosuppressants, like sirolimus, everolimus, and be-
latacept, and more traditional immunosuppressants, like azathioprine and cyclosporine,
can be options for patients who cannot tolerate these drugs, they come with their own
risks and limitations. Moving forward, integrating advanced monitoring techniques with
personalized medicine will be crucial to balancing efficacy and safety, reducing the burden
of side effects, and improving patient outcomes in post-transplant care.
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