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Subclasses of lymphocytes carry different functional roles to
work together and produce an immune response and lasting
immunity. Additionally to these functional roles, T and B cell
lymphocytes rely on the diversity of their receptor chains to rec-
ognize different pathogens. The lymphocyte subclasses emerge
from common ancestors generated with the same diversity of
receptors during selection processes. Here, we leverage biophysi-
cal models of receptor generation with machine learning models
of selection to identify specific sequence features characteristic
of functional lymphocyte repertoires and subrepertoires. Specifi-
cally, using only repertoire-level sequence information, we classify
CD4+ and CD8+ T cells, find correlations between receptor chains
arising during selection, and identify T cell subsets that are targets
of pathogenic epitopes. We also show examples of when simple
linear classifiers do as well as more complex machine learning
methods.

adaptive immune repertoires | thymic selection | central tolerance |
deep neural networks | statistical inference

The adaptive immune system in vertebrates consists of highly
diverse B and T cells whose unique receptors mount

specific responses against a multitude of pathogens. These
diverse receptors are generated through genomic rearrange-
ment of V-, D-, and J-genes, and sequence insertions and
deletions at the junctions, a process known as V(D)J recom-
bination (1, 2). Recognition of a pathogen by a T cell recep-
tor (TCR) or B cell receptor (BCR) is mediated through
molecular interactions between an immune receptor protein
and a pathogenic epitope. TCRs interact with short pro-
tein fragments (peptide antigens) from the pathogen that are
presented by specialized pathogen-presenting major histocom-
patibility complexes (MHCs) on cell surface. BCRs interact
directly with epitopes on pathogenic surfaces. Upon an infection,
cells carrying those specific receptors that recognize the infect-
ing pathogen become activated and proliferate to control and
neutralize the infection. A fraction of these selected responding
cells later contributes to the memory repertoire that reacts more
readily in future encounters. Unsorted immune receptors sam-
pled from an individual reflect both the history of infections and
the ongoing responses to infecting pathogens.

Before entering the periphery where their role is to recog-
nize foreign antigens, the generated receptors undergo a twofold
selection process based on their potential to bind to the organ-
ism’s own self-proteins. On one hand, they are tested to not be
strongly self-reactive (Fig. 1A). On the other hand, they must
be able to bind to some of the presented molecules to assure
minimal binding capabilities. This pathogen-unspecific selection,
known as thymic selection for T cells (6) and the process of cen-
tral tolerance in B cells (7), can prohibit over 90% of generated
receptors from entering the periphery (6, 8, 9).

Additionally to receptor diversity, T and B cell subtypes are
specialized to perform different functions. B and T cells in the
adaptive immune system are differentiated from a common cell

type, known as lymphoid progenitor. T cells differentiate into cell
subtypes identified by their surface markers, including helper T
cells (CD4+), killer T cells (CD8+) (6), and regulatory T cells
(Tregs; CD4+ FOXP3+) (10), each of which can be found in the
nonantigen primed naive or memory compartment. The mem-
ory compartment can be further divided into subtypes, such as
effector, central, or stem cell-like memory cells, characterized
by different lifetimes and roles. B cells develop into, among
other subtypes, plasmablasts and plasma cells, which are anti-
body factories, and memory cells that can be used against future
infections. These cell subtypes perform distinct functions, react
with different targets, and hence, experience different selection
pressures. Here, we ask whether these different functions and
selection pressures are reflected in their receptors’ sequence
compositions.

Recent progress in high-throughput immune repertoire
sequencing both for single-chain (11–14) and paired-chain (15–
17) BCRs and TCRs has brought significant insight into the
composition of immune repertoires. Based on such data, sta-
tistical inference techniques have been developed to infer bio-
physically informed sequence-based models for the underlying
processes involved in generation and selection of immune
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Fig. 1. Inference of functional selection models for immune receptor repertoires. (A) TCR α and β chains are stochastically rearranged through a process
called V(D)J recombination. Successfully rearranged receptors undergo selection for binding to self-pMHCs (self peptides loaded onto major histocompat-
ibility complexes). Receptors that bind too weakly or too strongly are rejected, while intermediately binding ones exit the thymus and enter peripheral
circulation. Development of BCRs follows similar stages of stochastic recombination and selection. (B) We model these two processes independently. The
statistics of the V(D)J recombination process described by the probability of generating a given receptor sequence σ, Pgen(σ), are inferred using the IGoR
software (3). Pgen(σ) acts as a baseline for the selection model. We then infer selection factorsQ, which act as weights that modulate the initial distribution
Pgen(σ). We infer two types of selection weights: linear in log space [using the SONIA software (4)] and nonlinear weights using a DNN, in the soNNia software
presented here. Nonlinear selection weights are more flexible than linear ones. (C) Pipeline of the algorithm: Pgen is inferred from unproductive sequences
using IGoR. Selection factors for both the linear and nonlinear models are inferred from productive sequences by maximizing their log-likelihood L, which
involves a normalization term calculated by sampling unselected sequences generated by the OLGA software (5). (D) In both selection models, the amino
acid composition of the CDR3 is encoded by its relative distance from the left and right borders (left–right encoding). (E) After inferring repertoire-specific
selection factors, repertoires are compared by computing, for example, log-likelihood ratios r(x).

receptors (3–5, 18). Machine learning techniques have also
been used to infer deep generative models to characterize
the T cell repertoire composition as a whole (21), as well as
discriminate between public and private B cell clones based
on complementarity-determining region 3 (CDR3) sequence
(22, 23). While biophysically informed models can still match
and even outperform machine learning techniques (24), deep
learning models can be extremely powerful in describing func-
tional subsets of immune repertoires, for which we lack a full
biophysical understanding of the selection process.

Here, we introduce a framework that uses the strengths of both
biophysical models and machine learning approaches to char-
acterize signatures of differential selection acting on receptor
sequences from subsets associated with specific function. Specifi-
cally, we leverage biophysical tools to model what we know (e.g.,
receptor generation) and exploit the powerful machinery of deep
neural networks (DNNs) to model what we do not know (e.g.,
functional selection). Using the nonlinear and flexible struc-
ture of the DNNs, we characterize the sequence properties that
encode selection of the specificity of the combined chains dur-
ing receptor maturation in α and β chains in T cells and heavy
and light (κ and λ) chains in B cells. We identify informative
sequence features that differentiate CD4+ helper T cells, CD8+

killer T cells, and regulatory T cells. Finally, we demonstrate
that biophysical selection models can be used as simple classi-
fiers to successfully identify T cells specific to distinct targets of
pathogenic epitopes—a problem that is of significant interest for
clinical applications (25–29).

Results
Neural Network Models of TCR and BCR Selection. Previous work
has inferred biophysically informed models of V(D)J recombi-
nation underlying the generation of TCRs and BCRs (3, 30).
In brief, these models are parametrized according to the prob-
abilities by which different V, D, J genes are used and base
pairs are inserted in or deleted from the CDR3 junctions to
generate a receptor sequence. We infer the parameters of these
models using the IGoR software (3) from unproductive receptor
sequences, which are generated but due to a frameshift or inser-
tion of stop codons, are not expressed and hence, are not subject
to functional selection. The inferred models are used to charac-
terize the generation probability of a receptor sequence Pgen and
to synthetically generate an ensemble of preselection receptors
(5). These generated receptors define a baseline G for statistics
of repertoires prior to any functional selection.

The amino acid sequence of an immune receptor protein
determines its function. To identify sequence properties that are
linked to function, we compare the statistics of sequence features
f (e.g., V-, J-gene usage and CDR3 amino acid composition)
present in a given B or T cell functional repertoire with the
expected baseline of receptor generation (Fig. 1C). To do so,
we encode a receptor sequence σ as a binary vector x whose
elements xf ∈{0, 1} specify whether the feature f is present in
a sequence σ. The probability Pθ

post(x) for a given receptor x
to belong to a functional repertoire is described by modulat-
ing the receptor’s generation probability Pgen(x ) by a selection
factorQθ(x),
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Pθ
post(x)=Pgen(x)Qθ(x)≡ 1

Z θ
Pgen(x)Q

θ(x), [1]

where θ denotes the parameters of the selection model and
Z θ ensures normalization of Pθ

post. Previous work (4, 31, 32)
inferred selection models for functional repertoires by assuming
a multiplicative form of selection Qθ(x)= exp(

∑
f θ

f xf ), where
feature-specific factors θf contribute independently to selection.
We refer to these models as linear SONIA (Fig. 1B). Selection
can in general be a highly complex and nonlinear function of
the underlying sequence features. Here, we introduce soNNia,
a method to infer generic nonlinear selection functions, using
DNNs. To infer a selection model that best describes sequence
determinants of function in a data sample D, soNNia maxi-
mizes the mean log likelihood of the data L(θ)= 〈logPθ

post〉D ,
where the probability Pθ

post is defined by Eq. 1 and 〈·〉D denotes
expectation over the set of sequences D. This likelihood can be
rewritten as (SI Appendix)

L(θ)=〈logPθ
post〉D = 〈logQθ〉D − log〈Qθ〉G +const, [2]

where 〈·〉G is the expectation over the ensemble of sequences G
that reflect the baseline. This baseline set is often generated by
sampling from a previously inferred generation model Pgen, using
the IGoR software (3). Note that this expression becomes exact
as the number of generated sequences approaches infinity.

In soNNia, we divide the sequence features f into three cat-
egories: 1) (V, J) usage; 2) CDR3 length; and 3) CDR3 amino
acid composition encoded by a 20× 50 binary matrix that speci-
fies the identity of an amino acid and its relative position within a
25-amino acid range from both the 5′ and 3′ ends of the CDR3,
equivalent to the left–right encoding of the SONIA model (4)
(Fig. 1D). Inputs from each of the three categories are first prop-
agated through their own network. Outputs from these three
networks are then combined and transformed through a dense
layer. This choice of architecture reduces the number of param-
eters in the DNN and makes the contributions of the three
categories (which have different dimensions) comparable; SI
Appendix, SI Text and Figs. S1, S3, and S4 have details on the
architecture of the DNN.

The baseline ensemble G, which we have described as being
generated from the Pgen model (Fig. 1C), can in principle be
replaced by any dataset, including empirical ones, at no addi-
tional computational cost, for selection inference with soNNia.
This is especially useful when the goal is to only compare the
selection models associated with different subrepertoires with
distinct functions. We will use this feature of soNNia to learn
selection coefficients of subsets relative to an empirically con-
structed generic functional repertoire. In that case, the inferred
selection factors Q only reflect differential selection relative to
the generic baseline. Importantly, this approach enables us to

infer differential selection without having to infer a common
underlying generation model Pgen for the subrepertoires. After
two soNNia models have been learned from two distinct datasets,
their statistics may be compared by computing a sequence-
dependence log-likelihood ratio r(x )= logQ1(x )/Q2(x ) pre-
dicting the preference of a sequence for a subset over the other.
This log-likelihood ratio can be used as a functional classifier for
receptor repertoires (Fig. 1E).

Deep Nonlinear Selection Model Best Describes Functional TCR Reper-
toire. First, we systematically compare the accuracy of the (non-
linear) soNNia model with linear SONIA (4) (Fig. 1B) by
inferring selection on TCRβ repertoires from a large cohort of
743 individuals from ref. 33. Our goal is to characterize selec-
tion on functional receptors irrespective of their phenotype. To
avoid biases caused by expansions of particular receptors in dif-
ferent individuals, we pool the unique nucleotide sequences of
receptors from all individuals and construct a universal donor.
Multiplicity of an amino acid sequence in this universal donor
indicates the number of independent recombination events that
have led to that receptor (in different individuals or in the same
individual by convergent recombination).

We randomly split the pooled dataset into a training and a
test set of equal sizes and trained both a SONIA and a soN-
Nia selection model on the training set (Methods and Fig. 1C).
Our inference is highly stable, and the selection models are
reproducible when trained on subsets of the training data (SI
Appendix, SI Text and Fig. S2).

To assess the performance of our selection models, we com-
pared their inferred probabilities Ppost(x) with the observed
frequencies of the receptor sequences Pdata(x) in the test set
(Fig. 2 A and B). Prediction accuracy can be quantified through
the Pearson correlation between the two log frequencies or
through their Kullback–Leibler divergence DKL(Pdata|Ppost)
(Methods and Fig. 2C). A smaller Kullback–Leibler divergence
indicates a higher accuracy of the inferred model in predict-
ing the data. The estimated accuracy of an inferred model is
limited by the correlation between the test and the training
set, which provides a lower bound on the Kullback–Leibler
divergence DKL' 0.4 bits and an upper bound on the Pearson
correlation ρ2' 0.8.

We observe a substantial improvement of selection inference
for the generalized selection model soNNia with DKL' 1.0 bits
(and Pearson correlation ρ2' 0.61) compared with the linear
SONIA model with DKL' 1.6 bits (and Pearson correlation
ρ2' 0.48) (Fig. 2). Both models show a strong effect of selection,
reducing the DKL from 3.03 bits (and increasing the correla-
tion ρ2 from 0.43) for the comparison of data with the Pgen

model alone (Fig. 2). This result highlights the role of com-
plex nonlinear selection factors acting on receptor features that
shape a functional T cell repertoire. The features that are still

A B
C

Fig. 2. Performance of selection models on TCR repertoires. Scatterplot of observed frequency, Pdata, vs. predicted probability Ppost for (A) linear SONIA and
(B) DNN soNNia models trained on the TCRβ repertoires of 743 individuals from ref. 33. The baseline is formed by sampling 107 sequences from the Pgen

model, learned from the nonproductive sequences of the same dataset (SI Appendix). Color indicates number of sequences. (C) The soNNia model performs
significantly better, as quantified by both the Kullback–Leibler divergence DKL (Methods) and the Pearson correlation coefficient ρ2, without overfitting (SI
Appendix, Fig. S2).
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inaccessible to the soNNia selection factors are likely due to
the sampling of rare features, individual history of pathogenic
exposures, or differences in human leukocyte antigen (HLA)
complexes among individuals.

Intra- and Interchain Interactions in TCRs and BCRs. TCRs are
disulfide-linked membrane-bound proteins made of variable α
and β chains and expressed as part of a complex that interact
with pathogens. Similarly, BCRs and antibodies are made up of
a heavy and two major groups (κ and λ) of light chains. Previ-
ous work has identified low but consistent correlations between
features of αβ-chain pairs in TCRs, with the largest contribu-
tions between Vα,Vβ and Jα,Vβ (34–38). In B cells, preferences
for receptor features within immunoglobulin heavy (IgH) and
light (λ or κ) chains have been studied separately (39, 40), but
interchain correlations have not been systematically investigated.

We first aimed to quantify dependencies between chains by
reanalyzing recently published single-cell datasets: TCRαβ pairs
of unfractionated repertoires from ref. 37 and BCR of naive cells
from ref. 41 (Methods). The blue bars of Fig. 3 show the mutual
information between the V and J choices and CDR3 length of
each chain, for TCRαβ (Fig. 3A), IgHλ (Fig. 3B), and IgHκ (Fig.
3C) repertoires. Mutual information is a nonparametric measure
of correlation between pairs of variables (SI Appendix).

Both TCRs and BCRs have intra- and interchain corre-
lations of sequence features, with stronger empirical mutual
dependencies present within chains (Fig. 3).

To account for these dependencies between chains, we gen-
eralize the selection model of Eq. 1 to pairs, x=(xa , xb), where
(a, b)= (α,β) in TCRs or (H,κ) or (H,λ) in BCRs:

Ppost(x)=
1

Z
Pa

gen(x
a)Pb

gen(x
b)Q(x), [3]

where we have dropped the dependence on parameters θ for ease
of notation.

Analogously to single chains, we first define a linear selection
model specified by Q(x)= exp(

∑
f θf xf ), where the sum now

runs over features of both chains a and b. Because of its multi-
plicative form, selection can then be decomposed as the product
of selection factors for each chain: Q(x)=Qa(xa)Qb(xb), where
Qa and Qb are linear models. We also define a deep inde-
pendent model (deep-indep), which has the multiplicative form
Q(x)=Qa(xa)Qb(xb) but where Qa and Qb are each described
by DNNs that can account for complex correlations between
features of the same chain, similar to the single-chain case (SI
Appendix, Fig. S3). The resulting postselection distributions for
both the linear and the deep-indep model factorize, Ppost(x)=
Pa

post(x
a)Pb

post(x
b), making the two chains independent. Thus,

by construction neither the linear nor the deep-indep model can
account for correlations between chains. Finally, we define a full
soNNia model (deep joint) where Q(x) is a neural network com-
bining and correlating the features of both chains (SI Appendix,
Fig. S4).

We trained these three classes of models on each of the
TCRαβ and BCR Hκ and Hλ paired repertoire data described
earlier. We then used these models to generate synthetic data
with a depth similar to the real data and calculated mutual
information between pairs of features (Fig. 3). The preselection
generation model [Q(x)= 1; green bars] explains part but not all
of the intrachain feature dependencies, for both T and B cells,

A

B

C

Fig. 3. Inference of selection on intra- and interchain receptor features. Mutual information between pairs of major intra- and interchain features (V and
J gene choice and L= CDR3 length for each chain) for (A) TCRαβ, (B) IgHλ, and (C) IgHκ paired chains are shown. Mutual information is estimated directly
from data (blue) and from receptors generated based on inferred models: generative baseline (green), linear SONIA (pink), deep-indep (red), and deep
joint (yellow). For both TCRs and BCRs, only the deep-joint model (yellow), which correlates the features of both chains through a DNN, is able to recover
interchain correlations. Mutual information is corrected for finite-size bias, and error bars are obtained by subsampling (SI Appendix). The diversity of the
paired-chain B and T cell repertoires and the contributions of different features to this diversity are reported in SI Appendix, Table S1.
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while the linear (purple), deep-indep (red), and deep-joint (yel-
low) models explain them very well (Fig. 3). By construction, the
generation, linear, and deep-indep models do not allow for inter-
chain correlations. Only the deep-joint model (yellow) is able
to recover part of the interchain dependencies observed in the
data. It even overestimates some correlations in BCRs, specifi-
cally between the CDR3 length distributions of the two chains
and between the heavy-chain J and the light-chain CDR3 length.
Thus, the deep structure of soNNia recapitulates both intra-
chain and interchain dependencies of feature-forming immune
receptors.

The inferred selection on correlated interchain receptor fea-
tures is consistent with previous analyses in TCRs (34–38) and is
likely due to the synergy of the two chains interacting with self-
antigens presented during thymic development for TCRs and
preperipheral selection (including central tolerance) for BCRs
or later when recognizing antigens in the periphery. Notably,
the largest interchain dependencies and synergistic selection are
associated with the V-gene usages of the two chains (Fig. 3),
which encode a significant portion of antigen-engaging regions
in both TCRs and BCRs.

Our results show that the process of selection in BCRs is
restrictive, in agreement with previous findings (7), significantly
increasing interchain feature correlations. Notably, the increase
in correlations (difference between green and other bars) due
to selection is larger in naive B cells than in unsorted (mem-
ory and naive) T cells. However, the selection strengths inferred
by our models should not be directly compared with estimates
of the percentage of cells passing preperipheral selection: ∼
10% for B cells vs. 3 to 5% for T cells (6). Our models iden-
tify features under selection without making reference to the
number of cells carrying these features. Since the T cell pool
in our analysis is a mixture of naive and memory cells, we
can expect stronger selection pressures in the T cell data than
in the purely naive T cells. However, previous work analyz-
ing naive and memory TCRs separately using linear selection
models did not report substantial differences between the two
subsets (31).

Lastly, to quantify the diversity of immune receptor reper-
toires, we compared the entropy of unpaired- and paired-chain
repertoires in SI Appendix, Table S1 (SI Appendix, SI Text).
These entropy measures suggest a repertoire size (i.e., a typ-
ical number of amino acid sequences) of about 109 receptors
for TCRβ (consistent with ref. 4), 107 receptors for TCRα,
1013 receptors for BCR heavy-chain, and 104 receptors for BCR
light-chain sequences. The paired-chain entropy measures sug-
gest repertoire sizes of 1016 for TCRαβ and 1017 BCR IgHλ and
IgHκ receptors, which are compatible with the small correlations
observed between heavy and light chains in Fig. 3 and previously
reported in refs. 34–38.

Cell Type- and Tissue-Specific Selection on T Cells. During matura-
tion in the thymus, T cells differentiate into two major cell types:
cytotoxic (CD8+) and helper (CD4+) T cells. CD8+ cells bind
peptides presented on MHC class I molecules that are expressed
by all cells, whereas CD4+ cells bind peptides presented on
MHC class II molecules, which are only expressed on special-
ized antigen presenting cells. Differences in sequence features
of CD8+ and CD4+ T cells should reflect the distinct recogni-
tion targets of these receptors. Although these differences have
already been investigated in refs. 36 and 42, we still lack an
understanding as how selection contributes to the differences
between CD8+ and CD4+ TCRs. In addition to functional dif-
ferentiation at the cell-type level, T cells also migrate and reside
in different tissues, where they encounter different environments
and are prone to infections by different pathogens. As a result,
we expect to detect tissue-specific TCR preferences that reflect
tissue-specific T cell signatures.

To characterize differential sequence features of TCRs
between cell types in different tissues, we pool unique TCRs
from nine individuals (from ref. 42) sorted into three cell types
(CD4+ conventional T cells [Tconvs], CD4+ Tregs, and CD8+

T cells) and harvested from three tissues (pancreatic draining
lymph nodes [pLNs], “irrelevant” nonpancreatic draining lymph
nodes [iLNs], and spleen).

Training a nonlinear soNNia model (Fig. 1C) for each sub-
set leads to overfitting issues due to limited data. To solve this
problem, we train the model in two steps. First, we use the
unfractionated data from ref. 43 to construct a shared base-
line for all repertoire subsets. We then learn independent linear
SONIA models for each repertoire subset so that the inferred
Q factors only reflect selection relative to the baseline. We
approach this problem in two ways. 1) We infer an SONIA model
atop an empirical baseline set G constructed from the unfraction-
ated repertoire, and 2) we use the technique of transfer learning,
which consists of learning a shared nonlinear soNNia model for
the unfractionated repertoire and then adding an additional lin-
ear layer (similar to standard SONIA) for each subrepertoire
(SI Appendix, SI Text and Fig. S5). The subrepertoire selection
factors Q inferred by these two approaches are very similar (SI
Appendix, Fig. S5), but the former method is simpler, and we
use it for our main analysis in Fig. 4. For comparison, we also
used the generation model Pgen (trained earlier for Fig. 2) as
a baseline, in which case the selection factors include selection
effects that are shared among the subrepertoires. Distributions
of selection factors obtained by both approaches are shown in SI
Appendix, Fig. S6.

To quantify differential selection on subrepertoires, we use
Jensen–Shannon divergence DJS between the distributions of
receptors P r

post and P r′
post for pairs of subrepertoires (r , r ′) (Meth-

ods). Clustering of cell types based on Jensen–Shannon diver-
gence shows strong differential selection preferences between
the CD4+ and CD8+ receptors, with an average DJS' 0.08±
0.01 bits across respective tissues and subrepertoires (Fig. 4A; SI
Appendix, Fig. S7A has similar results where Pgen is used as base-
line). We identify differential selection between Tconv and Treg
receptors within CD4+ cells with DJS ' 0.015± 0.004. We also
detect moderate tissue specificity for CD8+ and Treg receptors,
but no such signal can be detected for CD4+ Tconv cells across
different tissues.

Examining the linear selection factors of the SONIA model
trained atop Pgen as a baseline reveals the VJ (SI Appendix, Fig.
S8) and amino acid usage features (Fig. 4C) that are differen-
tially selected in the Tconv CD4+ and CD8+ subsets (in spleen).
Linear selection models are organized according to a hierarchy
from the least to the most constrained model. As one adds selec-
tion factors for each feature, the Kullback–Leibler divergence
between the repertoire and the baseline increases (SI Appendix).
Decomposing in this way the divergence between CD4+ Tconv
and CD8+ repertoires, we find that contributions to the total
divergence are evenly split between amino acid features and VJ
gene usage, with only a minor contribution from CDR3 length
(SI Appendix, Fig. S9). It should be noted that the baseline
models Pgen for these subrepertoires, inferred from their unpro-
ductive receptors, are similar (SI Appendix, Fig. S10) and do not
contribute to these differential preferences.

One key difference between CD4+ and CD8+ TCRs amino
acid composition is their CDR3 charge preferences. We observe
an overrepresentation of positively charged (Lysine, K, and Argi-
nine, R) and suppression of negatively charged (Aspartate, D,
and Glutamate, E) amino acids in CD4+ TCRs compared with
CD8+ TCRs (Fig. 4B), consistent with previous observations
(44). These charge preferences arise due to differential selec-
tion on the two subtypes (Fig. 4B), indicating broad differences
between amino acid features of peptide–MHC-I and peptide–
MHC-II complexes, which respectively interact with CD8+ and
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Fig. 4. Cell type- and tissue-specific selection on TCRs. (A) Jensen–Shannon divergences (DJS) (Eq. 8) computed from models trained on different subreper-
toires are shown. (B) Difference in the marginal probability for amino acid composition along the CDR3, PCD8

post(a)− PCD4
post(a), between CD8+ and CD4+ Tconv

(Left) and the mean difference in the corresponding log-selection factors for amino acid usage ∆ log Q = log QCD8− log QCD4 (Right) are shown (the mean
is taken over the distribution (PCD8

post + PCD4
post)/2). The negatively charged amino acids (Aspartate, D, and Glutamate, E) and the positively charged amino acids

(Lysine, K, and Arginine, R) are indicated in red and blue, respectively. Other amino acids are shown in gray. (C) Maximum likelihood inference of the fraction
of CD8+ TCRs in mixed repertoires of conventional CD4+ T cells (Tconvs) and CD8+ cells from spleen (Eq. 4) is shown. Each repertoire comprises 5× 103

unique TCRs. (D) Same as C but for a mixture of Tconv and Treg TCRs. (E) Mean squared error of the inferred sample fraction from C as a function of sample
size N, averaged over all fractions, using models of increasing complexity: “QVJL” is a linear model with only features for CDR3 length and VJ usage, “linear”
is linear SONIA model, and “deep” is the full soNNia model (Fig. 1C). (F) ROC for classifying individual sequences coming from CD8+ cells or from CD4+

Tconvs from spleen, using the log-likelihood ratios. Curves are generated by varying the threshold in Eq. 5. The accuracy of the classifier is compared with
a traditional logistic classifier inferred on the same set of features as our selection models. The training set for the logistic classifier has N = 3× 105 Tconv
CD4+ and N = 8.7× 104 CD8+ TCRs, and the test set has N = 2× 104 CD4+ and N = 2× 104 CD8+ TCR sequences.

CD4+ TCRs. For example, a statistical survey of peptides pre-
sented by different MHC classes shows that MHC-I molecules
tend to present more positively charged peptides compared with
MHC-II molecules—a bias that is complementary to the charge
preferences of the respective TCR subtypes (45).

Decomposing Unsorted Repertoires Using Selection Models. Know-
ing P r

post models specific to subrepertoires enables us to infer the
fraction of each class r in unsorted data. Estimating the rela-
tive fraction of CD4+ and CD8+ subtypes in a repertoire can
be informative for clinical purposes (e.g., as a probe for tumor-
infiltrating lymphocytes), where overabundance of CD8+ cells
in the sample has been associated with positive prognosis in
ovarian cancer (46). Given a repertoire composed of the mix-
ture of two subrepertoires r and r ′ in unknown proportions, we
maximize the log-likelihood function L(f ) based on our selec-
tion models to find the fraction f of a subrepertoire r within
the mixture:

L(f )= 〈log(fP r
post(σ)+ (1− f )P r′

post(σ))〉D [4]

= 〈log(fQr (σ)+ (1− f )Qr′(σ))〉D +const,

where 〈·〉D is the empirical mean over sequences in the mixture.
Previous work has used differential V- and J-gene usage and

CDR3 length to characterize the relative fraction of CD4+

and CD8+ cells in an unfractionated repertoire (47). The log-

likelihood function in Eq. 4 provides a principled approach for
inferring cell-type composition using selection factors that cap-
ture the differential receptor features of each subrepertoire,
including but not limited to their V and J usage and CDR3 length
and amino acid preferences.

To test the accuracy of our method, we formed a synthetic
mixture of previously sorted CD4+ [Tconv from spleen (42)]
and CD8+ [from spleen (42)] receptors with different propor-
tions and show that our selection-based inference can accurately
recover the relative fraction of CD8+ in the mix (Fig 4C). Our
method can also infer the proportion of Treg cells in a mixture
of Tconv and Treg CD4+ cells from spleen (Fig. 4D), which is a
much harder task since these subsets are very similar (Fig. 4A).
The accuracy of the inference depends on the size of the unfrac-
tionated data, with a mean expected error that falls below 1% for
datasets with size 104 or larger for the CD8+/CD4+ mixture (red
and orange lines in Fig. 4E).

Our method uses a theoretically grounded maximum likeli-
hood approach, which includes all of the features captured by
the soNNia model. Nonetheless, a simple linear selection model
with only V- and J-gene usage and CDR3 length information
(blue line in Fig. 4E), analogous to the method used in ref. 47,
reliably infers the composition of the mixture repertoire. Addi-
tional information about amino acid usage in the linear SONIA
model results in moderate but significant improvement (orange
line in Fig. 4E). The accuracy of the inference is insensitive to the
choice of the baseline model for receptor repertoires: Using the
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empirical baseline from ref. 43 (Fig. 4E) or Pgen (SI Appendix,
Fig. S7D) does not substantially change the results.

The method can be extended to the decomposition of three
or more subrepertoires. To illustrate this, we inferred the frac-
tions of Tconv, Treg, and CD8+ cells in synthetic unfractionated
repertoires from spleen, showing an accuracy of 3± 1% in recon-
structing all three fractions (SI Appendix, Fig. S11) in a mixture
of size 5× 103.

Computational Sorting of CD4+ and CD8+ TCRs. Selection models
are powerful in characterizing the broad statistical differences
between distinct functional subsets of immune receptors, includ-
ing the CD4+ and CD8+ TCRs (Fig. 4A). A more difficult
task, which we call computational sorting, is to classify individual
receptors into functional classes based on their sequence fea-
tures. In other words, how accurately can one classify a given
receptor as a member of a functional subset (e.g., CD4+ or
CD8+ TCRs)?

We use selection models inferred for distinct subrepertoires r
and r ′ to estimate a log-likelihood ratio R(x) for a given receptor
x to belong to either of the subrepertoires,

R(x)= log
P r

post(x)
P r′

post(x)
= log

Qr (x)
Qr′(x)

. [5]

A larger log-likelihood ratio R(x) indicates that the receptor is
more likely to be associated with the subrepertoire r than r ′. We
set a threshold Rc , to assign a receptor to r if R(x)≥Rc and to
r ′ otherwise. The sensitivity and specificity of this classification
depend on the threshold value. We evaluate the accuracy of our
log-likelihood classifier between sets of CD8+ and Tconv CD4+

receptors harvested from spleen (42). The receiver operating
characteristic (ROC) curve in Fig. 4F shows that our selection-
based method can classify receptors as CD8+ or CD4+ cells, with
an area under the curve (AUC) = 0.68. Performance does not
depend on the choice of the baseline model (Pemp in Fig. 4F
and Pgen in SI Appendix, Fig. S7E). Applying this classification
method to all of the possible pairs of subrepertoires in Fig. 4A,
we find that CD4+ vs. CD8+ discrimination generally achieves
AUC ≈ 0.7, while discriminating subrepertoires within the
CD4+ or CD8+ classes yields much poorer performance (SI
Appendix, Fig. S12).

For comparison, we also used a common approach for cat-
egorical classification and optimized a linear logistic classifier
that takes receptor features (similar to the selection model)
as input and classifies receptors into CD8+ or CD4+ cells.
The model predicts the probability that sequence x belongs
to subrepertoire r (rather than r ′) as ŷ(x)= ζ(Rlog(x)), with
Rlog(x)=

∑
f wf xf + b and ζ(x )= ex/(1+ ex ). We learn the

model parameters wf and b by maximizing the log likelihood of
the training set:

Lc(w, b)=
N∑
i=1

[yi log ŷ(xi)+ (1− yi) log(1− ŷ(xi))], [6]

where yi labels each TCR by the subrepertoire (e.g., yi =1 for
CD8+ and yi =0 for CD4+). Note that when selection models
are linear, the log-likelihood ratio (Eq. 5) also reduces to a lin-
ear form—the only difference being how the linear coefficients
are learned. This optimized logistic classifier (Eq. 6) performs
equally well compared with the selection-based classifier, with
the same AUC = 0.68 (points in Fig. 4F). These AUCs are com-
parable with those found in ref. 36, which has addressed the same
issue using black box machine learning approaches.

It should be emphasized that despite comparable perfor-
mances, our fully linear selection-based method provides a
biologically interpretable basis for subtype classification, in

contrast to black box approaches (36). For example, the rel-
ative importance of different sequence features (i.e., CDR3
length, V/J gene identity, and amino acid composition) for
CD4+ vs. CD8+ classification is shown in SI Appendix,
Fig. S9.

Classification of TCRs Targeting Distinct Antigenic Epitopes. Recog-
nition of a pathogenic epitope by a TCR is mediated through
molecular interactions between the two proteins. The strength
of this interaction depends on the complementarity of a TCR
against an antigen presented by an MHC molecule on the T cell
surface. Recent growth of data on paired TCRs and their target
epitopes (26, 48) has led to the development of machine learn-
ing methods for TCR–epitope mapping (25–29). A TCR–epitope
map is a classification problem that determines whether a TCR
binds to a specific epitope. We use our selection-based classi-
fier (Eq. 5) to address this problem. We determine the target
ensemble P r

post from the training set of TCRs associated with a
given epitope (positive data) and the alternative ensemble P r′

post
from a set of generic unfractionated TCRs (negative data). For
comparison, we also perform the classification task using the lin-
ear logistic regression approach (Eq. 6) and the state-of-the-art
TCRex algorithm (28), which uses a random forest model for
classification.

We performed classification for the following CD8+-specific
epitopes, presented on HLA-A∗02 molecules: 1) the influenza
GILGFVFTL epitope (with N =3,107 associated TCRs), 2) the
cytomegalovirus (CMV) NLVPMVATV epitope (N =4,812),
and 3) the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) YLQPRTFLL epitope (N =315). The first two
epitopes have the most abundant associated TCR sets in VDJdb
(26, 48), and the latter is relevant for the ongoing COVID-
19 pandemic. For consistency with TCRex (28), we used the
pooled data from ref. 43 as the negative set and used 10 times
more negative data than positive data for training. To quan-
tify performance of each classifier, we performed a fivefold
cross-validation procedure. Due to the scarcity of data, we limit
our selection inference to the linear SONIA model (Fig. 1C).
The ROC curves show comparable performances for the three
classification methods on the three epitope-specific TCR sets
(Fig. 5 A–C).

The TCR–epitope mapping is a highly unbalanced classifica-
tion problem, where reactive receptors against a specific epitope
comprise a very small fraction of the repertoire [less than 10−5

(6)]. Precision-recall curves are best suited to evaluate the per-
formance of classification for imbalanced problems. In this case,
a classifier should show a large precision (fraction of true pre-
dicted positives among all predicted positives) for a broad range
of recall or sensitivity (fraction of true predicted positives among
positives = true positives + false negatives). The precision-recall
curves in Fig. 5 D–F show that TCRex and the logistic classifier
can equally well classify the data and moderately outperform the
selection-based classifier. While both the logistic classifier and
TCRex are optimized for classification tasks, the selection-based
classifier is a generative model trained to infer the receptor dis-
tribution of interest (positive set) and identify its distinguishing
features from the baseline (negative set). As a result, selection-
based classification underperforms in the low-data regime, for
which fitting a reliable distribution is difficult (e.g., for the SARS-
CoV-2 epitope model, with only N =315 positive examples). By
contrast, the logistic classifier finds a hyperplane that best sepa-
rates the two sets and therefore, is better suited for classification
tasks, and it may be trained on smaller datasets. Nonetheless,
we see a strong correlation between the selection-based log-
likelihood ratio R(x ) (Eq. 5) and the estimator of the logistic
classifier ŷ (Eq. 6), shown for positive set (red points) and the
negative set (black points) in Fig. 5 G–I for the three epitopes.
This result indicates that the separation hyperplane identified by
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Fig. 5. Selection-based prediction of epitope specificity for TCR. TCRs are classified based on their reactivity to three pathogenic epitopes (columns), using
three classification methods: TCRex, log-likelihood ratio (Eq. 5), and linear logistic regression (Eq. 6). (A–C) ROC curves and (D–F) precision-recall curves for
(A and D) influenza epitope GILGFVFTL (N = 3,107 TCR), (B and E) CMV epitope NLVPMVATV (N = 4,812), and (C and F) SARS-CoV-2 epitope YLQPRTFLL
(N = 315) are shown. (G–I) Comparison between log-likelihood scores R(x) and logistic regression scores Rlog(x) for the three epitopes. Red points are TCRs
that bind the specific epitope (positive set), and black points are TCRs from bulk sequencing (negative set). r is Pearson’s correlation. For all panels, we
used pooled data from ref. 43 as the negative set. We used 10 times more negative data than positive data for training. Performance was quantified using
fivefold cross-validation.

the logistic classifier aligns well along the effective coordinates of
selection that represent sequence features relevant for function
in each epitope class.

Discussion
Previous work has developed linear selection models to char-
acterize the distribution of productive TCRs (4). Here, we
generalized on these methods by using DNNs implemented in
the soNNia algorithm to account for nonlinearities in feature
space and have improved the statistical characterization of TCR
repertoires in a large cohort of individuals (33).

Using this method, we modeled the selective pressure on
paired chains of T and BCRs and found that the observed
cross-chain correlations, even if limited, could be partially repro-
duced with our model (Fig. 3). These observed interchain
correlations are likely due to the synergy of the two chains
interacting with self- and nonself-antigens, which determine the
selection pressure that shapes the functional TCR and BCR
repertoires.

We systematically compared T cell subsets and showed that
our method identifies differential selection on CD8+ T cells,
CD4+ conventional T cells, and CD4+ regulatory T cells. TCRs
belonging to families with more closely related developmental
paths (i.e., CD4+ regulatory or conventional cells) have more
similar selection features, which differentiate them from cells

that diverged earlier (CD8+). Cells with similar functions in
different tissues are in general similar, with the exception of
spleen CD8+ that stands out from lymph node CD8+. These
differences capture broad differential preferences of CD8+ and
CD4+ TCRs, which can arise from their distinct structural
features complementary to their different targets (i.e., peptide–
HLAI and peptide–HLAII complexes). A next step would be to
uncover more fine-grained differential features, associated with
the distinct pathogenic history or HLA composition of different
individuals.

One application of the soNNia method is to utilize our selec-
tion models to infer ratios of cell subsets in unsorted mixtures,
following the proposal of Emerson et al. (47). Consistently with
previous results, we find that the estimated ratio of CD4+/CD8+

cells in unsorted mixtures achieves precision of the order of 1%
with as few as 104 unique receptors. Emerson et al. (47) vali-
dated their computational sorting based on sequence identity on
data from in vitro assays and flow cytometry, which gives us confi-
dence that our results would also pass an experimental validation
procedure.

As a harder task, we were also able to decompose the fraction
of regulatory vs. conventional CD4+ T cells, showing that recep-
tor composition encodes not just signatures of shared develop-
mental history—receptors of these two CD4+ subtypes are still
much more similar to each other than to CD8+ receptors—but

8 of 10 | PNAS
https://doi.org/10.1073/pnas.2023141118

Isacchini et al.
Deep generative selection models of T and B cell receptor repertoires with soNNia

https://doi.org/10.1073/pnas.2023141118


A
PP

LI
ED

PH
YS

IC
A

L
SC

IE
N

CE
S

BI
O

PH
YS

IC
S

A
N

D
CO

M
PU

TA
TI

O
N

A
L

BI
O

LO
G

Y

also, function: Tregs down-regulate effector T cells and curb an
immune response, creating tolerance to self-antigens and pre-
venting autoimmune diseases (10), whereas Tconvs assist other
lymphocytes, including activation of differentiation of B cells.
Since our analysis is performed on fully differentiated periph-
eral cells, we cannot say at what point in their development these
CD4+ T cells are differentially selected. Data from regulatory
and conventional T cells at different stages of thymic develop-
ment could identify how their receptor composition is shaped
over time.

During thymic selection, cells first rearrange a β receptor, and
then, an α receptor is added concurrently with positive selection.
Negative selection follows positive selection and overlaps with
CD4/CD8 differentiation. We found that the Jensen–Shannon
divergence between CD8+ and CD4+ cells to be very small
(0.1 bit) compared with the divergence between functional and
generated repertoires (ranging from 0.8 to 0.9 bits). This result
suggests that the selection factors captured by our model mainly
act during positive selection, which is partly shared between
CD4+ and CD8+ cells, rather than during cell-type differen-
tiation and negative selection, which is distinct for each type.
Additionally to showing statistical differences in subrepertoires,
we classified cells into CD4+ and CD8+ subclasses with like-
lihood ratios of selection models and recovered similar results
achieved using pure machine learning approaches (36) but in a
fully linear and interpretable setting.

In recent years, multiple machine learning methods have been
proposed in order to predict antigen specificity of TCRs: TCRex
(28, 49), DeepTCR (50), netTCR (51), ERGO (52), TCRGP
(27) and TcellMatch (53). All these methods have explored the
question in slightly different ways and made comparisons with
each other. However, with the sole exception of TcellMatch
(53), none of the above methods compared their performance
with a simple linear classifier. TcellMatch (53) does not explic-
itly compare with other existing methods but implicitly compares
various neural network architectures. We thus directly compared
a representative of the above group of machine learning models,
TCRex, with a linear logistic classifier and with the log-likelihood
ratio obtained by training two SONIA models on the same set
of features. We found that the three models performed simi-
larly (Fig. 5), consistent with the view that amino acids from the
CDR3 loop interact with the antigenic peptide in an additive way.
This result complements similar results in ref. 53, where a linear
classifier gave comparable results to DNN architectures.

The linear classifier based on likelihood ratios achieves state-
of-the-art performance both in discriminating CD4+ from CD8+

cells (Fig. 4F) and in predicting epitope specificity (Fig. 5). How-
ever, unlike other classifiers, its engine can be used to generate
positive and negative samples. Thus, characterizing the distribu-
tions of positive and negative examples is more data demanding
than mere classification. For this reason, pure classifiers are gen-
erally expected to perform better but lack the ability to sample
new data. Our analysis complements the collection of proposed
classifiers by adding a generative alternative that is grounded on
the biophysical process of T cell generation and selection. This
model is simple and interpretable and performs well with large
amounts of data.

The epitope discrimination task discussed here and in previ-
ous work focuses on predicting TCR specificity to one specific
epitope. A long-term goal would be to predict the affinity of any
TCR–epitope pair. However, currently available databases (26,
48) do not contain sufficiently diverse epitopes to train models
that would generalize to unseen epitopes (53). A further compli-
cation is that multiple TCR specificity motifs may coexist even
for a single epitope (29, 54), which cannot be captured by linear
models (55). Progress will be made possible by a combination of
high-throughput experiments assaying many TCR–epitope pairs
(56) and machine learning-based techniques such as soNNia.

In summary, we show that nonlinear features captured by
soNNia capture more information about the initial and periph-
eral selection processes than linear models. However, DNN
methods such as soNNia suffer from the drawback of being
data hungry and show their limitations in practical applications
where data are scarce. Nonetheless, with the rapid growth of
functionally annotated datasets, we expect soNNia to be more
readily used for inference of nonlinear selection on immune
receptor sequences. Such nonlinearity is expected as it would
reflect the ubiquitous epistatic interactions between residues
of a receptor protein that encode for a specific function. In a
more general context, soNNia is a way to integrate more basic
but interpretable knowledge-based models and more flexible
but less interpretable deep learning approaches within the same
framework.

Methods
Data Description. In this work, we used different datasets to evaluate
selection on TCR and BCR features.

1) To quantify the accuracy of the soNNia model (Fig. 2), we used the TCRβ
repertoires from a large cohort of 743 individuals from ref. 33. We pool
the unique nucleotide sequences of receptors from all individuals and
construct a universal donor totaling 9× 107 sequences. We randomly
split the pooled dataset into a training set and a test set of equal sizes.
We then subsampled the training set to 107 to reduce the computational
cost of inference.

2) To characterize selection on paired-chain receptors (Fig. 3), we analyzed
TCRαβ pairs of unfractionated repertoires from ref. 37 (totaling 5× 105

receptors) and BCR of naive cells from ref. 41 (totaling 22× 103 and 28×
103 receptors for the Hλ and Hκ repertoires, respectively).

3) To characterize differential sequence features of TCRs between cell types
in different tissues (Fig. 4), we pooled unique TCRs from nine healthy
individuals from ref. 42, sorted into CD4+ Tconvs, CD4+ Tregs, and CD8+

T cells, harvested from three tissues: pLNs (2.3× 105 Tconvs, 2.9× 105

Tregs, 2.5× 105 CD8s), iLNs (2.0× 105 Tconvs, 9.0× 104 Tregs, 1.0× 105

CD8s), and spleen (3.2× 105 Tconvs, 1.1× 105 Tregs, 1.1× 105 CD8s).
We used the unfractionated data from ref. 43, composed of 2.2× 106

receptor sequences, to construct a baseline model for this analysis.

Quantifying Accuracy of Selection Models. To assess the performance of our
selection models, we compare their inferred probabilities Ppost(x) with the
observed frequencies of the receptor sequences Pdata(x) in the test set. Pre-
diction accuracy can be quantified through the Pearson correlation between
the two log frequencies or the Kullback–Leibler divergence between the
data and the distribution predicted by the selection model Ppost:

DKL(Pdata|Ppost) =

〈
log2

Pdata

Ppost

〉
Pdata

. [7]

A smaller Kullback–Leibler divergence indicates a higher accuracy of the
inferred model in predicting the data. In Fig. 2, we estimate the Kullback–
Leibler divergence using 105 receptors in the test set with multiplicity larger
than two.

Comparing Selection on Different Subrepertoires. To characterize differences
in subrepertoires due to selection, we evaluate the Jensen–Shannon diver-
gence DJS(r, r′) between the distribution of pairs (r, r′) of subrepertoires
Pr

post and Pr′
post,

DJS(r, r′) =
1

2

〈
log2

2Qr

Qr +Qr′

〉
r
+

1

2

〈
log2

2Qr′

Qr +Qr′

〉
r′

, [8]

where 〈·〉r denotes averages over Pr
post (SI Appendix has evaluation details).

This divergence is symmetric and only depends on the relative differences of
selection factors between functional subrepertoires, and not on the baseline
model.

Data Availability. All study data are included in the article and/or
SI Appendix.
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