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Deterministic realization of collective
measurements via photonic quantum walks
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Kang-Da Wu1,2, Guo-Yong Xiang1,2, Chuan-Feng Li1,2 & Guang-Can Guo1,2

Collective measurements on identically prepared quantum systems can extract more infor-

mation than local measurements, thereby enhancing information-processing efficiency.

Although this nonclassical phenomenon has been known for two decades, it has remained a

challenging task to demonstrate the advantage of collective measurements in experiments.

Here, we introduce a general recipe for performing deterministic collective measurements on

two identically prepared qubits based on quantum walks. Using photonic quantum walks, we

realize experimentally an optimized collective measurement with fidelity 0.9946 without post

selection. As an application, we achieve the highest tomographic efficiency in qubit state

tomography to date. Our work offers an effective recipe for beating the precision limit of local

measurements in quantum state tomography and metrology. In addition, our study opens an

avenue for harvesting the power of collective measurements in quantum information-

processing and for exploring the intriguing physics behind this power.
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Quantum measurements are the key for extracting infor-
mation from quantum systems and for connecting the
quantum world with the classical world. Understanding

the power and limitation of measurements is of paramount
importance not only to foundational studies, but also to many
applications, such as quantum tomography, metrology, and
communication1–8. An intriguing phenomenon predicted by
quantum theory is that collective measurements on identically
prepared quantum systems may extract more information than
local measurements on individual systems, thereby leading to
higher tomographic efficiency and precision9–14. The significance
of collective measurements for multiparameter quantum
metrology was also recognized recently15,16. This nonclassical
phenomenon is owing to entanglement in the quantum mea-
surements instead of quantum states. It is closely tied to the
phenomenon of “nonlocality without entanglement”17. In addi-
tion, collective measurements are very useful in numerous other
tasks, such as distilling entanglement18, enhancing nonlocal
correlations19, and detecting quantum change point20. However,
demonstrating the advantage of collective measurements in
experiments has remained a daunting task. This is because most
optimized protocols entail generalized entangling measurements
on many identically prepared quantum systems, which are very
difficult to realize deterministically.

Here we introduce a general method for performing determi-
nistic collective measurements on two identically prepared qubits
based on quantum walks, which extends the method for per-
forming generalized measurements on a single qubit only21–23.
By devising photonic quantum walks, we realize experimentally
a highly efficient collective measurement highlighted in
refs. 11,13,14. As an application, we realize, for the first time, qubit
state tomography with deterministic collective measurements.
The protocol we implemented is significantly more efficient than
local measurements commonly employed in most experiments.
Moreover, it can achieve near-optimal performance over all two-
copy collective measurements with respect to various figures of

merit without using adaptive measurements. Such high efficiency
demonstrates the main advantage of collective measurements
over separable measurements. Here, we encode the two qubits in
the two degrees of freedom of a single photon24–27, but our
method for performing collective measurements can be general-
ized to two-photon two-qubit states by combining the technique
of quantum joining28 or teleportation29.

Results
Optimized collective measurements. In quantum theory, a
measurement is usually represented by a positive-operator-valued
measure (POVM), which is composed of a set of positive
operators that sum up to the identity. In traditional quantum
information-processing, measurements are performed on indivi-
dual quantum systems one by one, which often cannot extract
information efficiently. Fortunately, quantum theory allows us to
perform collective measurements on identically prepared quan-
tum systems in a way that has no classical analog, as illustrated in
Fig. 1.

In the case of a qubit, a special two-copy collective POVM was
highlighted in refs.11,13,14, which consists of five POVM elements,
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Fig. 1 Individual and collective measurements. a Repeated individual measurements. b Single N-copy collective measurement. c Repeated two-copy
collective measurements. d Realization of the collective SIC-POVM defined in Eqs. (1) and (2) using five-step quantum walks. The coin qubit and the walker
in positions 1 and −1 are taken as the two-qubit system of interest, whereas the other positions of the walker act as an ancilla. Site-dependent coin
operators C(x, t) are specified in the Methods section. Five detectors E1 to E5 correspond to the five outcomes of the collective SIC-POVM
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The POVM defined by Eqs. (1) and (2) is referred to as the
collective SIC-POVM henceforth. If this POVM is performed on
the two-copy state ρ⊗2, then the probability of obtaining outcome
j is given by pj= tr(ρ⊗2Ej).

The collective SIC-POVM is distinguished because it is optimal
in extracting information from a pair of identical qubits9,11. It is
universally Fisher symmetric in the sense of providing uniform
and maximal Fisher information on all parameters that
characterize the quantum states of interest13,14,32. Moreover, it
is unique such POVM with no more than five outcomes.
Consequently, the collective SIC-POVM is significantly more
efficient than any local measurement in many quantum
information-processing tasks, including tomography and metrol-
ogy. Moreover, its high tomographic efficiency is achieved
without using adaptive measurements, which is impossible for
local measurements. As far as two-copy collective measurements
are concerned, surprisingly, more entangled measurements, such
as the Bell measurements, cannot lead to higher efficiency.
Although multi-copy (say three-copy) collective measurements
can further improve the efficiency, the improvement is not so
significant13,14.

Realization of the collective SIC-POVM via quantum walks.
Recently, discrete quantum walks were proposed as a recipe for
implementing general POVMs on a single qubit21, which have
been demonstrated in experiments22,23. In a one-dimensional
discrete quantum walk, the system state is characterized by two
degrees of freedom x; cj i, where x=…, −1, 0, 1, … denotes the
walker position, and c= 0, 1 represents the coin state. The
dynamics of each step is described by a unitary transformation of
the form U(t)= TC(t), where

T ¼
X
x

x þ 1; 0j i x; 0h j þ x � 1; 1j i x; 1h j ð3Þ

is the conditional translation operator, and C(t)=
P

x xj i xh j �
Cðx; tÞ with C(x, t) being site-dependent coin operators. A general
POVM on a qubit can be realized by engineering the coin

operators C(x, t) followed by measuring the walker position after
certain steps. However, little is known in the literature on rea-
lizing POVMs on higher-dimensional systems. Here, we propose
a general method for extending the capabilities of quantum walks.
For concreteness, we illustrate our approach with the collective
SIC-POVM.

To realize the collective SIC-POVM using quantum walks, the
coin qubit and the walker in positions 1 and −1 are taken as the
two-qubit system of interest, whereas the other positions of the
walker act as an ancilla. With this choice, the collective SIC-
POVM can be realized with five-step quantum walks, as
illustrated in Fig. 1d and discussed in more details in
Supplementary Note 1. Here, the nontrivial coin operators C(x,
t) are specified in the Methods section. The five detectors E1 to E5
marked in the figure correspond to the five POVM elements
specified in Eqs. (1) and (2). Moreover, this proposal can be
implemented using photonic quantum walks, as illustrated in
Fig. 2 (see also Supplementary Fig. 1).

Experimental setup. The experimental setup for realizing the
collective SIC-POVM and its application in quantum state
tomography is presented in Fig. 2. The setup is composed of two
modules designed for two-copy state-preparation and collective
measurements, respectively.

The two-copy collective measurement module performs the
collective SIC-POVM based on quantum walks, as illustrated in
Fig. 1d (cf. Supplementary Fig. 1). Here the conditional
translation operator T is realized by interferometrically stable
beam displacers (BDs)33–36, which displace the component with
horizontal polarization (H) away from the component with
vertical polarization (V). The coin operators C(x, t) are realized by
suitable combinations of half wave plates (HWPs) and quarter
wave plates (QWPs), with rotation angles specified in the table
embedded in Fig. 2.

In the two-copy state-preparation module, we first prepare
copy 1 in the path degree of freedom, i.e., the walker qubit
encoded in positions 1 and −1 (see a in Fig. 2). A pair of 1-mm-
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Fig. 2 Experimental setup for realizing the collective SIC-POVM. The setup consists of two modules designed for two-copy state preparation (a, b) and
two-copy collective measurement c, respectively. In the two-copy state-preparation module, a prepares the first copy (walker qubit) in the path degree of
freedom; b prepares the second copy (coin qubit) in the polarization degree of freedom. The two-copy collective measurement module (c) performs the
collective SIC-POVM via photonic quantum walks as illustrated in Fig. 1d. Here beam displacers (BDs) are used to realize the conditional translation
operator T. Combinations of half wave plates (HWPs) and quarter wave plates (QWPs) with rotation angles specified in the embedded table are used to
realize site-dependent coin operators C(x, t). Five single-photon detectors (SPDs) E1 to E5 correspond to the five outcomes of the collective SIC-POVM
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long BBO crystals with optical axes perpendicular to each other,
cut for type-1 phase-matched spontaneous parametric down-
conversion (SPDC) process, is pumped by a 40-mW H-polarized
beam at 404 nm. The polarization state of the beam is prepared as
cos2α1 Hj i+ sin2α1 Vj i when the deviation angle of the HWP at
404 nm is set at α1. After the SPDC process, a pair of photons
with wave length λ= 808 nm is created in the state of
sin2α1 HHj i+ cos2α1 VVj i37. The two photons pass through
two interference filters whose FWHM (full width at half
maximum) is 3 nm, resulting in a coherence length of 270λ.
One photon is detected by a single-photon detector acting as a
trigger. After tracing out this photon, the other photon is
prepared in the state sin2 2α1 Hj i Hh j+ cos2 2α1 Vj i Vh j, whose
purity is controlled by α1. Two HWPs (not shown in Fig. 2) at the
input and output ports of the single-mode fiber are used to
maintain the polarization state of the photon. After passing a

HWP and a QWP with deviation angles h1, q1, the photon is
prepared in the desired state ρ. To encode the polarization state
into the path degree of freedom, BD0 is used to displace the H-
component into path 1, which is 4-mm away from the V-
component in path −1; then a HWP with deviation angle h3=
45° is placed in path 1. The resulting photon is described by the
state ρ� Vj i Vh j.

Then we encode the second copy of ρ into the polarization
degree of freedom (coin qubit) using two HWPs, a quartz crystal
with a decoherence length of 385λ, and a QWP (see b in Fig. 2).
The first HWP with rotation angle α2 and the quartz crystal
prepare the polarization state sin2 2α2 Hj i Hh j+ cos2 2α2 Vj i Vh j
with desired purity. Then the direction of the Bloch vector of the
polarization state is adjusted by a HWP and a QWP with
deviation angles h2 and q2. In this way, we can prepare the desired
two-copy state ρ⊗ ρ, the first copy of which is encoded in the
path degree of freedom, whereas the second one in the
polarization degree of freedom.

The two-copy state-preparation module described above is
capable of preparing any two-copy state (see Supplementary
Note 2 for more details). Next, the two-copy state ρ⊗ ρ is sent
into the two-copy collective measurement module, which
performs the collective SIC-POVM based on quantum walks, as
described before. It is worth pointing out that the collective SIC-
POVM can also be applied to measure arbitrary two-qubit states,
although we focus on two-copy qubit states in this work.

Verification and tomography of the collective SIC-POVM. To
verify the experimental implementation of the collective SIC-
POVM, we took the conventional method of measuring the
probability distributions after preparing the input states as nor-
malized POVM elements, i.e., Êi ¼ Ei=tr Eið Þ for i= 1, …, 5.
These input states can be prepared by choosing proper rotation
angles α1, h1, q1, h3, α2, h2, q2 as specified in Supplementary
Table 1. The measurement probability distributions are shown in
Fig. 3, which agree very well with the theoretical prediction.

To accurately characterize the POVM elements that were
actually realized, we then performed quantum measurement
tomography. Overall, 36 input states, the tensor products of the
six eigenstates of three Pauli operators, were prepared and sent to
the collective measurement module, with each setting repeated
35,000 times. Then the five POVM elements were estimated from
the measurement statistics using the maximum likelihood
method developed in ref.38. The fidelities of the five POVM
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each Êi for i= 1, 2, 3, 4, 5 denotes an input state, which corresponds to the
POVM element Ei of the collective SIC-POVM after normalization. Each
input state is prepared and measured 100,000 times. The frequencies of
obtaining the five outcomes are plotted using different colors; here the error
bars are too small to be visible. For comparison, the probabilities in the ideal
scenario are plotted in gray shadow

a b c
10–1

10–2

Coll-exp
Coll-ideal

Adaptive
MUB

Coll-exp
Coll-ideal

Adaptive
MUB

Coll-exp
Coll-ideal

Adaptive
MUB

In
fid

el
ity

10–3

102

s = (0, 0, 1)

103

N
102 103

N
102 103

N

10–1

10–2

In
fid

el
ity

10–3

10–1

10–2

In
fid

el
ity

10–3

s =      (1, 0, 1)1
√2

s =      (1, 1, 1)1
√3

Fig. 4 Scaling of the mean infidelity in quantum state tomography with the collective SIC-POVM. Both experimental (coll-exp) and simulation (coll-ideal)
results are plotted for the collective SIC-POVM. The performances of MUB and two-step adaptive measurements (simulation) are shown for comparison.
a, b and c correspond to the tomography of three pure states with Bloch vectors s as specified; N is the sample size, ranging from 16 to 2048. Each data
point is the average of 1000 repetitions, and the error bar denotes the standard deviation

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03849-x

4 NATURE COMMUNICATIONS |  (2018) 9:1414 | DOI: 10.1038/s41467-018-03849-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


elements estimated are 0.9991 ± 0.0001, 0.9979 ± 0.0007, 0.9870 ±
0.0008, 0.9927 ± 0.0002 and 0.9961 ± 0.0002, respectively; the
overall fidelity of the POVM (cf. the Methods section) is 0.9946 ±
0.0002. Here, the error bars denote the standard deviations of
100 simulations from Poisson statistics. Such high fidelities
demonstrate that the collective SIC-POVM was realized with very
high quality. Detailed information about the five reconstructed
POVM elements can be found in Supplementary Note 3 and
Supplementary Fig. 2.

Quantum state tomography with the collective SIC-POVM.
The experimental realization of the collective SIC-POVM enables
us to achieve unprecedented efficiency in quantum state tomo-
graphy. In this section we demonstrate the tomographic sig-
nificance of the collective SIC-POVM and the power of collective
measurements.

In the first experiment, we investigated the scaling of the mean
infidelity 1− F achieved by the collective SIC-POVM with the
sample size N (the number of copies of the state available for
tomography). Three pure states with Bloch vectors (0, 0, 1), 1ffiffi

2
p (1,

0, 1), and 1ffiffi
3

p (1, 1, 1) were considered (see Supplementary Note 4
and Supplementary Fig. 3 for additional results on mixed states).
In each case, the probabilities of obtaining the outcomes of the
collective SIC-POVM were estimated from frequencies of

repeated measurements, from which we reconstructed the
original state using the maximum likelihood method4; see
Supplementary Note 5 and Supplementary Fig. 4.

The experimental result and simulation result are shown in
Fig. 4. Also shown as benchmarks are the simulation results on
two popular alternative schemes: one based on mutually unbiased
bases (MUB) for a qubit39–42 and the other based on two-step
adaptive measurements proposed in ref. 43 (cf. refs.44–46). The
experimental result agrees very well with the theoretical
predication14 and numerical simulation. The efficiency of the
collective SIC-POVM is almost independent of the input state;
the infidelity approximately scales as O(1/N) for all states
investigated (cf. Supplementary Table 2). This high efficiency is
tied to the fact that the probability of obtaining the outcome E5 in
Eq. (1) is very sensitive to the purity of the input state, so that the
purity can be estimated very accurately. By contrast, the scaling
behavior is much worse for MUB except when the input state
aligns with one of the POVM elements, which corresponds to
“known state tomography”43. This is because the infidelity is very
sensitive to inaccurate estimation of the purity, which is
unavoidable for a fixed individual measurement. For a generic
pure state, the infidelity achieved by the collective SIC-POVM for
N= 2048 is ~ 12 (three) times smaller than that achieved by
MUB (local adaptive measurements). The advantage of the
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denote the direction and length of the Bloch vector; the sample size is N= 256; each data point is the average of 1000 repetitions, and the error bar
denotes the standard deviation

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03849-x ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1414 | DOI: 10.1038/s41467-018-03849-x | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


collective SIC-POVM becomes more significant as the sample size
increases.

In the second experiment, we investigated the mean infidelity
achieved by the collective SIC-POVM when the input states have
the form ψðθÞj i= sinθ 0j i þ cosθ 1j i with θ ranging from 0 to π/
2. Here N is chosen to be 128 (that is, 64 pairs) or 1024 (512
pairs). The result shown in Fig. 5 further demonstrates that the
efficiency of the collective SIC-POVM is almost independent of
the input state. In addition, the infidelity in the worst scenario is
much smaller than that achieved by MUB and local adaptive
measurements. As in the first experiment, the advantage of the
collective SIC-POVM becomes more significant when N
increases.

In the third experiment, we considered two families of mixed
states ρ ¼ 1

2(I+ s ⋅ σ) with Bloch vectors along bs= (0, 0, −1) andbs= (0.490, −0.631, 0.602), respectively, and with s ranging from 0
to 1. The sample size N is chosen to be 256; both the mean
infidelity and mean square error (MSE) are considered as figures
of merit. The experimental result is shown in Fig. 6. The mean
infidelity achieved by the collective SIC-POVM is not only
smaller than that by MUB, but also smaller than the Gill-Massar
(GM) bound13,44,47, which constrains the performance of any
local measurement, even with adaptive choices. Moreover, the
mean infidelity approximately saturates a bound derived in refs.
13,14, which represents the best performance that can be achieved
by two-copy collective measurements; cf. the Methods section. In
addition, the collective SIC-POVM is also nearly optimal with
respect to the MSE for all states. Remarkably, such high efficiency
is achieved without any adaptive measurement.

Discussion
In summary, we introduced a general method for implementing
deterministic collective measurements on two identically pre-
pared qubits based on quantum walks. Using photonic quantum
walks, we then realized experimentally the collective SIC-POVM
with very high quality and thereby achieved unprecedented high
efficiency in qubit state tomography. The collective SIC-POVM
we realized is significantly more efficient than any local mea-
surement. It improves the scaling of the mean infidelity in the
worse scenario from O 1=

ffiffiffiffi
N

p� �
to O(1/N). Moreover, it is nearly

optimal over all two-copy collective measurements with respect to
various figures of merit, including the mean infidelity and MSE,
although no adaptive measurement is required. This high effi-
ciency manifests the primary advantage of collective measure-
ments over separable measurements.

Our work demonstrated a truly nonclassical phenomenon
that is owing to entanglement in quantum measurements
instead of quantum states. Moreover, it offers an effective recipe
for exceeding the precision limit of local measurements in
quantum state tomography. Similar idea can readily be applied to
enhance the precision in multiparameter quantum metrology. For
example, in the joint estimation of phase and phase diffusion, it
was shown in ref. 15 that collective measurements can lead to
higher precision than local measurements. Recently, this
prediction was verified in a proof-of-principle experiment
based on probabilistic Bell measurements16. Our technique for
implementing deterministic collective measurements may help
demonstrate the practical advantage of collective measurements
in quantum metrology. More generally, our work opens
an avenue for exploring the power of collective measurements
in quantum information processing. In the future, it
would be desirable to extend our approach to realize multi-copy
collective measurements on qubits and systems of higher
dimensions.

Methods
Coin operators for realizing the collective SIC-POVM. Here, we present the coin
operators that appear in Fig. 1d; see Supplementary Note 1 for more details.
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counterpart of Ej (for example, one is the experimental realization of the other).
Construct two normalized quantum states as σ ¼ 1

d

PM
j¼1 Ej � jj i jh jð Þ and

σ′ ¼ 1
d

PM
j¼1 Ej′ � jj i jh jð Þ, where jj i form an orthonormal basis for an ancilla

system. The fidelity between the two POVMs Ej
� �M

j¼1 and Ej′
� �M

j¼1 is defined as the
fidelity between the two states σ and σ′,

F σ; σ′ð Þ :¼ tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ

p
σ′

ffiffiffi
σ

pq	 
2

¼
XM
j¼1

wj
ffiffiffiffi
Fj

p !2

; ð5Þ

where wj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr Ejð Þtr Ej′ð Þp

d , and Fj ¼ F Ej
tr Ejð Þ ;

Ej′
tr Ej′ð Þ

	 

is the fidelity between the two

normalized POVM elements Ej
tr Ejð Þ and

Ej′
tr Ej′ð Þ.

GM bounds and collective bounds. In quantum state tomography with individual
measurements (including local adaptive measurements), the precision achievable is
constrained by the GM bound13,44,47 (see also ref. 48). In the case of a qubit, the
GM bound is 9

4N when the figure of merit is the mean infidelity (approximately
equal to the mean square Bures distance), where N is the sample size (assuming N
is not too small). When the figure of merit is the MSE E tr ρ̂� ρð Þ2
 �

, the GM

bound is
2þ
ffiffiffiffiffiffiffi
1�s2

pð Þ2
2N , where s is the length of the Bloch vector of the qubit state.

When collective measurements on two identical qubits are allowed, the
precision limit is constrained by a collective bound. According to Eqs. (6.73) and
(6.74) in ref. 13 with t= 3/2, the collective bound for the mean infidelity (mean
square Bures distance) is 3

2N (cf. ref. 14), and the bound for the MSE is

2þ
ffiffiffiffiffiffiffi
1�s2

pð Þ2
3N if 0 � s � 3þ4

ffiffi
3

p
13 ;

sð1þsÞð3�sÞ
3s�1ð ÞN if 3þ4

ffiffi
3

p
13 � s � 1:

8<: ð6Þ

The GM bound and collective bound for the mean infidelity may be violated
when the state is nearly pure (with thresholds depending on N), in which case
common estimators (including the maximum likelihood estimator) are biased due
to the boundary of the state space. The precision limits with respect to the MSE are
less sensitive to this influence.

Data availability. The data that support the results of this study are available from
the corresponding authors upon request.
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