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Simple Summary: Hexavalent chromium is a common environmental pollution. It has been reported
that hexavalent chromium threatens the health of humans and animals, so it is necessary to develop
new, effective mitigation methods. Selenium is an indispensable micronutrient recently shown to
be able to resist the toxicity of heavy metals. Selenium-enriched yeast has a high content of total
selenium, which has the advantages of a high absorption rate and safety. Potassium dichromate
and selenium-enriched yeast were used to construct single hexavalent chromium and combined
selenium/hexavalent-chromium-exposed broiler models. Additionally, the ability to relieve the
hexavalent chromium toxicity of selenium along with the molecular mechanisms focusing on inflam-
mation induced by the NF-κB signaling pathway was investigated in this study. Histopathological
assessment, serum biochemical tests, oxidative stress kits, enzyme-linked immunosorbent assay,
quantitative real-time PCR, and Western blotting were used to detect indicators. We found that the
oxidative stress induced by hexavalent chromium triggers NF-κB pathway-driven inflammatory re-
sponses in the broiler spleen and further reduces the immune function of broilers. Selenium-enriched
yeast protects the spleen from the toxicity of hexavalent chromium exposure through inhibiting the
NF-κB signaling pathway.

Abstract: This study was conducted to investigate the molecular mechanisms of selenium (Se)
antagonism of hexavalent chromium (Cr6+)-induced toxicity. Potassium dichromate (K2Cr2O7) and
selenium-enriched yeast (SeY) were used to construct the single Cr6+ and combined Se/Cr6+ exposure
broiler models, and then the broilers were randomly divided into four groups (C group, Se group,
Se/Cr6+ group, and Cr6+ group). After a 42-day experiment, the spleen tissues of broilers were excised
and weighted. The antagonistic mechanisms of Se and Cr6+ were evaluated using histopathological
assessment, serum biochemical tests, oxidative stress kits, ELISA, qPCR, and Western blotting. On
the whole, there were no significant changes between the C and Se groups. The spleen organ index in
the Cr6+ group was significantly decreased, but SeY increased spleen organ index to a certain extent.
The levels of SOD and GSH were reduced, and the MDA content was elevated by Cr6+; however,
these changes were mitigated by Se/Cr6+ exposure. Importantly, Cr6+ exposure induced a series of
histopathological injuries in broiler spleen tissues, while these symptoms were significantly relieved
in the Se/Cr6+group. Furthermore, Cr6+ significantly decreased the levels of T-globulin, IgA, IgM,
and IgG in serum. Contrarily, dramatically more T-globulin IgA, IgM, and IgG were found in the
Se/Cr6+group than in the Cr6+ group. Revealed by the results of qPCR and WB, the expressions
of NF-κB, IκBα, and p-IκBα were upregulated in Cr6+ groups, while they were downregulated in
Se/Cr6+ group compared to that in Cr6+ group. Besides IFN-γ and IL-2, the expressions of pro-
inflammatory cytokines were significantly increased by Cr6+ exposure, but the SeY supplement
relived the expression levels mediated by Cr6+ exposure. In conclusion, our findings suggest SeY
has biological activity that can protect broiler spleens from immunosuppression and inflammation
induced by Cr6+, and we speculate that the NF-κB signaling pathway is one of its mechanisms.
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1. Introduction

Chromium (Cr) is commonly used as a micronutrient and a dietary supplement. The
appropriate addition of Cr to the broiler diet can improve production performance and
carcass quality and immunity, and can alleviate stress [1]. In nature, Cr exists in different
valence forms, including Cr0, Cr+, Cr3+, and Cr6+; however, Cr6+ is considered a ubiquitous
environmental pollutant [2]. Multifold industrial operations have raised Cr6+ content in the
environment, contaminating the ecological environment [3], ultimately affecting human
and animal health through the food chain. As previously reported, Cr6+ is highly toxic
and harmful to the digestive system, immune system, cardiovascular system, and other
systems in the body [1,4–6].

Cr6+ mainly induces oxidative stress via promoting the formation of reactive oxygen
species (ROS) in different tissues and organs [7]. Scholars discovered that oxidative stress
induced by ROS was closely related to multiple damage responses [8]. In addition, inflam-
mation was reported as an important toxicity mechanism of multiples heavy metals [9,10].
Inflammation is a defense response of the organism to stimulation, but excessive inflamma-
tion is harmful to animals. As a transcription factor, nuclear factor-κB (NF-κB) mediates cell
growth, development, immune function, and other biological processes, dominated by in-
volvement in inflammatory responses [11]. The activation of the NF-κB signaling pathway
induces the expressions of such inflammatory genes as tumor necrosis factor-α (TNF-α),
interleukin1β (IL-1β), nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), which
leads to an inflammatory response [12,13]. The experiment of Yang et al. confirmed that
copper could trigger oxidative stress to activate the NF-κB signaling pathway and fur-
ther regulate the expression of TNF-α, IFN-γ, IL-1, IL-1β, IL-2, iNOS, and COX-2 in the
chicken spleen [14]. Recently, a study showed that Cr6+ induced inflammatory responses
by significantly increasing TNF-α levels in chicken hearts; at the same time, it damaged
mitochondria and caused cell autophagy [15]. Therefore, the inflammation induced by the
NF-κB signaling pathway is one of the mechanisms for studying Cr6+ poisoning.

The proteins in the blood are mainly composed of albumin and globulin, and serum
globulin function mainly plays a role in anti-infection and anti-inflammatory [16]. Serum
globulins are mainly composed of serum immunoglobulins. Immunoglobulins are im-
portant manifestations of humoral immunity. Spleen, as the largest peripheral immune
organ in poultry, is an important organ for dominating immune responses and can pro-
duce immunoglobulins, such as immunoglobulin A (IgA), immunoglobulin G (IgG), and
immunoglobulin M (IgM) [17]. The immunoglobulins play an important role in neutraliz-
ing toxins, bacteria, or viruses, regulating and activating complement, and they are also
important indicators for immune function [18]. However, the spleen is likely to be affected
by toxicity resulting from such heavy metals as cadmium, lead, and arsenic [19]. Wang
et al. found that lead exposure could cause oxidative stress and inflammation in Japanese
quail immune organs, manifested as lymphopenia and decreased serum IgM and IgG
levels, thereby reducing immune function [20]. Adding fluoride to the feed can reduce
the contents of IgA, IgG, and IgM in broilers, thereby reducing the immune function of
broilers [21]. At the same time, we found that broilers showed a poor mental state, growth
retardation, and dull and sparse feathers after Cr6+ exposure in this experiment. Hence, we
speculated that reducing immune function is one of the toxic effects of Cr6+.

As an irreplaceable micronutrient, Selenium (Se) is one of the constituents of glu-
tathione peroxidase (Gpx). Gpx is an enzyme that can resist oxidative stress and maintain
the redox balance [22]. Se, as a food additive, mainly exists in two forms, including inor-
ganic Se and organic Se (OS) [23]. Compared to inorganic Se, OS has higher absorption
and utilization rates and is safer [24]. Recently, the application of Se-enriched yeast (SeY),



Animals 2022, 12, 146 3 of 14

a source of OS, as feed additives to keep healthy poultry and elevate Se level in carcass
meat and eggs, has obtained approval and has been accepted [25]. Se can chelate a variety
of heavy metals and presents the potential to hinder heavy-metal-trigged toxicity. For
example, Se antagonizes Pb toxicity to inhibit the lymphocyte apoptosis in the chicken
spleen [26]; and Se also helps the spleen eschew from HgCl2-triggered injury in chicken via
controlling oxidative stress, inflammation, and apoptosis [27].

The specific mechanism developed by Se to efficaciously antagonize Cr6+ is inexplicit
in broiler spleen tissues. In this study, we used potassium dichromate (K2Cr2O7) and SeY
to establish the single Cr6+ and combined Se/Cr6+-exposed broiler model and investigated
whether Se could alleviate immunosuppression and inflammation by the NF-κB signaling
pathway in broilers exposed to Cr6+. This study enriches the theoretical mechanism for the
damage caused by Cr6+ and its treatment methods.

2. Materials and Methods
2.1. Animal Experiment

The Animal Ethics Committee of Shanxi Agricultural University gave approval to all
animal assays. We purchased 100 1-day-old broilers from Taigu Qingmu Breeding Co., Ltd.
(Jinzhong, Shanxi, China) and raised them at the Experimental Animal Management Center
of Shanxi Agricultural University. All animals experienced a week of adaptive period
and were provided with sufficient water and feed. Then, the broilers were stochastically
assigned into control group (C), SeY group (Se), SeY+Cr6+ group (Se/Cr6+), and Cr6+

group (Cr6+). There were 5 replicates per group, 5 broilers/replicates. According to
previous studies, broilers received exposure of potassium dichromate (K2Cr2O7) at a dose
of 0.037 g/kg·BW (8% LD50) [28,29], and we used SeY to feed broilers at 0.30 mg/kg [30,31].
We calculated the dose of K2Cr2O7 and added it to the distilled water with the daily weight
gain of broiler. Broilers in C group were provided a basal diet and distilled water; in Se
group, an additional 0.30 mg/kg of SeY was added to the basal diet; in Se/Cr6+ group,
0.30 mg/kg of SeY was added to the basal diet, and 0.037 g/kg·BW of K2Cr2O7 was added
to the distilled water; and in Cr6+ group, we added 0.037 g/kg·BW of K2Cr2O7 to distilled
water. The dosage of K2Cr2O7 was adjusted as the body weight of broilers increased. After
42 days, the broilers were fasted for 12 h while ensuring adequate drinking water, and
then we recorded broiler weight. The broilers were sacrificed with sodium pentobarbital.
We collected broiler blood and obtained serum after centrifugation, and detected relevant
biochemical indicators. Then, the broilers were sacrificed, and the spleen tissues were
immediately excised, washed with 0.9% saline, and weighed. One part was used for
histopathological examination (fixed with 4% paraformaldehyde), and the other part was
used for molecular biology analysis (stored at −80 ◦C).

2.2. Determination of the Organ Index

At the end of the experiment, the broiler weights and the spleen weights from all four
groups were weighed and recorded. The organ index of the spleen was calculated by the
following formula:

organ index = organ weight (g)/broiler weight (kg).

2.3. Histopathological Observation of Broiler Spleens

After removing spleen tissue blocks from 4% paraformaldehyde, we embedded the
tissue blocks in paraffin and then dried the paraffin block completely. The microtome was
used to cut the paraffin tissue blocks with a thickness of 3 µm and then put them on glass
slides. Finally, we observed the morphological changes of the spleen tissues under an
optical microscope (Nikon Eclipse E100, Nikon Co, Tokyo, Japan).
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2.4. Determination of Oxidative Damage in the Spleen Tissues of Broilers

The spleen tissues were made into a homogenate and centrifuged, and the supernatant
was collected. We measured the protein concentration by the BCA method, after which
we used the corresponding kits (Nanjing Jiancheng Bioengineering Institute, Nanjing,
China) to detect superoxide dismutase (SOD) activity as well as glutathione (GSH) and
malondialdehyde (MDA) levels. The detection method was performed according to the
manual descriptions.

2.5. Detection of T-Globulin, IgA, IgG, and IgM Content in Serum

The content of T-globulin in serum was detected by an automatic biochemical ana-
lyzer (VetScan® VS2, Tuorui, Beijing, China), and the contents of IgA, IgG, and IgM were
determined with an enzyme-linked immunosorbent kit (mlbio, Shanghai, China) according
to the manual descriptions.

2.6. RNA Transcription and Real-Time Fluorescence Quantitative PCR (qPCR)

TRIzol method was used to extract total RNA from spleen tissue and then dissolved
in 20 µL RNase-free water. After measurement of the concentration, the total RNA was
reversely transcribed into cDNA using a reverse transcription kit (Sangon Biotech Shanghai,
China). According to the concentration, the cDNA was diluted to perform the qPCR. qPCR
was performed using a qPCR instrument (Bio-Rad, CA, USA). Table 1 displays the primers
used in this experiment. The relative mRNA in spleen tissues was calculated by use of
2−∆∆Ct method.

Table 1. The genes and primers used in this study.

Serial Number Target Gene Primer Sequence (5′−3′)

L08165 β-actin Forward 5′-CCGCTCTATGAAGGCTACGC-3′

Reverse 5′-CTCTCGGCTGTGGTGGTGAA-3′

AY765397.1 TNF-α Forward 5′-ACACGACAGCCAAGTCAACG-3′

Reverse 5′-GCCCTTCCTGTAACCAGATG-3′

DQ393270 IL-1β Forward 5′-CACCCGCTCCCAGTCCTT-3′

Reverse 5′-TGGGTGACTCCAGCACGAA-3′

NM_205134.1 NF-κB Forward 5′-GCAGATAGCCAAGTTCAGGATG-3′

Reverse 5′-TCAACGCAGGACCTAAAGACAT-3′

NM_204961.1 iNOs Forward 5′-CCTGGGTTTCAGAAGTGGC-3′

Forward 5′-CCTGGAGGTCCTGGAAGAGT-3′

HM584710.1 PTGE2 Forward 5′-CGCATCCTCTGGGTTAGCA-3′

Reverse 5′-GTTCCTGTCATTCGCCTTCTAC-3′

DQ470471 IFN-γ Forward 5′-AAGTCATAGCGGCACATCAAAC-3′

Reverse 5′-CTGGAATCTCATGTCGTTCATCG-3′

AB302327.1 IL-6 Forward 5′-AGAAGTTCACCGTGTGCGAGAA-3′

Reverse 5′-CTGGAGAGCTTCGTCAGGCATT-3′

NM_001167719.1 COX-2 Forward 5′-TTCCATTGCTGTGTTTGAGGT-3′

Reverse 5′-TGTCCTTTCACTGCTTTCCAT-3′

HE608819 IL-2 Forward 5′-GGAGCATCTCTATCATCAGCAA-3′

Reverse 5′-TGGGTCTCAGTTGGTGTGTA-3′

AJ621254 IL-10 Forward 5′-CCAGCACCAGTCATCAGCAGAG-3′

Reverse 5′-GCAGGTGAAGAAGCGGTGACAG-3′

2.7. Western Blotting (WB)

RIPA lysate with 1% phenylmethanesulfonyl fluoride (PMSF) was used to extract
total protein from spleen tissues. We mixed the protein sample with loading buffer in
proportion, and it was centrifuged and boiled. The sequestering of protein samples was
achieved by SDS-PAGE, and we transferred them to the polyvinylidene fluoride (PVDF)
membrane undergoing 2 h blocking with 5% skimmed milk at 28 ± 2 ◦C. After PVDF
was washed out, we implemented incubation with primary antibody diluent, including
β-actin (1:3000; Abmart, Shanghai, China), NF-κB (1:1500; Abmart, Shanghai, China),
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p-IκBα (1:1000; Abmart, Shanghai, China), TNF-α (1:500; Wanleibio, Shenyang, China),
IFN-γ (1:500; Wanleibio, Shenyang, China), COX-2 (1:600; Wanleibio, Shenyang, China),
and IL-2 (1:300; Wanleibio, Shenyang, China) for 12 h at 4 ◦C. Washed with PBST, the PVDF
membrane of β-actin was cultured in secondary antibody of goat anti-mouse (1:2500, Bioss,
Beijing, China), and the PVDF membrane of NF-κB, p-IκBα, TNF-α, COX-2, IFN-γ, and
IL-2 were incubated in secondary antibody of goat anti-rabbit (1:5000, Bioss, Beijing, China)
for 1 h at 28 ± 2 ◦C. The ECL Plus kit (Beyotime, Shanghai, China) was used to visualize
the protein bands, and the fully automatic chemiluminescence imaging system was used to
photograph the fluorescence of protein bands. ImageJ software (Version 1.38) was applied
to perform the quantitative protein analysis.

2.8. Data Assessment

Mean ± standard deviation was employed to present all data, and we analyzed the
data with Graphpad Prism8 software (GraphPad Software Inc, San Diego, CA, USA) and
IBM SPSS Statistics 25 software (IBM, Armonk, NY, USA). The one-way analysis of variance
was adopted for revealing statistical difference between any two groups. P below 0.05
indicates that the data were statistically significant, and the different lowercase letters on
the bar graphs indicate statistical differences between the two groups.

3. Results

3.1. The Effects of Cr6+ and Se on the Spleen Organ Index of Broiler

With the aim of judging the protective performance of Se against Cr6+-triggered
injury to the broiler spleen, we measured the spleen organ index (Figure 1). There was no
significant difference between C and Se groups. We observed prominently falling spleen
organ indexes in Se/Cr6+ and Cr6+ groups relative to the C group. However, the Cr6+

group exhibited lower spleen organ indexes than Se/Cr6+group. These showed that Se
could alleviate the damaging effect of Cr6+ on the growth performance and spleen tissues
of broilers.
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Figure 1. The effects of Cr6+ or/and Se on organ index in broiler chicken. Bars with different
lowercase letter reflect evident differences (p < 0.05). Data are expressed as the means ± SD.

3.2. The Effects of Cr6+ and Se on Oxidative Stress in Broiler Spleen Tissues

The effects of Cr6+ and Se on levels of GSH, SOD, and MDA in spleen tissues are shown
in Figure 2. It was unfolded that the content of GSH in the Se group significantly increased
in contrast to the C group (p < 0.05), and the activity of SOD in the Se group experienced no
significant change. Additionally, no difference in the GSH level was uncovered between the
Se/Cr6+ group and C group, and the activity of SOD showed a downward-sloping trend
(p < 0.05) in the corresponding groups. The levels of GSH and SOD dropped dramatically
in the Cr6+ group compared with all other groups. As one of the oxidation products, MDA’s
content in the Se group was significantly decreased compared to the C group. The content
of MDA in the Cr6+ group rose (p < 0.05) relative to that in the C group. Additionally, there
was no significant change between C and Se/Cr6+ groups. However, the content of MDA in
the Se/Cr6+ group was lower (p < 0.05) than that in the Cr6+ group. These results suggested
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that Se could alleviate the oxidative damage caused by Cr6+ through increasing GSH and
SOD and decreasing MDA in broiler spleens.
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lowercase letters reflect evident differences (p < 0.05). Data are expressed as the means ± SD.
(A) represents the content of glutathione (GSH); (B) represents the activity of superoxide dismutase
(SOD); and (C) represents the content of malondialdehyde (MDA).

3.3. The Effects of Cr6+ and Se on Immune Function

We measured whether Se could alleviate the splenic immune function caused by Cr6+

exposure by detecting the contents of T-globulin, IgA, IgG, and IgM in serum (Figure 3).
Compared with the C group, the contents of T-globulin and IgG were upregulated (p < 0.05)
in the Se group, and the contents of IgA and IgM in the Se group had no significant
differences. Compared with the C group, the contents of all immunoglobulins and T-
globulin in Se/Cr6+ and Cr6+groups were decreased (p < 0.05). However, the contents of
all immunoglobulins and T-globulin in the Se/Cr6+ group were higher (p < 0.05) than that
in the Cr6+ group. These results suggested that Se can alleviate the immunosuppression
caused by Cr6+.
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content of immunoglobulin G (IgG); and (D) represents the content of immunoglobulin M (IgM).
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3.4. The Results of Histopathological Changes Induced by Cr6+ and Se

The observation results of the histology of HE-stained sections of broiler spleens are
shown in Figure 4. No obvious histopathological changes were seen in C and Se groups.
The results of HE staining showed that Cr6+ exposure induced a series of histopatholog-
ical injuries in broiler spleen tissues, including aortic thickening, the unclear boundary
between white and red pulps, inflammatory cell infiltration, and lysis or even dissolution
of lymphocyte nucleus, while the above-mentioned symptoms were significantly relieved
in the Se/Cr6+group. The histopathological observations suggested that Se can effectively
alleviate the histopathological damage of spleen tissues caused by Cr6+.
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Figure 4. Histopathology observations of spleen tissue. The groups from top to bottom are C, Se,
Se/Cr6+, and Cr6+ groups, and the magnifications from left to right are 100×, 200×, and 400×. Red
arrow: aortic thickening; green arrow: inflammatory cell infiltration; yellow and blue arrows: lysis or
even dissolution of lymphocyte nucleus.

3.5. The Effects of Cr6+ and Se on Inflammatory Cytokines in Broiler Spleens

The mRNA and protein expressions of inflammatory cytokines in spleen tissues are
shown in Figure 5. The transcription levels of IL-1β, TNF-α, COX-2, PTGE2, iNOS, IL-6,
IL-10, IFN-γ, and IL-2 mRNAs were detected by qPCR. Compared to the C group, the
transcription level of PTGE2 slumped (p < 0.05), while that of IFN-γ rose (p < 0.05) in the Se
group. The transcription levels of the other genes had no significant differences between
C and Se groups. Compared to the C group, the transcription levels IFN-γ and IL-2 in
the Cr6+ group were reduced (p < 0.05), along with the elevated transcription levels of
the other genes (p < 0.05) in the corresponding group. The transcription level of IL-2 in
the Se/Cr6+ group was higher (p < 0.05) than that in the Cr6+ group, while those of IL-1β,
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COX-2, PTGE2, iNOS, IL-6, and IL-10 were lower in the Se/Cr6+ group (p < 0.05) than in
the Cr6+ group.
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Figure 5. The effect of Cr6+ and/or Se on the pro-inflammatory cytokines and immune cytokines in
the spleen tissue of broiler. Bars with different lowercase letters reflect evident differences (p < 0.05).
Data are expressed as the means ± SD. (A–I) indicate the mRNA expressions of genes (IL-1β, TNF-α,
COX-2, PTGE2, iNOS, IL-6, IL-10, IFN-γ and IL-2); (J–M) indicate the protein expressions of TNF-α,
COX-2, IFN-γ and IL-2; (N) indicates the depth of the electrophoresis band by Western blotting for
TNF-α, COX-2, IFN-γ and IL-2.

There were more TNF-α, COX-2, IFN-γ, and IL-2 proteins that were expressed detected
by WB. TNF-α, COX-2, and IFN-γ proteins had no significant differences in terms of their
expression levels between C and Se groups, but the expression of IL-2 in the Se group
rose (p < 0.05) relative to the C group. Relative to the C group, the elevation was notable
in the protein expression levels of TNF-α and COX-2 in Se/Cr6+ and Cr6+ groups, but
a remarkable reduction was uncovered in the expressions of IFN-γ and IL-2 in Se/Cr6+

and Cr6+ groups. The Se/Cr6+ group demonstrated lower protein expression levels of
TNF-α and COX-2 (p < 0.05) and higher expressions of IFN-γ and IL-2 (p < 0.05) than the
Cr6+ group.

Thus, expression patterns of inflammation cytokines at mRNA and protein levels were
approximately consistent. These results revealed that SeY could alleviate inflammation
induced by Cr6+ in broiler spleens.
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3.6. The Functions of Cr6+ and Se in the NF-κB Signaling Pathway in Broiler Spleens

Figure 6 illustrates the mRNA and protein expressions of NF-κB pathway-associated
genes in spleen tissues. The transcription levels of NF-κB and IκBαmRNAs were detected
by qPCR, which reflected no remarkable changes in the transcription levels of NF-κB and
IκBα between C and Se groups. Nonetheless, they were raised in Se/Cr6+ and Cr6+ groups
(p < 0.05) compared to those in the C group. Meanwhile, the transcription levels of NF-κB
and IκBα in the Se/Cr6+ group were lower (p < 0.05) than those in the Cr6+ group.
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Figure 6. The effect of Cr6+ and/or Se on the NF-κB signaling pathway in the spleen tissue of broiler
chickens. Bars with different lowercase letters reflect evident differences (p < 0.05). Data are expressed
as the means ± SD. (A,B) indicate the mRNA expressions of NF-κB and IκBα; (C,D) indicate the
protein expressions of NF-κB and P-IκBα; (E) indicates the depth of the electrophoresis band by
Western blotting for NF-κB and P-IκBα.

WB validated that C and Se groups did not differ in the expression levels of NF-κB
and P-IκBα proteins(p > 0.05), but these levels rose in Se/Cr6+ and Cr6+groups (p < 0.05)
relative to the C group. Further, they were lower in the Se/Cr6+ group (p < 0.05) than in the
Cr6+ group.

Thus, the expression patterns of NF-κB pathway genes at mRNA and protein levels
were approximately consistent. These results revealed that SeY could reduce the NF-κB
pathway elevated by Cr6+ in broiler spleens.

3.7. The Results of Bioinformatics Clustering Heat Map in Broiler Spleens by Cr6+ and
Se Exposure

The bioinformatics clustering heat map was used to summarize the previous indicators
and each sample (Figure 7). IFN-γ and IL-2 were downregulated by Cr6+ exposure, whereas
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the other pro-inflammatory genes were upregulated. The pro-inflammatory genes in the
Se/Cr6+ group were effectively reduced compared to those in the Cr6+ group, along with
the elevated expressions of IFN-γ and IL-2. Similarly, the expression of NF-κB pathway-
associated genes was significantly different by Cr6+ and/or Se exposure. In addition, there
was no statistical change in inflammation and NF-κB-pathway-associated genes between
C and Se groups. C and Se groups were classified together, and Se/Cr6+ and Cr6+ groups
were classified together. Meanwhile, compared with the Cr6+ group, the Se/Cr6+ group
was closer to Se and C groups. It could be deduced that Se plays an indispensable role as a
protective agent against inflammation via the NF-κB pathway in broiler spleens.
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4. Discussion

As a consequence of the wide application of Cr6+ in the industry recently, the pollution
of Cr6+ has become more and more serious. A review has reported that Cr6+ exposure is
harmful to humans and animals by inducing various damages, such as lung cancer, nasal
ulcers, allergic reactions, and contact rhinitis [32]. Therefore, it is very necessary to find
a substance that can effectively antagonize Cr6+. More and more pieces of evidence have
shown that Se can antagonize the toxicity of various heavy metals. For example, the Hg
content in merganser muscle tissues in Se-deficient areas was significantly higher than
that in selenium-enriched areas [33]; Se could alleviate the inflammatory damage effect of
cadmium poisoning in the chicken kidney [34] and also could effectively alleviate oxidative
stress induced by Cr6+ in chicken brain tissues [35]. Therefore, we speculated that SeY
could alleviate the damage of broiler spleen tissues caused by Cr6+. In this experiment,
we found that exposure to Cr6+ led the organ index to decrease, and the addition of SeY
would alleviate this phenomenon. We also found the histopathology of broiler spleen
tissues was changed by Cr6+, including aortic thickening, the inconspicuous boundary
between white and red pulps, inflammatory cell infiltration, and lysis or even dissolution
of lymphocyte nucleus. However, these histopathological damages were alleviated in the
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Se/Cr6+ group. These results showed that SeY could effectively alleviate the damage of
broiler spleen tissue caused by Cr6+ exposure. We also detected other indicators, including
immune function, oxidative stress, inflammation, and the NF-κB signaling pathway, for
disclosing the molecular mechanism developed by SeY to relieve the damage of Cr6+ in
broiler spleen tissues.

The content of serum globulin had a strong correlation with the contents of im-
munoglobulins [36]. The content of immunoglobulins is an important indicator for immune
function, and immunoglobulins are mainly composed of IgA, IgG, and IgM [37]. Luo et al.
reported that the decreased contents of IgA, IgG, and IgM in broiler serum induced by
fluoride would eventually downregulate the humoral immune function through reducing
and/or activating the lymphocyte [21]. These were consistent with our results. In this work,
Cr6+ could significantly reduce the contents of T-globulin, IgA, IgG, and IgM in serum,
which might cause immunosuppression in broilers. Compared with those in the C group,
the contents of T-globulin and IgG slightly were raised in the Se group. However, the con-
tents of T-globulin, IgA, IgG, and IgM in serum predominantly rose in the Se/Cr6+ group
compared to those in the Cr6+ group. These results indicated that SeY could effectively
alleviate the immunosuppression induced by Cr6+ exposure in broilers.

Heavy metals could induce various organs’ toxicity, mainly caused by oxidative stress.
For example, Cr6+ could cause oxidative stress and further induce cell necrosis in broiler
liver tissues [29]; subchronic Pb exposure could lead oxidative stress to trigger apoptosis
in mouse spleen tissues [10]; the oxidative stress induced by Cu caused inflammation in
the spleen, thymus, and bursa of the fabric of chickens [14]. Moreover, the hepatotoxicity
experiments also showed that Cr6+ participated in the redox reaction of reducing substance
glutathione, and a large amount of ROS was produced, resulting in abnormal glucose
and lipid metabolism in vivo and in vitro [38]. Therefore, oxidative stress is one of the
important mechanisms for studying the toxicity of Cr6+. In this study, the content of MDA
rose significantly, and the level of SOD and the content of GSH slumped significantly in
spleen tissues after Cr6+ exposure. The above data were the same as the result of oxidative
damage caused by Cr6+ in Chinese lobster [39]. Furthermore, a study found that the content
of GSH and the levels of SOD were slightly increased when supplementing appropriate
SeY to increase the organism’s antioxidant system in spleen tissues [40]. These indicated
that Cr6+-induced oxidative damage and SeY could maintain a better antioxidant system
in spleen tissues. Simultaneously, compared with the Cr6+ group, the content of MDA
dramatically slumped, and the level of SOD and the content of GSH rose significantly in
the Se/Cr6+ group, but these data still did not reach a normal level. These results showed
that SeY could effectively alleviate oxidative damage caused by Cr6+ in broiler spleens by
upregulating the antioxidant system.

Oxidative stress could induce the release of cytokines [41]. Many studies have shown
that cytokines are related to inflammatory responses, especially TNF-α and IL-1β, which
can mediate many local and systemic inflammatory responses to activate IL-6 and other
pro-inflammatory cytokines. TNF-α induces COX-2 and iNOs to produce a large amount
of PTGE2 and NO, thereby aggravating the inflammatory response [42–44]. In this study,
notably, the expressions of IL-1β, TNF-α, COX-2, PTGE2, iNOs, IL-6, and IL-10 increased
in the Cr6+ group more than those in the C group, identical to the inflammatory response-
associated gene expressions caused by Arsenic (III) in carp [45]. IL-2 promotes the prolif-
eration of immune cells [46]. IFN-γ is produced by T cells and is related to inflammation
and immune responses. IFN-γ promotes the secretion of B cells, thereby enhancing the
organism’s immunity [47]. As the spleen tissue was damaged by Cr6+, the expressions
of IL-2 and IFN-γwere decreased significantly, and the addition of SeY could effectively
trigger more IL-2 and IFN-γ to be expressed. Liu et al. found that Se supplementation could
effectively reduce IL-1β, IL-6, and TNF-α in the thymus and liver of weaned piglets [24].
In this study, IL-2 and IFN-γ in Se/Cr6+ group were relieved compared with those in the
Cr6+ group. These results demonstrated that SeY could antagonize the damage of Cr6+ to
the spleen by reducing pro-inflammatory cytokines and increasing immune cytokines.
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The NF-κB signaling pathway is one of the regulatory mechanisms to regulate inflam-
matory factors and immune response [48]. NF-κB is mainly composed of P50 and RelA (P65).
Under normal conditions, NF-κB binds to the IκB protein family (IκBα/IκBβ/IκBγ/IκBε),
which is an inhibitory protein to keep NF-κB in an inactive state [49]. The most common
composition of NF-κB is a trimer composed of P50, RelA (P65), and IκB (1:1:1), of which
RelA (P65) is indispensable [50]. When NF-κB is activated, IκB is phosphorylated and
dissociated from NF-κB, and NF-κB is transferred into the nucleus to bind to the target
genes and enhance their expressions [51]. In this study, Cr6+ exposure significantly el-
evated the expressions of NF-κB, IκBα, and P-IκBα in the broiler spleen, but they were
reduced in the Se/Cr6+ group compared with those in the Cr6+ group. These results were
consistent with the experiments as follows. Zhang et al. found that SeY antagonizes
the inflammatory damage caused by Cd to chicken cardiomyocytes through the NF-κB
signaling pathway [52], and Wang et al. showed that the addition of Se could effectively
downregulated the high-expression of NF-κB gene in chicken kidney tissue caused by Cd
exposure [34]. These results demonstrated that the addition of SeY could effectively inhibit
the phosphorylation of IκBα to prevent NF-κB from entering the nucleus and mitigate
the inflammatory response. Therefore, we suggested that SeY can alleviate Cr6+ toxicity
through inhibiting the NF-κB signaling pathway in broiler spleens.

5. Conclusions

In summary, the oxidative stress induced by Cr6+ triggers NF-κB pathway-driven
inflammatory responses in the broiler spleen and further reduces the immune function of
broilers. SeY relieved the immunosuppression and inflammation induced by Cr6+ exposure
by inhibiting the NF-κB signaling pathway-mediated by oxidative stress in broiler spleens.
This study enriches the theoretical mechanism of Cr6+ toxicity to broiler spleen cells and
provides a solution for Cr6+ toxicity. Next, further in vitro experiments are needed to
determine more complex and deep mechanisms.
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