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Abstract

Motivation: Identifying molecular mechanisms that drive cancers from early to late stages is highly

important to develop new preventive and therapeutic strategies. Standard machine learning algo-

rithms could be used to discriminate early- and late-stage cancers from each other using their

genomic characterizations. Even though these algorithms would get satisfactory predictive per-

formance, their knowledge extraction capability would be quite restricted due to highly correlated

nature of genomic data. That is why we need algorithms that can also extract relevant information

about these biological mechanisms using our prior knowledge about pathways/gene sets.

Results: In this study, we addressed the problem of separating early- and late-stage cancers from

each other using their gene expression profiles. We proposed to use a multiple kernel learning

(MKL) formulation that makes use of pathways/gene sets (i) to obtain satisfactory/improved pre-

dictive performance and (ii) to identify biological mechanisms that might have an effect in cancer

progression. We extensively compared our proposed MKL on gene sets algorithm against two

standard machine learning algorithms, namely, random forests and support vector machines, on

20 diseases from the Cancer Genome Atlas cohorts for two different sets of experiments. Our

method obtained statistically significantly better or comparable predictive performance on most of

the datasets using significantly fewer gene expression features. We also showed that our algorithm

was able to extract meaningful and disease-specific information that gives clues about the progres-

sion mechanism.

Availability and implementation: Our implementations of support vector machine and multiple

kernel learning algorithms in R are available at https://github.com/mehmetgonen/gsbc together

with the scripts that replicate the reported experiments.

Contact: mehmetgonen@ku.edu.tr

1 Introduction

With the increasing availability of genomic characterizations for tu-

mour biopsies taken from patients, machine learning algorithms

such as support vector machines (SVMs; Cortes and Vapnik, 1995)

and random forests (RFs; Breiman, 2001) have been applied to dif-

ferent prediction tasks related to diagnosis, prognosis and treatment

of cancer. These algorithms obtained very high predictive perform-

ance in several applications. However, the most important aspect of

such automated systems should be extracting relevant and meaning-

ful knowledge from data, which is quite difficult to achieve in very

high-dimensional and correlated datasets such as genomic measure-

ments, for follow-up studies.

Understanding cancer formation and progression from early to

late stages is quite important since preventing and treating cancer at

early stages is much easier. We studied the problem of discriminat-

ing early- and late-stage cancers from each other using their gene ex-

pression profiles. This problem has been addressed in several

previous studies (Broët et al., 2006; Jagga and Gupta, 2014; Bhalla

et al., 2017).

Broët et al. (2006) tried to identify gene expression features that

separate early stages from late stages using a statistical score-based

approach on microarray data. Similarly, Jagga and Gupta (2014)

and Bhalla et al. (2017) developed correlation-based and threshold-

based algorithms, respectively, to pick individual genes that separate
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early-stage patients from late-stage patients for just a single disease

(i.e. kidney renal clear cell carcinoma), where they evaluated the

quality of gene expression features they picked by training standard

machine learning algorithms such as SVMs and RFs on them. This

kind of scoring/thresholding metrics might identify predictive gene

expression signatures with a limited number of features, but their in-

terpretation is quite difficult due to high-dimensional and correlated

input data. In this high-dimensional regime, machine learning algo-

rithms might select different biomarkers as predictive when they use

different subsets of the same patient cohort for a given prediction

task (Ein-Dor et al., 2005, 2006).

Instead of identifying a list of gene expression features first and

then feeding this feature subset into a machine learning algorithm,

we proposed to combine these two steps together with the prior

knowledge about pathways/gene sets into a unified model. By cou-

pling these parts, we identified relevant biological processes and

learned a classifier only on the selected pathways/gene sets at the

same time for a given classification task. To this aim, we used the

multiple kernel learning (MKL) methodology (Gönen and Alpaydın,

2011), which was developed to combine multiple feature representa-

tions (i.e. views) or multiple similarity measures (i.e. kernels) in the

framework of SVMs. We created multiple views that correspond to

input pathways/gene sets from gene expression profiles, calculated

kernel matrices on these views and combined these kernels in a

weighted sum rule for our classifier to effectively discard some of

them.

Our contributions are three-fold: (i) We formulated an MKL al-

gorithm on gene sets to identify relevant biological processes and to

learn a classification model conjointly. (ii) We tested the perform-

ance of our proposed algorithm on the problem of separating early-

and late-stage cancers from each other using their gene expression

profiles, to the best of our knowledge, on the largest number of dis-

eases. (iii) We then showed that our algorithm was able to extract

meaningful and disease-specific information for the mechanism of

cancer progression.

2 Materials

In this study, we used several cancer cohorts from The Cancer

Genome Atlas (TCGA) project to understand differences between

early- and late-stage cancers. The cohorts we used in our experi-

ments are publicly available at https://portal.gdc.cancer.gov.

2.1 RNA-Seq measurements
TCGA project reported RNA-Seq measurements of 33 cohorts over

more than 10 000 tumours and pre-processed these measurements to

have a unified RNA-Seq pipeline. For each cohort, we downloaded

HTSeq-FPKM files of all primary tumours from the most recent

freeze (i.e. Data Release 10-December 21, 2017), leading to

9911 files in total. We decided not to include metastatic tumours

reported since their underlying biology would be very different than

primary tumours.

2.2 Pathological stage information
TCGA project also provided clinical annotations for cancer patients

whose tumours were profiled. Since we were interested in separating

early- and late-stage cancers from each other, we checked patho

logic_stage annotation for each patient from the most recent

freeze (i.e. Data Release 10-December 21, 2017), and there

were 6958 patients with this information.

2.3 Dataset construction
To be able to train a predictor for the pathological stage of a pri-

mary tumour from its gene expression profile, we need both data

sources to be available during training. We extracted primary

tumours with available HTSeq-FPKM file and pathologic_stage

annotation for each cohort. We first considered primary tumours

with Stage I annotation as early-stage (i.e. localized cancers) and

the remaining tumours with Stage II, III or IV annotations as

late-stage cancers (i.e. regional or distant spreads). Primary tumours

annotated with Stage X (i.e. 12 tumours in BRCA) or IS (i.e. 46

tumours in TGCT) were not included in our analyses even if they

have their gene expression profiles available. After this step, we only

included cohorts with at least 20 tumours both from early- and late-

stage categories in our final dataset list. Table 1 gives the list of 15

datasets that were used in our first set of experiments, namely, E1,

together with details about the number of samples in early- and late-

stage cancers. The total number of primary tumours included is

5547, and dataset sizes vary between 65 (i.e. KICH) and 1067 (i.e.

BRCA). The percentage of early-stage tumours varies between

5.79% (i.e. 25/432 in HNSC) and 67.90% (i.e. 55/81 in TGCT). We

then considered an alternative labelling of early- and late-stage can-

cers by assigning primary tumours annotated with Stage I or II

to early-stage (i.e. localized cancers and regional spreads) and pri-

mary tumours annotated with Stage III or IV to late-stage (i.e.

distant spreads). In this case, when we only included cohorts with at

least 20 tumours both from early- and late-stage categories, we

obtained 18 datasets at the end. Table 1 also gives the list of 18 data-

sets that were used in our second set of experiments, namely, E2, to-

gether with details about the number of samples in early- and late-

stage cancers. The total number of primary tumours included is

6038, where the percentage of early-stage tumours varies between

21.99% (i.e. 95/432 in HNSC) and 81.69% (i.e. 406/497 in LUSC).

2.4 Gene set database
In addition to predicting the stage of a tumour, we would like to

understand the biological mechanisms that differentiate early- and

late-stage cancers from each other. For this aim, we can, for ex-

ample, use pathways and/or gene sets defined in the literature. These

collections provide information about groups of genes that have

dependencies or similarities in their functions. We extracted the

Hallmark gene sets from the Molecular Signatures Database where

each gene set conveys a specific biological state or process and

displays coherent expression in cancers (Liberzon et al., 2015).

This collection includes 50 gene sets, and their sizes vary between 32

and 200.

3 Methods

We addressed the problem of predicting pathological stages (i.e. sep-

arating early- and late-stage cancers from each other) of primary

tumours at the diagnosis using their gene expression profiles in ma-

chine learning algorithms. This problem can be formulated as a bin-

ary classification task and can be solved with standard classification

methods such as RFs (Breiman, 2001) and SVMs (Cortes and

Vapnik, 1995). However, predictive accuracy is not sufficient to

draw insights about the differentiation between early- and late-stage

cancers. To this aim, we also need knowledge extraction capability

within the classification algorithm. It is known that gene-level mo-

lecular signatures extracted from gene expression data are not ro-

bust when we have limited training data (Ein-Dor et al., 2005,

2006). Due to highly correlated nature of gene expression data, we
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might obtain different molecular signatures from different subsets of

the same training set. Instead, we can integrate our prior knowledge

about genes into the model in the form of pathway/gene sets and

identify molecular signatures at this level.

Figure 1 shows the overall evaluation framework we developed in

this study. On 15 and 18 datasets we constructed out of 20 TCGA

cohorts (Table 1), we compared three machine learning algorithms,

namely, RFs, SVMs and MKL on gene sets. RFs and SVMs use gene

expression profiles of tumours to predict their pathological stages

(Fig. 1a). However, in addition to gene expression profiles, MKL also

uses a pathway/gene set database and extracts additional knowledge

about the differences between early- and late-stage cancers in the form

of gene sets by discarding some of them in the final classifier (Fig. 1b).

3.1 Problem formulation
We formulated the pathological stage prediction task as a binary classifi-

cation problem defined on the gene expression data, denoted as X , and

the phenotype (i.e. early-stage versus late-stage), denoted as Y. We arbi-

trarily called early-stage tumours as positive class and late-stage tumours

as negative class. For a given cohort, we represented the training dataset

as fðxi; yiÞgN
i¼1, where N is the number of primary tumours, xi is the

gene expression profile of tumour i and yi 2 f�1;þ1g is the class label

of tumour i. This classification problem can be represented as learning a

discriminant function from gene expression profiles to phenotype, i.e.

f : X ! Y. After learning the discriminant function, we can make pre-

dictions for out-of-sample (i.e. unseen during training) tumours.

3.2 Random forests
By combining multiple weak decision trees using an ensemble strat-

egy, we can obtain more robust classification algorithms known as

RFs (Breiman, 2001). RFs were chosen as the baseline algorithm

since they were frequently used in the literature to predict disease

phenotypes from genomic measurements (Dı́az-Uriarte and Alvares

de Andrés, 2006; Pang et al., 2006; Statnikov et al., 2008; Nam

et al., 2009). Although they were reported to be very accurate classi-

fiers in terms of predictive performance in several applications, their

knowledge extraction capability is quite restricted. Decision tree

models in RFs are usually constructed on randomly selected boot-

strap samples, which make knowledge extraction very sensitive to

this bootstrapping step.

3.3 Support vector machines
SVMs formulate the binary classification problem as a convex quad-

ratic optimization model (Cortes and Vapnik, 1995). We give the

mathematical details of SVMs since our MKL on gene sets algo-

rithm, which we will describe next, is based on SVMs. The optimiza-

tion problem of binary classification SVMs can be written as

minimize
1

2
w>wþ C

XN
i¼1

ni

with respect to w 2 RD; n 2 RN ; b 2 R

subject to yi w>xi þ bð Þ � 1� ni 8i

ni � 0 8i;

where w is the set of weights assigned to features, C is a positive

regularization parameter, n is the set of slack variables, D is the

number of input features (e.g. the number of genes in gene expres-

sion profiles) and b is the intercept parameter. Instead of solving this

primal optimization problem, we usually solve the corresponding

dual optimization problem (i) to reduce the number of decision vari-

ables and (ii) to be able to integrate kernel functions into the model,

leading to non-linear models. We first write the Lagrangian function

as

L ¼ 1

2
w>wþ C

XN
i¼1

ni �
XN
i¼1

ai yi w>xi þ b
� �

� 1þ ni

� �
�
XN
i¼1

bini;

and take derivatives with respect to the decision variables of the pri-

mal problem to find the following:

Table 1. Summary of 20 TCGA cohorts that we used in our two sets of experiments, namely, E1 and E2

Cohort Disease name Stage I Stage II Stage III Stage IV Early (E1) Late (E1) Total (E1) Early (E2) Late (E2) Total (E2)

ACC Adrenocortical carcinoma 9 37 16 15 — — — 46 31 77

BLCA Bladder urothelial carcinoma 2 130 140 134 — — — 132 274 406

BRCA Breast invasive carcinoma 181 619 247 20 181 886 1067 800 267 1067

COAD Colon adenocarcinoma 75 176 128 64 75 368 443 251 192 443

ESCA Esophageal carcinoma 16 69 49 8 16 126 142 85 57 142

HNSC Head and neck squamous cell carcinoma 25 70 78 259 25 407 429 95 337 429

KICH Kidney chromophobe 20 25 14 6 20 45 65 45 20 65

KIRC Kidney renal clear cell carcinoma 265 57 123 82 265 262 527 322 205 527

KIRP Kidney renal papillary cell carcinoma 172 21 51 15 172 87 259 193 66 259

LIHC Liver hepatocellular carcinoma 171 86 85 5 171 176 347 257 90 347

LUAD Lung adenocarcinoma 274 121 84 26 274 231 505 395 110 505

LUSC Lung squamous cell carcinoma 244 162 84 7 244 253 497 406 91 497

MESO Mesothelioma 10 16 44 16 — — — 26 60 86

PAAD Pancreatic adenocarcinoma 21 146 3 4 21 153 174 — — —

READ Rectum adenocarcinoma 30 51 51 24 30 126 156 81 75 156

SKCM Skin cutaneous melanoma 2 66 27 3 — — — 68 30 98

STAD Stomach adenocarcinoma 53 111 150 38 53 299 352 164 188 352

TGCT Testicular germ cell tumours 55 12 14 0 55 26 81 — — —

THCA Thyroid carcinoma 281 52 112 55 281 219 500 333 167 500

UVM Uveal melanoma 0 39 36 4 — — — 39 40 79

Total 1883 3664 5547 3738 2300 6038

Note: For each cohort, we report TCGA cohort code, disease name and number of samples in each stage together with details about the numbers of early-stage,

late-stage and total samples in experiments E1 and E2. We included 5547 and 6038 patients in total for our two sets of experiments E1 and E2, respectively.
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@L
@w
¼ 0) w ¼

XN
i¼1

aiyixi

@L
@b
¼ 0)

XN
i¼1

aiyi ¼ 0

@L
@ni
¼ 0) C ¼ ai þ bi 8i:

We then plug these back into the Lagrangian function to find the ob-

jective value of the dual problem, which can be written as

minimize �
XN
i¼1

ai þ
1

2

XN
i¼1

XN
j¼1

aiajyiyjx
>
i xj

with respect to a 2 RN

subject to
XN
i¼1

aiyi ¼ 0

C � ai � 0 8i;

(1)

where we have N decision variables instead of DþN þ 1ð Þ decision

variables, and we now can replace x>i xj term with a kernel function

k xi;xj

� �
to obtain non-linear models.

3.4 MKL on gene sets
The predictive performance of SVMs is highly dependent on the kernel

function used. The standard approach is to select the best kernel function

among a set of candidates using a cross-validation strategy. However, in-

stead of selecting a single kernel function, using a weighted combination

of input kernels might give better predictive performance, which is

known as MKL (Gönen and Alpaydın, 2011). MKL algorithms might

combine different kernels calculated on the same input representation or

combine kernels calculated on different input representations (i.e. multi-

view learning). In bioinformatics applications, the same data points can

be represented with different measurements (e.g. gene expression, methy-

lation and copy number measurements from the same set of tumours).

Instead of combining predictive models trained on each representation

(i.e. late integration) or concatenating these input representations into a

joint one before learning (i.e. early integration), we can calculate kernel

matrices on each representation and learn how to combine them in the

predictive algorithm during inference (i.e. intermediate integration).

In this study, we were interested in identifying biological mecha-

nisms that differentiate early- and late-stage cancers from each

other. To this aim, we created a separate kernel matrix for each gene

set and combined them using an MKL algorithm (Fig. 1b), namely,

group Lasso MKL, which can be used to find a sparse combination

(i.e. mostly zero kernel weights due to ‘1-norm) of the input kernels

(Xu et al., 2010). The gene sets that correspond to kernel matrices

with non-zero weights might be related to the differentiation be-

tween early- and late-stage cancers.

Group Lasso MKL solves the following optimization problem to

find the kernel weights and other model parameters simultaneously.

minimize J gð Þ

with respect to g 2 RP

subject to
XP

m¼1

gm ¼ 1

gm � 0 8m;

(2)

where g is the set of kernel weights, P is the number of input kernels

and J gð Þ corresponds to the optimization problem in Equation (1)

with a modified objective function, which replaces k xi; xj

� �
¼ x>i xj

term with
PP

m¼1 gmkm xi; xj

� �
. The only equality constraint in

Equation (2), which is also known as the unit simplex constraint, is

equivalent to enforcing ‘1-norm on the kernel weights and leads to a

sparse solution.

The optimization problem in Equation (2) cannot be solved glo-

bally with respect to a and g since the outer minimization problem is

convex with respect to g and the inner minimization problem is con-

vex with respect to a, but the overall problem is not jointly convex

with respect to a and g. That is why we use an alternating optimiza-

tion strategy to optimise them in an iterative manner. We first start

the algorithm by setting the kernel weights to uniform values (i.e.

g 1ð Þ
m ¼ 1=P). At each iteration t, we solve the inner optimization

problem (i.e. a standard SVM model) using the current kernel

weights g tð Þ to find the support vector coefficients a tð Þ. We can then

find the kernel weights of the next iteration g tþ1ð Þ using the follow-

ing closed-form update equation:

g tþ1ð Þ
m ¼

g tð Þ
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

PN
j¼1

a tð Þ
i a tð Þ

j yiyjkm xi; xj

� �s

PP
o¼1

g tð Þ
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

PN
j¼1

a tð Þ
i a tð Þ

j yiyjko xi; xj

� �s 8m;

where the superscripts t þ 1ð Þ and (t) show the next and current

iterations.

(a) (b)

Fig. 1. Overview of the evaluation framework we developed for predicting pathological stages of primary tumours from their gene expression profiles. (a)

Unbiased performance evaluation of three machine learning algorithms, namely, RFs, SVMs and MKL on gene sets, for the classification task using the same

sets of samples during training and testing. Predictive performances were measured using the AUROC. (b) Integrating pathways/gene sets into the classification

algorithm, where we calculate a kernel matrix using the expression features of genes that are included in each pathway/gene set during training or testing

Discriminating early- and late-stage cancers i415



4 Results

To test the predictive performance of MKL on gene sets algorithm,

we performed two sets of experiments E1 and E2 on 15 and 18 data-

sets that we constructed from TCGA cohorts for two alternative

labelling strategies (Table 1) by comparing against two baseline

algorithms, namely, RFs and SVMs. We compared against RFs since

they were frequently used in phenotype prediction tasks of several

bioinformatics applications. We compared against SVMs since

MKL on gene sets algorithm is mainly based on SVMs, and we

wanted to see the effect of integrating pathway/gene set information

into the classification algorithm.

4.1 Experimental settings
For each dataset, we picked 80% of the tumours as the training set,

and we used the remaining 20% as the test set. While doing so, we

tried to keep the negative and positive class ratios in training and

test sets almost equal (i.e. stratification). The training set was nor-

malized to have zero mean and unit standard deviation, and the test

set was then normalized using the mean and the standard deviation

of the original training set. We repeated this procedure 100 times to

obtain more robust results and reported the final results over these

100 replications. In each replication, the hyper-parameters for RFs,

SVMs and MKL on gene sets were selected using a 4-fold inner

cross-validation on the training set.

For RFs, we used randomForestSRC R package version 2.5.1

(Ishwaran and Kogalur, 2017). We picked the number of trees to

grow parameter ntree from the set f500; 1000; . . . ; 2500g using

the 4-fold inner cross-validation strategy described.

For SVMs and MKL on gene sets, we used our own implementa-

tions in R, which uses MOSEK version 8.1.0.34 to solve quadratic

optimization problems (MOSEK ApS, 2017). To calculate a similar-

ity measure between gene expression profiles of tumours, we used

the Gaussian kernel as

kG xi; xj

� �
¼ exp �

xi � xj

� �>
xi � xj

� �
2r2

 !
;

where we picked the kernel width parameter r as the mean of pair-

wise Euclidean distances between training instances. We selected the

regularization parameter C using the 4-fold inner cross-validation

strategy described from the set f10�4;10�3; . . . ; 10þ5g.
For MKL on gene sets, we performed 200 iterations to guarantee

the convergence since the algorithm usually converges in tens of iter-

ations. Note that the Gaussian kernel functions were calculated on

subsets of gene expression profiles by looking at the genes included

in the corresponding gene sets, and the kernel width parameters

were selected accordingly.

To compare the predictive performances of three algorithms, we

used area under the receiver operating characteristic curve

(AUROC). AUROC is used to summarize the receiver operating

characteristic curve, which is a curve of true positives as a function

of false positives while the threshold to predict class labels changes.

Larger AUROC values correspond to better predictive performance.

4.2 Predictive performance comparison on TCGA

datasets
On 15 datasets for the first set of experiments E1, we compared

three machine learning algorithms, namely, RF, SVM and MKL on the

Hallmark gene sets (MKL[H]), in terms of their predictive

performances.
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Fig. 2. Predictive performances of RF, SVM and MKL on the Hallmark gene sets (MKL[H]) on 15 datasets constructed from TCGA cohorts for the first set of experi-

ments E1. The box-and-whisker plots compare the AUROC values of the algorithms over 100 replications. SVM and MKL[H] are compared against RF using a two-

tailed paired t-test to check whether there is a significant difference between their performances. For P-value results, red: RF is better; green: SVM is better; blue:

MKL[H] is better; black: no difference. The orange dashed lines show the baseline performance level (i.e. AUROC¼0.5)

i416 A.Rahimi and M.Gönen



Figure 2 shows the predictive performances of RF, SVM and

MKL[H] on each cohort separately. We see that the median perform-

ances of all three algorithms are better than the baseline perform-

ance (i.e. 0.5 AUROC value shown as dashed lines) on all datasets,

which indicates that gene expression profiles carry meaningful infor-

mation about pathological stages.

When we compare the performances of RF and SVM, we see that

SVM obtained significantly better results on 6 out of 15 datasets (i.e.

BRCA, COAD, HNSC, KIRC, TGCT and THCA), whereas RF was signifi-

cantly better on four of them (i.e. ESCA, KIRP, LIHC and READ).

Although RF is also a non-linear model, the non-linearity brought

by the Gaussian kernel makes SVM a better algorithm for this highly

complex classification problem. SVM improved the predictive per-

formance by 10.44% on BRCA, 13.56% on COAD, 13.36% on HNSC

and 5.12% on THCA, whereas the largest performance drop was

5.51% on ESCA.

When we compare the performances of RF and MKL[H], we see

that MKL[H] obtained significantly better results on 7 out of 15 data-

sets (i.e. BRCA, COAD, ESCA, HNSC, KIRC, PAAD and THCA), whereas

RF was significantly better on three of them (i.e. LIHC, STAD and

TGCT). We see that principled combination of gene set information in

the form of kernel functions increased the predictive performance

even though MKL[H] used a small portion of the gene expression pro-

files. To be more specific, RF and SVM were using 19 814 gene expres-

sion features, whereas MKL[H] was using only 4357 (i.e. less than

one-fourth) gene expression features for the genes included in the

Hallmark gene sets. MKL[H] improved the predictive performance

by 10.00% on BRCA, 14.89% on COAD, 4.30% on ESCA, 11.43% on

HNSC, 7.59% on PAAD and 5.50% on THCA, whereas the largest per-

formance drop was 4.35% on STAD.

Note that SVM also outperformed RF in this set of experiments,

but MKL[H] used significantly fewer gene expression features (i.e.

even less than 4357 input features) by discarding uninformative

gene sets from the machine learning model and allowed us to iden-

tify informative ones for classification.

Figure 3 shows the predictive performances of RF, SVM and

MKL[H] for the second set of experiments E2 (i.e. Stage I or II

versus Stage III or IV). We see that the ordering of the algorithms

with respect to their predictive performances stays the same (i.e.

RF<SVM<MKL[H]).
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Fig. 3. Predictive performances of RF, SVM and MKL on the Hallmark gene sets (MKL[H]) on 18 datasets constructed from TCGA cohorts for the second set of

experiments E2. The box-and-whisker plots compare the AUROC values of the algorithms over 100 replications. SVM and MKL[H] are compared against RF using

a two-tailed paired t-test to check whether there is a significant difference between their performances. For P-value results, red: RF is better; green: SVM is better;

blue: MKL[H] is better; black: no difference. The orange dashed lines show the baseline performance level (i.e. AUROC¼0.5)
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Fig. 4. Selection frequencies of 50 gene sets in the Hallmark collection for 15 datasets in the first set of experiments E1. Rows and columns are clustered using

hierarchical clustering with Euclidean distance and complete linkage functions. Column sums of selection frequencies are reported to identify datasets that use

higher number of gene sets on the average. Row sums of selection frequencies are reported to identify frequently selected gene sets across different datasets

i418 A.Rahimi and M.Gönen



0.00

0.15

0.20

0.10

0.77

0.03

0.05

0.02

0.05

0.26

0.00

0.00

0.08

0.00

0.06

0.03

0.03

0.08

0.01

0.04

0.06

0.01

0.05

0.36

0.05

0.00

0.00

0.04

0.00

0.07

0.00

0.03

0.57

0.00

0.13

0.04

0.00

0.01

0.07

0.04

0.01

0.00

0.19

0.05

0.04

0.97

0.55

0.51

0.47

0.46

0.00

0.27

0.32

0.01

0.00

0.01

0.05

0.06

0.00

0.03

0.00

0.00

0.00

0.01

0.00

0.00

0.14

0.02

0.00

0.00

0.00

0.00

0.00

0.37

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.07

0.00

0.16

0.00

0.41

0.00

0.00

0.01

0.04

0.00

0.06

0.01

0.27

0.71

0.42

0.16

0.35

0.22

0.13

0.13

0.03

0.16

0.06

0.00

0.05

0.14

0.01

0.17

0.01

0.23

0.00

0.00

0.34

0.00

0.03

0.10

0.36

0.16

0.07

0.10

0.00

0.16

0.31

0.04

0.00

0.17

0.00

0.00

0.00

0.00

0.09

0.00

0.43

0.32

0.10

0.20

0.06

0.25

0.22

0.05

0.01

0.01

0.08

0.15

0.73

0.57

0.62

0.56

0.00

0.58

0.42

0.05

0.00

0.00

0.05

0.01

0.00

0.23

0.06

0.00

0.27

0.05

0.20

0.20

0.02

0.03

0.00

0.03

0.01

0.00

0.05

0.00

0.00

0.52

0.24

0.00

0.00

0.00

0.00

0.00

0.51

0.00

0.46

0.40

0.41

0.31

0.01

0.00

0.47

0.00

0.00

0.00

0.00

0.04

0.45

0.42

0.22

0.24

0.00

0.28

0.00

0.48

0.42

0.22

0.14

0.00

0.24

0.00

0.24

0.00

0.68

0.35

0.52

0.01

0.01

0.01

0.03

0.01

0.01

0.50

0.54

0.00

0.04

0.00

0.00

0.00

0.04

0.03

0.00

0.00

0.01

0.01

0.01

0.29

0.24

0.08

0.17

0.00

0.03

0.01

0.03

0.10

0.19

0.17

0.39

0.30

0.16

0.01

0.00

0.78

0.01

0.11

0.04

0.01

0.24

0.03

0.41

0.07

0.00

0.00

0.00

0.36

0.03

0.03

0.03

0.00

0.01

0.00

0.09

0.09

0.01

0.06

0.01

0.00

0.02

0.04

0.06

0.01

0.04

0.03

0.01

0.16

0.02

0.02

0.04

0.14

0.13

0.00

0.07

0.00

0.03

0.02

0.13

0.00

0.07

0.41

0.72

0.37

0.04

0.08

0.33

0.05

0.01

0.21

0.33

0.15

0.00

0.01

0.11

0.00

0.00

0.57

0.13

0.19

0.49

0.00

0.02

0.43

0.21

0.45

0.04

0.23

0.25

0.00

0.00

0.00

0.15

0.10

0.00

0.00

0.00

0.10

0.10

0.02

0.26

0.47

0.11

0.15

0.26

0.09

0.06

0.00

0.05

0.00

0.43

0.27

0.17

0.00

0.53

0.03

0.00

0.10

0.21

0.05

0.16

0.36

0.06

0.28

0.47

0.09

0.25

0.00

0.07

0.18

0.00

0.19

0.13

0.22

0.54

0.22

0.09

0.01

0.03

0.01

0.03

0.04

0.00

0.01

0.00

0.01

0.22

0.05

0.12

0.01

0.03

0.26

0.31

0.26

0.74

0.63

0.55

0.67

0.20

0.00

0.54

0.35

0.31

0.05

0.20

0.11

0.01

0.00

0.13

0.03

0.53

0.41

0.00

0.03

0.00

0.91

0.65

0.57

0.07

0.00

0.01

0.02

0.06

0.02

0.00

0.00

0.03

0.17

0.02

0.00

0.00

0.01

0.01

0.00

0.00

0.01

0.01

0.00

0.10

0.00

0.18

0.08

0.32

0.07

0.09

0.00

0.02

0.32

0.00

0.38

0.38

0.21

0.69

0.01

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.02

0.02

0.00

0.40

0.02

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.02

0.01

0.00

0.06

0.07

0.83

0.07

0.00

0.00

0.00

0.00

0.00

0.01

0.01

0.01

0.03

0.12

0.00

0.00

0.00

0.01

0.01

0.00

0.00

0.00

0.05

0.00

0.09

0.00

0.02

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.02

0.37

0.12

0.03

0.13

0.03

0.00

0.00

0.00

0.00

0.02

0.00

0.17

0.45

0.19

0.03

0.72

0.00

0.01

0.15

0.99

0.99

0.01

0.43

0.27

0.63

0.69

0.95

0.00

0.39

0.00

0.02

0.06

0.01

0.04

0.03

0.19

0.00

0.11

0.18

0.01

0.49

0.01

0.07

0.00

0.11

0.00

0.00

0.00

0.07

0.00

0.08

0.28

0.06

0.17

0.18

0.00

0.12

0.00

0.00

0.01

0.24

0.00

0.93

0.52

0.12

0.63

0.02

0.01

0.01

0.16

0.02

0.15

0.22

0.18

0.53

0.31

0.03

0.01

0.07

0.17

0.74

0.43

0.18

0.00

0.30

0.12

0.01

0.12

0.08

0.11

0.19

0.00

0.00

0.10

0.00

0.11

0.21

0.02

0.43

0.77

0.00

0.55

0.65

0.64

0.74

0.00

0.13

0.23

0.54

0.44

0.02

0.00

0.76

0.74

0.33

0.66

0.00

0.25

0.18

0.58

0.22

0.23

0.52

0.02

0.00

0.18

0.00

0.02

0.27

0.20

0.04

0.00

0.03

0.05

0.05

0.13

0.07

0.46

0.08

0.33

0.01

0.02

0.00

0.01

0.10

0.00

0.01

0.01

0.05

0.12

0.07

0.40

0.70

0.20

0.24

0.09

0.31

0.13

0.08

0.91

0.81

0.29

0.02

0.98

0.26

0.08

0.00

0.94

0.87

0.58

0.47

0.84

0.70

0.47

0.58

0.86

0.84

0.04

0.35

0.01

0.00

0.00

0.00

0.09

0.13

0.15

0.13

0.06

0.01

0.04

0.05

0.00

0.10

0.00

0.09

0.13

0.04

0.00

0.06

0.16

0.68

0.66

0.46

0.09

0.07

0.43

0.88

0.71

0.74

0.38

0.47

0.00

0.83

0.60

0.97

0.55

0.00

0.01

0.09

0.15

0.03

0.01

0.24

0.15

0.00

0.02

0.00

0.00

0.17

0.18

0.83

0.96

0.04

0.34

0.07

0.25

0.14

0.06

0.02

0.11

0.42

0.00

0.01

0.13

0.06

0.01

0.00

0.00

0.00

0.17

0.68

0.56

0.17

0.71

0.43

0.92

0.89

0.71

0.76

0.91

0.95

0.00

0.97

0.48

0.70

0.76

0.02

0.35

0.23

0.51

0.37

0.07

0.20

0.32

0.02

0.12

0.00

0.05

0.22

0.03

0.46

0.10

0.87

0.84

0.48

0.02

0.07

0.00

0.00

0.14

0.01

0.16

0.01

0.18

0.00

0.14

0.00

0.00

0.20

0.04

0.89

0.87

0.87

0.86

0.83

0.41

0.94

0.78

0.01

0.08

0.28

0.93

0.96

1.00

0.53

0.24

0.00

0.21

0.67

0.35

0.31

0.15

0.04

0.29

0.00

0.34

0.15

0.00

0.10

0.00

0.15

0.04

0.02

0.00

0.03

0.13

0.00

0.00

0.00

0.03

0.00

0.03

0.12

0.02

0.01

0.00

0.00

0.00

0.17

0.00

0.36

0.00

0.66

0.96

0.51

0.82

0.56

0.61

0.00

0.32

0.37

0.84

0.99

0.99

0.67

0.65

B
LC

A

U
V

M

LI
H

C

R
E

A
D

S
K

C
M

E
S

C
A

LU
A

D

S
TA

D

K
IR

P

A
C

C

K
IC

H

C
O

A
D

LU
S

C

M
E

S
O

H
N

S
C

B
R

C
A

K
IR

C

T
H

C
A

E2F_TARGETS

ANGIOGENESIS

HYPOXIA

CHOLESTEROL_HOMEOSTASIS

P53_PATHWAY

ADIPOGENESIS

NOTCH_SIGNALING

ESTROGEN_RESPONSE_LATE

DNA_REPAIR

APICAL_SURFACE

IL6_JAK_STAT3_SIGNALING

G2M_CHECKPOINT

REACTIVE_OXIGEN_SPECIES_PATHWAY

MYC_TARGETS_V2

UV_RESPONSE_UP

ESTROGEN_RESPONSE_EARLY

ALLOGRAFT_REJECTION

TNFA_SIGNALING_VIA_NFKB

INFLAMMATORY_RESPONSE

GLYCOLYSIS

UNFOLDED_PROTEIN_RESPONSE

OXIDATIVE_PHOSPHORYLATION

APOPTOSIS

WNT_BETA_CATENIN_SIGNALING

PI3K_AKT_MTOR_SIGNALING

INTERFERON_GAMMA_RESPONSE

IL2_STAT5_SIGNALING

COMPLEMENT

UV_RESPONSE_DN

MYC_TARGETS_V1

MITOTIC_SPINDLE

MTORC1_SIGNALING

INTERFERON_ALPHA_RESPONSE

PROTEIN_SECRETION

COAGULATION

PEROXISOME

MYOGENESIS

BILE_ACID_METABOLISM

HEME_METABOLISM

KRAS_SIGNALING_UP

XENOBIOTIC_METABOLISM

FATTY_ACID_METABOLISM

TGF_BETA_SIGNALING

ANDROGEN_RESPONSE

APICAL_JUNCTION

EPITHELIAL_MESENCHYMAL_TRANSITION

KRAS_SIGNALING_DN

SPERMATOGENESIS

PANCREAS_BETA_CELLS

HEDGEHOG_SIGNALING

6.74 4.19 7.41 6.96 7.00 4.96 7.12 9.67 6.87 1.65 3.55 10.25 12.24 9.81 17.31 15.27 16.71 12.67

2.
77

4.
26

3.
52

4.
38

4.
05

2.
02

3.
95

2.
89

2.
56

3.
63

2.
89

1.
87

3.
52

2.
50

3.
67

2.
24

1.
92

1.
81

1.
71

1.
90

1.
46

2.
19

1.
27

2.
13

1.
91

0.
79

0.
60

0.
75

0.
63

0.
61

0.
30

0.
11

2.
47

1.
60

4.
66

4.
54

5.
27

5.
31

4.
21

3.
45

5.
76

3.
95

3.
08

4.
25

4.
11

4.
67

9.
88

8.
70

7.
38

6.
28

Fig. 5. Selection frequencies of 50 gene sets in the Hallmark collection for 18 datasets in the second set of experiments E2. Rows and columns are clustered

using hierarchical clustering with Euclidean distance and complete linkage functions. Column sums of selection frequencies are reported to identify datasets that

use higher number of gene sets on the average. Row sums of selection frequencies are reported to identify frequently selected gene sets across different

datasets
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4.3 Biological mechanisms identified by MKL
To illustrate the biological relevance of our MKL[H] algorithm, we

analysed its ability to identify relevant gene sets based on the kernel

weights inferred during training. For each dataset and gene set pair,

we counted the number of replications in which the corresponding

kernel weight is non-zero (i.e. the number of replications where

gm 6¼ 0 was satisfied). Figure 4 shows the selection frequencies of

50 gene sets in the Hallmark collection for 15 datasets in the

first set of experiments E1.

By looking at the column sums of the selection frequencies, we

see that discriminating early- and late-stage cancers from each other

is much more difficult in some disease types. For example, in BRCA,

KIRC, LUSC and THCA datasets, MKL[H] used more than 15 out of

50 gene sets on the average. However, in some disease types such as

ESCA and PAAD, MKL[H] used very few gene sets (less than 6 out of

50 gene set on the average) and even improved the predictive per-

formance significantly compared to RF and SVM algorithms.

When we look at the row sums of the selection frequencies, we see

that some gene sets were selected heavily across different datasets. For ex-

ample, ANGIOGENESIS, KRAS_SIGNALING_DN, MYOGENESIS and

SPERMATOGENESIS gene sets were used in more than 6 out of 15 data-

sets on the average, which were reported to be related to the cancer for-

mation in early stages (Bergers and Benjamin, 2003). Similarly, four

metabolism-related gene sets, namely, BILE_ACID_METABOLISM,

HEME_METABOLISM, PANCREAS_BETA_CELLS and XENOBI

OTIC_METABOLISM were used more than 5 out of 15 datasets on

the average. For diseases associated with the tissues that are known to be

directly related to metabolism such as KIRC (kidney), LIHC (liver), PAAD

(pancreas) and THCA (thyroid gland), MKL[H] picked these metabolism-

related gene sets with very high frequencies. Gene sets that have quite im-

portant roles in epithelial cells, namely, APICAL_SURFACE and

HYPOXIA, were selected for more than 5 out of 15 datasets on the aver-

age. These two gene sets were picked with very high frequencies in BRCA

(breast), COAD (colon), LUAD (lung) and STAD (stomach) whose tissues

are known to contain many epithelial cells. We also see that MKL[H]

did not pick gene sets that were expected to be irrelevant for

discriminating early- and late-stage cancers from each other. For

example, cell cycle related gene sets such as DNA_REPAIR,

E2F_TARGETS, G2M_CHECKPOINT, MYC_TARGETS_V1, MYC_

TARGETS_V2 and MTORC1_SIGNALING were selected with very low

frequencies across 15 datasets.

Figure 5 gives the selection frequencies of 50 gene sets in the

Hallmark collection for 18 datasets in the second set of experiments

E2, where we can make similar observations about selected gene sets.

5 Conclusions

With the advancements in molecular characterization technologies,

it has become a standard practice to profile tumour biopsies of can-

cer patients. These tumour profiles have been extensively used in

efforts of understanding molecular mechanisms of cancer formation

and progression. For example, if we can successfully determine the

molecular mechanisms of progression from early to late stages, we

can make use of this information to develop new preventive or

therapeutic strategies to stop or slow down this progression. Here,

we addressed the problem of discriminating early- and late-stage

cancers from each other using their gene expression profiles.

We developed a computational framework (Fig. 1) to evaluate

the predictive performances of machine learning algorithms on 20

diseases from TCGA collection (Table 1) on this classification task

for two different sets of experiments. We compared two well-used

baseline algorithms, namely, RFs and SVMs, against our proposed

MKL on gene sets algorithm, which is able to integrate prior know-

ledge about pathways/gene sets into the model and to extract rela-

tive importances of the input gene sets in addition to learning a

classification model. The main contribution of our proposed ap-

proach comes from performing classification and gene set selection

using ‘1-norm regularization conjointly in a unified formulation. By

doing so, we can eliminate some gene sets (i.e. noisy or irrelevant

gene sets) from the classification model during training instead of

using whole gene expression profiles, which leads to more robust

and accurate classifiers.

To demonstrate the predictive performance of our proposed al-

gorithm, we performed two sets of experiments on 15 and 18 data-

sets constructed from TCGA cohorts. We see that MKL on gene sets

was able to get higher predictive performance on the average than

baseline methods (Figs. 2 and 3) using significantly fewer (around

one-fourth or fewer) gene expression features. To demonstrate the

biological relevance of gene set selection by our proposed algorithm,

we reported the selection frequencies of gene sets for each dataset

(Figs. 4 and 5). We see that frequently selected gene sets in several

cohorts were supported by the existing literature. We also note that

the gene sets that were not expected to be related to differentiation

between early- and late-stage cancers were not selected with high

frequencies by our algorithm.

We envision two main extensions of our work in the future.

We first will develop an MKL algorithm that assigns the same

kernel weights to gene sets across different datasets by training

them conjointly (i.e. multi-task learning). In this study, we

trained a separate MKL model for each dataset, which makes

their kernel weight assignments independent from each other

(i.e. single-task learning). By modelling disease types that are

known to have similar mechanisms together, we can increase the

sample size during inference, leading to more robust classifiers.

We will then develop another multi-task learning algorithm that

will take all available datasets and conjointly perform (i) cluster-

ing of datasets, (ii) making shared kernel weight assignments to

each cluster and (iii) learning a separate classifier for each data-

set. By doing so, we will be able to identify disease types that

have similar mechanisms for the given phenotype.
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