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Abstract: The deleterious effects of the coronavirus disease 2019 (COVID-19) pandemic urged the
development of diagnostic tools to manage the spread of disease. Currently, the “gold standard”
involves the use of quantitative real-time polymerase chain reaction (qRT-PCR) for SARS-CoV-2
detection. Even though it is sensitive, specific and applicable for large batches of samples, qRT-PCR
is labour-intensive, time-consuming, requires trained personnel and is not available in remote set-
tings. This review summarizes and compares the available strategies for COVID-19: serological
testing, Point-of-Care Testing, nanotechnology-based approaches and biosensors. Last but not least,
we address the advantages and limitations of these methods as well as perspectives in COVID-19
diagnostics. The effort is constantly focused on understanding the quickly changing landscape of
available diagnostic testing of COVID-19 at the clinical levels and introducing reliable and rapid
screening point of care testing. The last approach is key to aid the clinical decision-making process
for infection control, enhancing an appropriate treatment strategy and prompt isolation of asymp-
tomatic/mild cases. As a viable alternative, Point-of-Care Testing (POCT) is typically low-cost and
user-friendly, hence harbouring tremendous potential for rapid COVID-19 diagnosis.

Keywords: SARS-CoV-2 variants; detection; epidemic; point of care testing

1. Introduction

Globally, at the end of November 2021, there have been more than 250 million con-
firmed cases of coronavirus disease 2019 (COVID-19), including five million deaths, re-
ported to WHO. More than 1.5 billion vaccine doses have been administered so far [1].
Presently, the high transmission rate in communities and the mutagenic capability of
SARS-CoV-2 contribute to the pandemic evolution and huge negative impact on health
and economics [2–5]. The research community worldwide responded and gathered to
consolidate the scientific findings and knowledge on SARS-CoV-2 infection to control the
pandemic and prepare for future outbreaks. With the vaccination process and ongoing strict
surveillance for side effects, this goal relies heavily on robust methods that combine early
detection [6], isolation or physical distancing and therapeutic and epidemiologically-based
prophylactic approaches. Clinical diagnosis of COVID-19 is possible when pathognomonic
symptoms [7], coupled with epidemiologic data, are apparent. Since the clinical mani-
festations (pneumonia, dyspnoea, fever, cough, respiratory symptoms) are not always
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specific [8], and the history of contact with other possible infected persons is not always
readily available [9,10], a rapid ascertainable clinical/epidemiological diagnosis is difficult.
Therefore, laboratory procedures and data collected via effective screening and confirma-
tory diagnosis are crucial to identify COVID-19 asymptomatic/symptomatic cases, active
or not.

Here, we review the recent advances in the detection of SARS-CoV-2. We will firstly
present the main challenges in SARS-CoV-2 detection and a brief description of the virus
biology. Further, we will discuss significant aspects of sample preparation. Main SARS-
CoV-2 detection techniques such as nucleic acids amplification and testing, as well as
serological testing, will be summarised. Finally, we conclude regarding the potential of
Point-of-Care Testing (POCT) systems as rapid human and environmental testing methods.

2. Challenges in SARS-CoV-2 Detection

Consistent efforts have been concentrated on designing and manufacturing simple,
rapid, accurate and affordable diagnostic kits to be used at home by anyone. Despite
these efforts, the lack of diagnostic resources, human and technological, slowed down
the progress and affected the outcomes of the protocols in place aimed at controlling
the SARS-CoV-2 pandemic. Several technology-related aspects need to be considered
when evaluating the situation for further improvements. For instance, it is known that
most of the tests are portable benchtop analysers or even smaller handheld devices (i.e.,
MicrosensDx, RapiPrepCOVID-19, MesaBioTech Accula Test). However, all of these require
sample preparation, which involves technical skills for viral transport media, pipetting,
refrigeration and temperature re-equilibration. Moreover, limited access to reagents and
equipment slows down the detection rate and hinders efforts to mitigate viral spread.
The result is the relatively low throughput that imposes multiple processing units and
dependence on the clinical setting for centralised testing. In the meantime, the clinical
component is related to the immunological response, which takes time to be identified
(the organism did not start developing antibodies against the virus) and varies from
one patient to another (in some patients, the immune response is weak with untraceable
antibodies), making the infection undetectable [11]. The clinical aspects, indeed, add to
the technical difficulties. For example, one study [12] discussed the value of anosmia as a
marker in mild cases excluded from testing. Furthermore, the study highlighted that the
newly developed and persistent anosmia resulting from COVID-19 does not reflect these
individuals’ infectious levels or the moment they have viral clearance. Other data also
urged caution about smell tests as a screening tool in some settings, such as airports and
shopping centres [13,14], despite the high positive predicting clinical value of new-onset
and sudden-onset anosmia when the disease’s prevalence is high. Moreover, it is essential
to consider that, if the virus mutates in the reverse transcription polymerase chain reaction
(RT-PCR) target region, SARS-CoV-2 may not be detected or detected less predictably.
Therefore, the performance characteristics of a test and its limitations in relationship
with the epidemiology of the disease are imperative to avoid false-negatives (in case of
high disease prevalence, inhibitors or medication interferences) and false-positives (when
prevalence is moderate to low). The ideal combination is yet to emerge, as each test has its
strengths and limitations. For instance, STOP (SHERLOCK Testing in One Pot) COVID [15]
could be a valid aid in the “test-trace-isolate” type of test, especially in low-resource
settings. However, the low throughput and the poor sensitivity of lateral flow-based
systems at the early stages of SARS-CoV-2 infection hinder their use as POC molecular
tests [16]. Similarly, 2020 data highlighted that the lateral flow devices for asymptomatic
mass testing proved controversial due to their incapacity to detect the actual infection [17].
In the case of clustered regularly interspaced short palindromic repeats (CRISPR) [18],
the major disadvantage is the lack of automation with manually operated protocols that
increase sample contamination risk, despite being a highly reliable, specific and sensitive
detection method [19]. The inability to test many patients resided initially in the limited
biological specimens collected from suspect subjects. Currently, SARS-CoV-2 nucleic acid is
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generally detectable in saliva specimens during the acute phase of infection [20]. Therefore,
the screening will continue to be evaluated and perfected as POCT in conjunction with
patient history as well as clinical and other diagnostic information necessary to determine
patients’ infection status. Also, information about the contaminated environment could
be a significant element of the surveillance system during the COVID-19 pandemic. It
has been observed that Ribonucleic acid (RNA) virus [21–23] is spilt in wastewater [24].
Therefore, standardised protocols are required for timely and accurate quantification of
viral loads and a straightforward correlation with the community infection levels [25]
and surveillance [26]. Also, detecting viral variants in wastewater could provide valuable
information about the natural progress of viral epidemics and the-related contingency plan.
Further work will improve the technology and results to increase the potential of existing
methods as efficient detection and monitoring approaches.

3. SARS-CoV-2—Structure and Characteristics

Human Coronaviridae, a family of viruses with a positive-sense single-stranded
RNA genome, includes seasonal viruses, such as HCoV-OC43, HCoV-229E, HCoV-HKU1
and HCoV-NL63 coronaviruses, which are known to circulate in the general population,
being one of the most frequent etiological agents of seasonal respiratory tract infections
(shCoV) [27]. In contrast, the severe acute respiratory syndrome coronavirus (SARS-
CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and SARS-CoV-2 are
highly pathogenic, causing life-threatening respiratory pathologies and having pandemic
potential [28].

The SARS-CoV-2 virus is spherical with a rough diameter of 125 nm and club-shaped
spike projections emanating from its surface, giving the virus its crown-like morphology
(corona-virus) [29]. Infection is initiated by the specific binding of the spike protein (S) to
the host cellular receptor angiotensin-converting enzyme 2 (ACE2). Importantly, ACE2
expression and tissue distribution are essential in viral tropism and pathogenicity. The
SARS-CoV-2 spike protein interaction with host factors (ACE2 and the cell surface ser-
ine protease TMPRSS2) supports viral uptake and fusion with the cellular or endosomal
membrane [30]. Inside the host cell, the coronavirus replicates its RNA genome, produc-
ing complete length copies that are subsequently incorporated into new viral particles
released from the infected cell via exocytosis. The SARS-CoV-2 genome has around 27–32
kb, harbours 79% sequence identity with SARS-CoV and 50% with MERS-CoV [31] and is
organised into six functional open reading frames (ORFs) [32]. The six functional ORFs
encode for replicase (ORF1a/ORF1b), spike protein (S), envelope (E), membrane (M) and
nucleocapsid (N). Seven putative ORFs encoding accessory proteins scattered among these
structural genes have been identified [33]. A distinct trait of SARS-CoV-2 is the acquisi-
tion of a polybasic furin cleavage site (PRRAR) in the spike protein, which subsequently
enhances its pathogenicity, zoonotic potential and transmissibility [34,35].

4. Specimen Collection and Sample Preparation

Diagnosis of SARS-CoV-2 infections can be performed on a variety of upper (throat,
nasal, nasopharyngeal swabs/wash, saliva, sputum) and lower respiratory tract (bron-
choalveolar lavage fluid) samples, as well as, although generally less reliably, on blood,
urine and faeces. The laboratory diagnosis targets either the direct detection of viral anti-
gens, nucleic acids or the host’s immune response (producing specific antibodies or T cells).
However, the correct laboratory diagnosis of SARS-CoV-2 requires specimen collection
(correct specimen at the right time) and preparation, regardless of the efficiency of the
methods used [36]. Furthermore, despite being easy-to-collect and their relevance for
resource-limited conditions, upper respiratory specimens might provide false-negative
results in early infection cases, requiring repeated testing to increase sensitivity.

Sample preparation is critical, particularly for those specimens in transit from hospital
settings towards POCT systems. Several difficulties were identified and related to main-
taining the appropriate temperature until testing (refrigeration or freezing at −70 ◦C or
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below), obtaining the viral particles’ or antibodies’ appropriate concentration, reducing
samples infectivity, overcoming the presence of inhibitors and decreasing the risk of sample
cross-contamination and false-results. Such issues are particular to those diagnostic plat-
forms involving separate reaction steps, tubes opening and liquid handling [37]. Therefore,
various biofluids were considered when addressing these issues. For instance, self-collected
saliva is an excellent non-invasive specimen for Point-of-Care diagnosis of SARS-CoV-2
infections. However, saliva samples contain enzymes (i.e., lysozyme), electrolytes, proteins,
nucleic acids, hormones and indigenous microbiota, which might interfere with the diag-
nostic process. When using blood samples, most diagnostic tests require a separation step
(plasma to serum). Moreover, only a small percentage of symptomatic hospitalised patients
present detectable RNA levels in serum [7]. We will further highlight several aspects related
to sample preparation specific to different SARS-CoV-2 diagnostic approaches.

4.1. Nucleic Acids

Viral nucleic acids (NA) can be isolated from saliva either directly or after the concen-
tration of epithelial cells by centrifugation. The methods based on detecting viral NA are
sensitive and safer because of the virions’ inactivation during preliminary sample purifica-
tion steps. Viral RNA can be extracted using commercial kits, specific probe-conjugated
magnetic beads after sample loading [38,39] or NaI-based binding solution (6 M NaI, 2%
TritonX100, 10 mM HCl) coupled with silica particles (‘glass milk’) [39,40]. The Food and
Drug Administration (FDA) authorised a few nucleic acid amplification-based methods
as quantitative (Abbott ID NOW COVID-19, Xpert Xpress SARS-CoV-2) and qualitative
(AcculaSARS-CoV-2 Test, Mesa Biotech Inc., San Diego, CA, USA) POCT. These comprise
an automated, integrated RNA isolation step compared with other diagnostic systems (Fast-
Plex Triplex SARS-CoV-2, Gnomegen COVID-19 RT-Digital PCR or Bio-Rad SARS-CoV-2
ddPCR Test) which need manual sample preparation [41]. Therefore, RNA extraction and
purification are essential blockages in the development of POCT and research focused on
removing these steps from the diagnostic workflow. Consequently, Alekseenco et al. [42]
showed that SARS-CoV-2 infection could be successfully diagnosed on unextracted heat-
inactivated nasopharyngeal samples using isothermal amplification. Joung et al. developed,
in [15], STOP COVID (Specific High Sensitivity Enzymatic Reporter UnLOCKing Testing
in One Pot), which does not need sample extraction and can be performed at a unique
temperature with a single fluid handling step and one simple visual readout. Several other
designs belonging to the group Real-time RT-PCR, Home Collection (i.e., GENETWORx
COVID-19 Nasal Swab Test Kit [43], Verily COVID-19 RT-PCR Test [44], CRSP SARS-CoV-2
Real-time Reverse Transcriptase (RT)-PCR Diagnostic Assay [45], to “Saliva Collection
Device” (TRUPCR SARS-CoV-2 Kit [46], SalivaDirect [20], Phosphorus COVID-19 RT-qPCR
Test [47]), received Emergency Use Authorization (EUA) as self-collected at-home devices.
Although rapid molecular assays showed variation in sensitivity (from 68% to 100%), this
was lower compared to antigen tests (0–94%) [48].

4.2. Viral Antigens

SARS-CoV-2 antigen identification in saliva samples, buccopharyngeal swabs or
nasopharyngeal aspirates using different methodological approaches (e.g., immunochro-
matographic fluorescence assay, quick-response lateral-flow) is highly dependent on virion
density in the sample, which in turn depends on the host immune response. Notably,
since the virion density in upper respiratory tract samples is low within a few days af-
ter the onset of symptoms, the risk of false-negative results increased. Therefore, the
sensitivity of antigen tests has been shown to vary considerably across studies (from 0%
to 94%) [48]. However, viral antigens are probably the most appropriate candidates for
developing accurate, rapid, early and straightforward diagnosis methods. Therefore, novel
approaches to concentrate the antigen or amplify the detection phase are needed to develop
clinical applications.
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However, serology tests, including enzyme-linked immunosorbent assays, chemi-
luminescence immunoassays and lateral flow assays, may confirm specific antibodies
and a current or past SARS-CoV-2 infection. Deeks et al. [49] have reported significant
differences in IgG, IgM, IgA and total antibodies sensitivity, with the lowest sensitivity
recorded during the first week since the onset of the disease. The human saliva contains
specific antibodies for viruses that are multiplying in the respiratory tract, such as in-
fluenza A, cytomegalovirus, SARS-CoV, Denga, Ebola, enteroviruses, EBV, mumps, HSV,
measles, polio, rabies, rhino-, rubella, polyoma and hepatitis (VHA, VHB, VHC) [50].
Hence, saliva and throat or mouth swabs are non-invasive samples that can be used instead
of blood for the serological diagnosis of different viral respiratory tract infections, including
SARS-CoV-2 [51], allowing detection of both antigens or specific antibodies.

5. Detection Methods
5.1. Nucleic Acids Amplification Testing (NAAT)

NAATs are diagnostic tests based on the amplifying of the RNA/DNA (Deoxyribonu-
cleic acid) target to a point at which it becomes detectable. To date, COVID-19 is diagnosed
using reverse transcriptase quantitative real-time PCR (RT-qPCR), and most of the FDA
or FDA-Emergency Use Authorization (EUA) approved tests are real-time RT-qPCR. This
technique employs fluorometric detection methods (probes or DNA intercalating dyes)
and enables quantification and more straightforward automation than end-point PCR.
However, the need for faster yet reliable testing for COVID-19 has pushed forward alterna-
tive NAATs to surpass the main drawbacks of RT-qPCR testing. The main alternative to
PCR testing explores various isothermal amplifications, whereas a limited number employ
sequencing-based technologies [52]. We will give a brief analysis of each of the techniques
mentioned above. Figure 1 summarised the detection systems for SARS-CoV-2.

5.1.1. PCR Mediated Detection

The publication of SARS-CoV-2’s first genome sequence in January 2020 [53–55] al-
lowed several in-house and commercial molecular diagnostic kits to be developed and
deployed globally (Xpert SARS-CoV-2, VitaPCR COVID-19 assay, RapiPrep COVID-19,
ePlex SARS-CoV-2, Accula SARS-CoV-2, ID NOW COVID-9) as well as antibody-based
tests (GT-100 SARS-CoV-2 IgG/IgM kit, rapid POC kit, COVID-19 IgM-IgG Rapid Test,
COVID-19 Cassette, Rapid Test VivaDiag COVID-19 IgG-IgM test) [56]. These assays
may run as standard real-time RT PCR (rt RT PCR)—thermocyclers or large automated or
semi-automated diagnostic platforms on the respiratory sample (i.e., oro-/nasopharyngeal
swab, sputum or bronchoalveolar lavage) sent to a reference laboratory for RT PCR testing.
Since the turnaround time varies from 24 to 72 h, new approaches are required to improve
the time-to molecular testing results. The Abbott’s m2000TM Real Time SARS-CoV-2 EUA
test and the Roche’s Cobas® SARS-CoV-2 Test, in hospitals and reference labs worldwide,
are two examples. The FDA’s Emergency Use Authorized Cobas® SARS-CoV-2 Test used
the automated, high throughput Cobas® 6800/8800 Systems, and up to 96 results were
provided in about three hours. In eight hours, the Cobas® 6800 System provided 384 results
and, the Cobas® 8800 System, 1056. The system’s specificity is assured by full process
controls (negative, positive and internal) [57]. Furthermore, Aptima SARS-CoV-2/Flu
assay, Hologic, Inc. is the first FDA-issued EUA automated multiplexed target nucleic acid
amplification test intended for simultaneous in vitro qualitative detection and differenti-
ation of RNA from SARS-CoV-2 virus, influenza A virus (Flu A) and influenza B virus
(Flu B), isolated and purified from nasopharyngeal (NP), nasal and mid-turbinate swab
specimens obtained from individuals suspected of respiratory viral infection consistent
with COVID-19 by their healthcare provider. This combination is advantageous because
it stemmed from a lack of testing devices during the flu season that coincides with the
COVID-19 pandemic. Also, detecting SARS-CoV-2 nucleic acid in saliva specimens during
the acute phase of infection is an advantage that can contribute to coherent screening via
a rapid and accessible collection of biological specimens from COVID-19 suspects. Such
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screening via molecular laboratory-based assays that permit partial automation and may
be faster might be recommended for urgent clinical cases (15–45 min) and will be evaluated
and perfected as POCT in conjunction with patient history, as well as clinical and other
diagnostic information necessary to determine patients’ infection status. POCT will be
addressed in a separate chapter [58,59].

5.1.2. Isothermal Amplification

Isothermal amplification is carried out without thermal cycling and usually has a shorter
turnaround time than PCR-based detection. Some isothermal NAATs, such as Loop-
Mediated Isothermal Amplification (LAMP) [60,61] and Strand-Displacement Amplifica-
tion (SDA) [62], amplify DNA targets and have a common principle: the enzyme complex
is activated at approximately the same temperature as the primer annealing temperature.
It performs both the denaturation of the double helix and the elongation of the synthe-
sized strand, resulting in long (LAMP) or short (SDA and others) double stranded DNA
(dsDNA) amplicons. Generally, they use a DNA polymerase with strand-displacement
activity (i.e., Bst DNA polymerase), and by the addition of a reverse-transcriptase (RT) to
the enzyme mix, DNA isothermal amplification can be adapted for RNA targets as well.
In contrast, NA Sequence-Based Amplification (NASBA) [63] and Transcription-Mediated
Amplification (TMA) [64] use an RNA polymerase (e.g., for phage T7) to synthesize ssRNA
amplicons after the reverse-transcription (RT) of the RNA target. Various isothermal ampli-
fication reactions have been used for the detection of SARS-CoV-2 RNA, such as real-time
LAMP(7) (RT-LAMP(7)) [65,66], Rolling-Circle Amplification (RCA) [67], Recombinase
Polymerase Amplification (RPA) [68–70], NASBA [71] and TMA [72] in a tube or integrated
on specialized detection platforms. The FDA-EUA list of isothermal NAATs revealed
by RT-LAMP seems to be the preferred amplification strategy (see Table 1). Isothermal
NAATs have the advantage of rendering faster results than PCR-based methods (under
30 min versus 2 to 4 h without an RNA extraction step). The assay time can be further
reduced by shortening or skipping the RNA isolation step altogether. The evaluation of the
effectiveness of RT-qPCR and isothermal NAATs provided different opinions regarding
RNA extraction. For instance, [73] supported the importance of RNA extraction for an
optimal assay, while [74,75] concluded that amplification from unprocessed biological
samples or with minimum sample preparation (i.e., heat treatment) can also be an efficient
detection strategy. Consequently, excluding RNA extraction from NAAT assays is a desir-
able procedural outcome because it reduces reagents, time, complexity and, implicitly, the
costs of the test.

NAAT assays based on isothermal amplification can render end-point results or
real-time readings and are compatible with different detection methods. For instance,
RT-LAMP for SARS-CoV-2 diagnosis was developed with colourimetric [76] (Figure 1A),
fluorescent [77] and CRISPR-based detection [19]. Unlike RT-qPCR, isothermal ampli-
fication assays are more likely to be optimized for qualitative results and cannot easily
accommodate the quantitation of the target. Some attempts associated the colour change
in RT-LAMP reactions with a determined initial concentration of the target. However,
quantitation with isothermal amplification seems to only discriminate between very distant
values [78].
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Table 1. Isothermal NAATs under Food and Drug Administration-Emergency Use Authorization (FDA-EUA, non-
exhaustive). All data were collected from the documentation attached to each assay on the FDA website [41].

Assay & Company. RNA Extraction Isothermal Reaction Type of Detection
(LoD) Required Platform

Color SARS-CoV-2
RT-LAMP Diagnostic
Assay (Color Health,

Inc.)

Require RNA
extraction RT-LAMP Colourimetric (0.75

copies/µL)
Microplates read by
spectrophotometry

Lucira CHECK-IT
COVID-19 Test Kit

(Lucira Health, Inc.)

Includes RNA
extraction RT-LAMP Colourimetric (2700

copies/swab)
Microfluidic,

over-the-counter device

Aptima SARS-CoV-2
assay (Hologic, Inc.)

Includes RNA
extraction TMA multiplex Chemiluminiscence (0.1

TCID50/mL)

Automate system
Aptima Panther
(Hologic Inc.)

Cue COVID-19 Test for
Home and Over The
Counter (OTC) Use
(Cue Health Inc.)

Does not require RNA
extraction unspecified

Electrochemical (20
copies/swab or 1.3

copies/µL)

Portable device Cue
Health Inc.

Solana SARS-CoV-2
Assay (Quidel
Corporation)

sample prep. (heat
treatment) RT-HDA Fluorescence (1.16 ×

104 copies/mL)
Solana Instrument

(Quidel Corporation)

Sherlock CRISPR
SARS-CoV-2 Kit

(Sherlock BioSciences,
Inc.)

Require RNA
extraction RT-LAMP

Fluorescence aided by
the enzymatic system

CRISP/Cas (LoD = 6.75
copies/µL VTM)

BioTek NEO2
microplate reader

iAMP COVID-19
Detection Kit (Atila

BioSystems, In.)

Does not require RNA
extraction OEMGA Fluorescence (2000

copies/swab)
Real-time PCR

instrument

MobileDetect Bio
BCC19 (MD-Bio
BCC19) Test Kit

(Detectachem Inc.)

Does not require RNA
extraction RT-LAMP Colourimetric (75

copies/µL) In tube reaction.

ID NOW COVID-19
(Abbott Diagnostics

Inc.)

sample prep. (heat
treatment) unspecified Fluorescence (125

copies/mL) ID NOW instrument

SARS-CoV-2 DETECTR
Reagent Kit (Mammoth

Biosciences, Inc.)

Require RNA
extraction RT-LAMP

Fluorescence aided by
the enzymatic system

CRISP/Cas (20
copies/µL VTM)

rtPCR instrument

ProAmpRT
SARS-CoV-2 TEST

(Pro-Lab Diagnostics)

Require RNA
extraction unspecified Fluorescence (LoD =

125 copies/swab)
Genie HT Instrument

(OptiGene)

SARS-CoV-2 RNA
DETECTR Assay

(USCF Health Clinical
Laboratories)

Require RNA
extraction RT-LAMP

Fluorescence aided by
the enzymatic system

CRISP/Cas
CRISPR/Cas (20

copies/µL)

Real-time PCR
instrument

Isothermal NAATs require means to ensure some minimal reaction conditions, such as
the optimal ratio between reagents and sample, a working temperature and the integration
of a suitable method for reading the assay results. However, they are more favourable
for POCT integration than RT-qPCR in terms of complexity and costs. Moreover, several
isothermal NAATs are currently available under FDA-EUA regulation, and most of them
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pave the road to genuine POCT by reducing the required laboratory equipment or even
advancing user-friendly, over-the-counter devices for home testing.

LAMP-based alternatives to PCR emerged to overcome the time consuming and
laborious detection by RT-qPCR-based techniques [61]. Indeed, the LAMP method is
compatible with reverse transcriptase and was used for SARS-CoV testing on a benchtop
assay [79]. This simple-to-perform technique uses four specially designed primers and
amplifies DNA with high specificity, efficiency and rapidity under isothermal conditions
(constant temperature of 65 ◦C). The technique’s efficacy may be improved by adding
special fluorescent dyes or colour changing dyes to the reaction mixture. LAMP uses strand-
displacement polymerases [80] rather than heat denaturation and provides a continuous
amplification of RNA/DNA (up to 109 copies in less than 60 min). Since LAMP offers one-
step detection (the sample preparation steps are simplified) and uses one single protocol,
it also offers faster results. Moreover, it tolerates inhibitors and has higher stability [81]
and sensitivity than PCR. A meta-analysis of NAATs on respiratory samples to detect
coronaviruses shows that RT-LAMP assays have slightly lower sensitivity but are still
comparable to RT-qPCR-based testing (75–90.5% vs. 78.1–98.5%) [82]. Since LAMP-based
devices have been employed for viral detection, such as Avian influenza and human
norovirus, it is a strong candidate for POCT in COVID-19. It detects the persistent disease
and, thus, contributes significantly to active epidemiological surveillance. For instance,
Abbott’s portable ID NOWTM Molecular platform offers healthcare providers the chance
to perform molecular POCT outside the hospitals’ settings within minutes: positive results
in as little as 5 min and negative results in 13 min. It tests the RdRp gene from the oro-
and nasopharyngeal samples and is versatile and user-friendly [83,84]. Despite being
cost-efficient, LAMP cannot provide information on previous infections with SARS-CoV-2,
and none of the devices on the market have been designed as a use-at-home device by
untrained people. Therefore, viable alternatives based on combinations of isothermal
amplification and other methods were explored [85].

5.1.3. Sequencing-Based Tests

Sequencing-based tests have also been developed for SARS-CoV-2 detection, em-
ploying either Sanger sequencing [86] or Next-Generation of Sequencing (NGS) technolo-
gies [87]. Although these tests are not as accessible as other NAATs, and require specialized
personnel for data collection and interpretation, they are essential for surveillance testing
of new viral variants. They offer information of utter importance for epidemic tracking,
thus aiding pandemic management. However, the complexity of such tests currently rules
them out as suitable candidates for integration on POCT devices.

5.1.4. CRISPR-Mediated Detection

CRISPR-mediated detection is a biotechnological technique used for genome editing
and is adapted to detect a specific NA sequence. It is considered to be a highly reliable,
specific and sensitive detection method [18]. Several attempts investigated CRISPR for
potential rapid COVID-19 testing and developed related protocols currently available
online [88]. An essential advantage of CRISPR is the simplified detection process at a
constant temperature of 37 ◦C. However, the major disadvantage is the lack of automation
with manually operated protocols that increase sample contamination risk [89]. Moreover,
it is essential to consider that, if the virus mutates in the RT-PCR target region, SARS-
CoV-2 may not be detected or detected less predictably. Therefore, it is imperious to
finalize the performance characteristics and evaluate its limitations in relationship with the
epidemiology of the disease. For instance, the results provided by Sherlock Biosciences’
SherlockTM CRISPR SARS-CoV-2 kit are more likely false-negative when the disease’s
prevalence is high and false-positives when prevalence is moderate to low. Moreover,
inhibitors or other types of interference (i.e., common cold medications) may produce a
false negative result. Therefore, further work will optimise the CRISPR-based detection
method to suit the requirements of POCT devices.
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5.1.5. Combined Methods

Different types of isothermal amplification can be combined to obtain optimized
NAAT assays. For instance, Penn-RAMP [90] synergistically combines RT-LAMP (specific
due to the increased number of complementary primers per target) with RPA, which might
be less specific but can increase the test’s sensitivity. One more example is the combination
of LAMP and CRISPR-mediated detection: the SHERLOCK (Specific High sensitivity
Enzymatic Reporter unLOCKing) technique, which offers reduced dependence on RT-
qPCR equipment. The SherlockTM CRISPR SARS-CoV-2 kit by Sherlock Biosciences, Inc.
employs one RT-LAMP-based, followed by one CRISPR-based, step. The RT-LAMP reverse-
transcribes the targeted SARS-CoV-2 genomic RNA to DNA, and a strand-displacing
DNA polymerase amplifies this. The subsequently amplified DNA transcription activates
the collateral cleavage activity of a CRISPR complex programmed to the targeted RNA
sequence. This cleavage of nucleic acid reporters makes possible a fluorescent readout
detected by a plate reader. The confirmed limit of detection (LoD) for the SherlockTM

CRISPR SARS-CoV-2 kit is 6.75 cp/mL VTM [91]. However, improvements are required
to overcome the difficulties of fluid sample handling and to increase its potential as an
outside-clinical-labs-testing device.

5.2. Serologic Tests

A significant component of the COVID-19 diagnostic and control is the serological
testing to determine the prevalence of SARS-CoV-2 infection and measure the individual
immune responses to SARS-CoV-2 infection or vaccination. Several studies have shown
that convalescent-phase patient sera contain high SARS-CoV-2 spike-specific IgA, IgM and
IgG antibodies with significant neutralising activity [92–95]. The spike protein’s sequence
divergence from those of the widely circulating endemic hCoVs (30% sequence similarity
of the S gene at the amino acid level) makes it an ideal antigen to detect and measure
SARS-CoV-2 seroconversion. In September 2020, the U.S. FDA issued an emergency use
authorisation (EUA) for the first serology (antibody) POCT for COVID-19. The Assure
COVID-19 IgG/IgM Rapid Test Device was first authorised for emergency use by specific
labs in July 2020 to help identify individuals with antibodies to SARS-CoV-2 and indicate
ongoing or prior COVID-19 infection [96]. Also, the European Center for Disease Control
and Prevention (ECDC) endorsed serologic tests for epidemiological and surveillance
means only to monitor the viral status [97] and follow the immune response of affected sub-
jects [55]. Interestingly, an Israeli national multi-centre task force validated, clinically and
analytically, seven serology assays to determine their utility and limitations for SARS-CoV-
2 diagnosis. Their results showed that ~5% of symptomatic SARS-CoV-2 positive patients
remained seronegative across a wide range of antigens, isotypes and technologies [13]. It
is acknowledged that, due to SARS-CoV-2 infection, the immune system responds and
develops B lymphocytes able to secret specific antibodies, immunoglobulins (IgA, IgM
and IgG). COVID-19’s natural progression and the kinetics of anti-SARS-CoV-2 antibodies
revealed a 10–21-day window between the symptoms’ onset and the antibodies detection
in serum [93,98]. Slight intra- and interpersonal variations for each type of Ig detected
were identified, highlighting again the challenge in evaluating the antibodies’ effectiveness
and understanding the virus’s pathogeny [99–103]. Detecting IgA in mild or asymptomatic
forms of infection demonstrated one way to improve the diagnostic means while using
blood and saliva samples [104]. IgM is the first immune response to the virus, while IgG
has higher stability and persistency in serum, indicating infection stages. The specific anti-
bodies, either attached to the B cells’ surface or free in the interstitial fluids, act as receptors
for the viral antigens [105], more specifically the nucleocapsid [106] or spike proteins [94],
and neutralise the virus’s effect [107]. The protective immune response of patients with
COVID-19, precisely the IgG, decreases two–three months after infection [108]. Therefore,
the main advantage of serological approaches is the identification of previous infections
even without testing in the active phase of the disease. However, the main challenge is their
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insufficient accuracy, as the anti-SARS-CoV-2 immunoassays may present cross-reactions
with other coronaviruses [109].

To date, several serological tests are considered, some of which were marketed as
POCT. The available-on-the-market devices can be classified into:

1. Tests that detect a reaction and require trained personnel to interpret the results;
2. Tests that detect only the presence of antibodies by a colourimetric change.

The methods employed by serological tests include rapid diagnostic tests (RDTs),
enzyme-linked immunoassays (ELISAs), chemiluminescent immunoassays (CLIAs) and
neutralisation assays. Generally, RDTs, as POCT, rely on a cost-effective mobile non-
automated method, most commonly lateral flow, to extract qualitative data in 5–20 min
from a low sample volume without extensive specialised training. Despite these advan-
tages, their accuracy is low, and their use is criticised as independent-from-the-centralised-
laboratory types of tests. The lateral flow assay, ELISA and CLIA are more frequently
used to test for IgG and IgM antibodies than a neutralisation assay that counts the neu-
tralising antibodies that can effectively bind to and block virus replication. The clinical
sensitivity and specificity of the existing commercial products are within 86–93.5% and 96–
100%, respectively. The majority of the rapid tests are paper-based devices manufactured
worldwide (Table 2). Importantly, the FDA constantly updates the list of approved and
distributed tests according to The Policy for Coronavirus Disease-2019 Tests [110].

The first rapid antibody blood test for SARS-CoV-2 developed by Cellex [111] and EUA
approved by the FDA is a lateral flow immunoassay IgG/IgM SRT that provided 15–20 min
results for total antibody. The clinical evaluation on blood, plasma and serum samples
demonstrated a clinical sensitivity of 93.8% and specificity of 96.0%. Autobio Diagnostics
Anti-SARS-CoV2 Rapid Test [112] and Chembio Diagnostic System’s DPP COVID-19
IgM/IgG system [113], also approved for EUA by the FDA, were lateral flow immunoassay
tests to detect IgG and IgM. In comparison, Chembio Diagnostic System employed the DPP
microreader for a qualitative readout to decrease the misinterpretations caused by visual
detection of IgG/IgM. The clinical specificity was 97.6% for IgM, 96.8% for IgG and 94.4%
for IgM and IgG combined. One example of a CLIA-based test, VITROS Immunodiagnostic
Products Anti-SARS-CoV-2 Total Reagent Pack/Total Calibrator, detected total IgG/IgM
in around 50 min, without differentiating them. The clinical sensitivity is 83% (30/36;
95% CI: 67.2–93.6%) and clinical specificity is 100% (400/400; 95% CI: 99.1–100.0%). La
Roche modified the CLIA [114], as an electrochemiluminescent immunoassay (ECLIA), and
developed Elecsys® Anti-SARS-CoV-2 Test to detect, in only 18 min, the total antibodies
against N protein. The clinical sensitivity is 100% and the clinical specificity is 99.81%.

Similarly, Bio-Rad’s Platelia SARS-CoV-2 Total Ab test by Bio-Rad Laboratories de-
tected total antibodies against the N protein. Meanwhile, Abbott’s SARS-CoV-2 IgG Assay
detected IgG against the N protein instead of total antibody levels. Table 2 presents the
essential features of some of the FDA-EUA- and European Commission-approved sero-
logical tests: all tests can be used with serum or plasma samples as detection methods.
The test’s sensitivity and specificity were evaluated in samples collected after a specific
time interval (10–14 days) after symptoms onset of positive direct detection. Some tests
are semi-quantitative or quantitative, ready to be used as POCT. The RDT commercially
approved tests are paper-based biosensors for POCT.
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Table 2. Main commercially available serological tests.

Test Name Method/Technology Manufacturer Ig Time
[min]

Sensitivity/Specificity
[%] Reference

SARS-CoV-2
IgG Assay

Chemiluminescent
microparticle
immunoassay

Abbott Lab.
IgG only
against N

protein
~30 100/99.63 [115]

COVID-19
IgG/IgM Rapid

Test Cassette

Immunoassay
colloidal gold Acro Biotech IgM, IgG ~10 IgG 100/98

IgM 85/96 [116]

Anti-SARS-
CoV-2 Rapid

Test

Lateral flow
immunoassay

Autobio
Diagnostics

IgG and IgM
only against S

protein
~15 99.0/99.04 [117]

2019-nCoV
IgG/IgM

detection kit
(colloidal gold)

Solid-phase
immuno-

chromatographic
Biolodics IgM and IgG ~10 91.54/97.02 [118]

Platelia
SARS-CoV-2

Total Ab assay

Semiquantitative
ELISA Bio-Rad Lab

IgA, IgM, IgG
against N

protein
~100 92.2/99.6 [119]

COVISURE™
COVID-19

IgM/IgG Rapid
Test

Lateral flow
immunoassay W.H.P.M., Inc. IgM/IgG ~15 IgM 76.7/97.1

IgG 70/97.1 [120]

qSARS-CoV-2
IgG/IgM Rapid

Test

Lateral flow
immunoassay Cellex

IgG and IgM
only against S
and N proteins

15–20 93.8/96 [121]

Finecare TM
2019—nCoV

Antobody Test

Lateral flow
fluorescence

immunoassay

Guanzhou
Wondfo Biotech IgM + IgG ~15 86.43/99.57 [122]

Clungene
COVID-19

IgM/IgG rapid
test cassette

Rapid immune
antibody

immunoassay test

Hangzhou
Clongene
Biotech

IgM, IgG ~15 87.1/98.89 [123]

LIAISON
SARS-CoV-2

S1/S2 IgG

Chemiluminescent
immunoassay DiaSorin IgG against

S1/S2 protein ~35 97.56/99.3 [124]

Anti-SARS-
CoV-2 ELISA

IgG/IgA
Anti-SARS-

CoV-2
QuantiVac

ELISA
(IgG)/Anti-
SARS-CoV-2
NCP ELISA

IgG/IgM

ELISA for
semi-quantitative
and quantitative

determination

Euroimmun
(Perkin Elmer)

IgG, IgM,
against S1 and
nucleocapsid

protein

15–60 94.4/99.6
IgA 100/92.4 [125]
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Table 2. Cont.

Test Name Method/Technology Manufacturer Ig Time
[min]

Sensitivity/Specificity
[%] Reference

VITROS
Immunodiag-

nostic Products
Anti-SARS-
CoV-2 Total

Reagent Pack

Chemiluminescent
immunoassay

Ortho Clinical
Diagnostics

Total antibody
against S1 ~50 100/100 [126]

COVID-19
IgG/IgM rapid

test device
Lateral flow RayBiotech 90.44/98.31 [127]

Elecsys Anti-
SARS-CoV-2

Electrochemi-
luminescence
immunoassay

Roche
Total antibody

against N
protein

~18 100/99.81 [114]

Standard Q
COVID-19

IgM/IgG Duo
Immunochromatography SD Biosensor IgM and IgG ~10 90.6/96.1 [128]

Atellica IM®

SARS-CoV-2
Total (COV2T)

Chemiluminescent
microparticle
immunoassay

Siemens
Healthcare

Total antibody
against RBD of

S1 protein
~10 100/99.82 [129]

MAGLUMI
2019-nCoV
IgM/IgG
(CLIA)

Immune-antibody
assay quantitative SNIBE Co. Ltd. IgM, IgG ~30 IgM 78.7/97.5

IgG 91.2/96 [130]

SGTi-flex
COVID-19
IgM/IgG

Immunochromatography Sugentech Inc. IgM, IgG ~10 IgM 90.8/98.33
IgG 90.18/100 [131]

SGT Anti-SARS-
CoV-2 Total Ab

ELISA
ELISA IgM, IgA, IgG ~150 Higher than Rapid

test

Presently, labs have used serologic tests to conduct major antibody seroprevalence
studies and qualitatively analyse the previous exposure to SARS-C0V-2 [132]. Since the
results are not for COVID-19 diagnosis, even when high IgM levels are observed, the
serologic testing should be complemented by molecular testing to identify the RNA pres-
ence. Therefore, consolidating the diagnostic protocols and including clinical and lab
evaluations [133,134] is imperative for timely identification of infection and exposure and
vaccines’ efficacy evaluation. In this direction, Fluidigm launched the Community Connect
Program to improve access to saliva-based COVID-19 testing. Furthermore, Thermo Fisher
Scientific and the University of Oxford-developed Thermo Scientific OmnipathTM Combi
SARS-CoV-2 IgG ELISA test detects and quantifies anti-SARS-CoV-2 antibodies and con-
tributes to a higher university testing capacity (up to 50,000 tests per day). Furthermore,
Euroimmun provided a complete package for COVID-19 diagnosis, which comprised FDA-
EUA authorised PCR tests, differential serological tests and surrogate virus neutralisation
tests [135]. Ongoing technological improvements such as the MAGLUMI® SARS-CoV-2
diagnostic portfolio (MAGLUMI®SARS-CoV-2 S-RBD IgG, CLIA Kits, MAGLUMI®SARS-
CoV-2 Neutralizing Antibody Assay) received the CE Mark recently to contribute and
guide the clinical decisions in the combat of COVID-19 [136,137]. Similar outcomes would
quantify the vaccines’ response accurately to assess the vaccine performance [138] and
further develop immunodiagnostic tests for COVID-19 as cost-efficient, accurate qualita-
tive and quantitative tests for POCT [3,139]. An integrated database analysis of available
commercial tests was undergone to measure antigen and antibodies and which contributes
to the scientific literature on COVID-19 tests methods and devices [41].
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5.3. Lateral Flow-Based Detection

Lateral Flow Immunoassays (LFIA) or immunochromatography (LFIC) are currently
the only available rapid POCT devices for SARS-CoV-2 diagnosis (Table 2). They detect
SARS-CoV-2 antigens and related IgM and IgG. These tests provide short turnaround times
(15 min) and do not rely on specialist laboratories or scientific analysis unless extensive
batch testing is involved. This method is also cost-efficient, primarily when employed for
serological tests. When used as molecular tests, the antigen assays detect the virus directly
without RT-PCR or LAMP amplification steps. The testing devices generally comprise a
shallow well and a porous test strip impregnated with antigens doped with a colourimetric
indicator. Ten–fifteen µL of whole blood, serum or plasma are placed in the shallow well
with each kit-specific buffer [93]. The buffer and the biological sample are to be absorbed in
the porous strip. If the fluid sample is from a SARS-CoV-2 positive patient, the antibodies
bind the immobilised antigens, triggering the colourimetric reaction. This antigen–antibody
interaction leads to the formation of a narrow collar band, visible with the naked eye.

Joung et al. [15] developed a simple chemistry test suitable for POCT use, STOP
(SHERLOCK Testing in One Pot). This simplified test, STOP COVID, designed to detect
SARS-CoV-2 in one hour, provides sensitivity comparable to RT-qPCR-based SARS-CoV-2
tests and has a limit-of-detection of copies of viral genome input in saliva or nasopharyn-
geal swabs per reaction. The test returns the result in 70 min when using lateral readout
and 40 min when using fluorescence readout. Moreover, it has been validated using na-
sopharyngeal swabs from COVID-19 patients and correctly diagnosed 12 positive and 5
negative patients of three replicates. The authors suggested that STOPCovid use would
significantly support the “test-trace-isolate” initiatives, particularly in low-resource set-
tings. However, the poor sensitivity of lateral flow-based systems at the early stages of
SARS-CoV-2 infection and the low throughput hinder their use as POCT [16]. Recently, new
data highlighted that the lateral flow devices for asymptomatic mass testing proved con-
troversial. The report discussed the lacking performance as a POCT to “enable” a broadly
distributed, affordable and rapid Innova lateral flow assay for repeat asymptomatic test-
ing. The authors concluded that people testing negative must stick to infection control
recommendations [17]. Furthermore, the main problem associated with this type of device
is the incapacity to detect the actual infection. Since the immunological response takes
time to be identified (the organism did not start forming antibodies against the virus) and
varies from one patient to another (in some patients, the immune response is weak with
untraceable antibodies), the infection may be undetectable [11]. Further work will improve
the technology and results to increase this method’s potential to monitor post-infection and
post-vaccination levels of immune responses efficiently. A detailed presentation of lateral
flow devices for abroad diagnostics is summarized by Pohanka in [140] and Yadav et al.
in [141].

5.4. Biosensors on Microfluidic Devices as POCT

Advancing biosensors-based POCT, either on-chip, paper or other materials, could
be a solution for the rapid diagnosis of infectious diseases such as COVID-19. These
methods, used to detect nucleic acids, antigens or antibodies in various unprocessed
biological samples (saliva, sputum, blood), allow the readouts on colourimetric, fluorescent
or electrochemical approaches. Most of the biosensors reported for SARS-CoV-2 detection
are based on those developed for other types of genetic or biological sensors with an
adjustment of the sensitive element targeting a specific viral protein or gene.

5.4.1. Electrochemical Biosensors

Electrochemical biosensors are the most versatile [142,143]. Electrochemical biosensors
require simple instrumentation and they are highly sensitive, cost-effective and possibly
miniaturised. Therefore, they are good candidates as Point-of-Care devices. Electrochem-
ical biosensors usually employ the three-electrodes cell configuration: the working, the
counter and the reference electrode. The working electrode, usually of gold, is modified
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with viral proteins, a probe complementary to the viral genome or antibodies. The sur-
face modification gives the specificity to allow detection of viral antibodies, genomes or
proteins. Results can be obtained using voltammetry techniques, such as amperometry,
cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square-wave voltam-
metry (SWV), as well as impedimetric techniques such as electrochemical impedance
spectroscopy (EIS). Zhou et al. took a step forward and used electrochemical biosensors
to detect various pathogens, including SARS-CoV-2. They reported an electrical detec-
tion of DNA hybridisation using non-Faradaic EIS [144], a sandwich-type electrochemical
impedance immunosensor for Clostridium difficile toxin [145], and then a SARS-CoV-2
diagnostic method [146]. Furthermore, Rashed et al. [147] proposed a label-free EIS to
detect SARS-CoV-2 antibodies using a commercial 16-well plate integrated with electrodes
(from ACEA Biosciences). The electrodes were modified with a SARS-CoV-2 spike protein
receptor-binding domain and tested with samples of anti-SARS-CoV-2 monoclonal anti-
body CR3022. The system was also tested on clinical serum samples. In the same direction,
Chandra et al. [148] proposed a smartphone-assisted EIS platform using screen-printed
carbon electrodes; however, there is no clear information about the testing of the device.
An overview of electrochemical methods used for detection (including for SARS-CoV-2)
is presented by Imran et al. in [149]. A portable molecular imprint polymer-based (MIP)
electrochemical sensor for detecting the SARS-CoV-2 nucleoprotein through differential
pulse voltammetry was reported by Raziq et al. in [150]. The functionality of the device
was clinically tested on nasopharyngeal swabs. MIP biosensors have an excellent poten-
tial due to their long-term and thermal stability, cost and high specificity and stability;
however, they present certain limitations related to the clustering of nanomaterials during
synthesis. Nevertheless, the commercialization of MIP biosensors is still limited [151]. The
potential electrochemical immunosensors for the fast testing of SARS-CoV-2 was analyzed
by Ranjan et al. [152].

5.4.2. Field-Effect Transistor (FET)

Field-effect transistor (FET) is another platform for the rapid and accurate detection
of various analytes. Until now, it was used for detecting target analytes in gases and
water. FET biosensors have a fast response and are relatively low-cost and easy to use.
They can achieve high sensitivity and selectivity due to specific biomolecules immobilised
conducting channels. This feature is considered a critical factor for FET sensor perfor-
mance. Two-dimensional (2D) semiconductor materials, such as graphene, MoS2 and
black phosphorous (BP), are mainly used as conducting channels due to their superior
electronic properties. Reduced graphene oxide (rGO) was helpful as a conducting chan-
nel for detecting human immunoglobulin G20 [153]. The first report on using the FET
sensor for detecting SARS-CoV-2 belongs to Seo et al. (Figure 1C) [154]. The conductive
channel of graphene sheets was modified with a specific antibody against SARS-CoV-2
spike protein. The FET biosensor’s detection limit for clinical samples was established
to be 2.42 × 102 copies/mL. An overview of graphene-based biosensors for COVID 19 is
presented by Sengupta et al. in [155]. Besides the lower cost of the device and its relatively
simple testing setup, the main advantage of FET biosensors is that it does not require
sample preparation or labelling.

5.4.3. Plasmonic Biosensors

Plasmonic biosensors were used for label-free detection and are remarkably sensitive,
fast and can give results in real-time. They are suitable for various types of clinically
interesting target analytes where the main challenge is detecting small molecules at ultralow
concentrations [156]. The special focus on this type of biosensor must be according to
surface biofunctionalisation, which can potentially achieve the provision of an integrated
lab-on-a-chip capable of transporting and detecting minutes of multiple bio-analytes with
extremely high sensitivity and selectivity for dynamic monitoring at point-of-care levels.
Functionalised substrates with antibody/antigen, aptamers and molecular imprinting offer
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specificity of detection [157]. A recent report described plasmonic biosensors for SARS-
CoV-2 nucleocapsid antibodies detection used without diluted human serum [158]. Other
work on COVID-19 lab diagnostics [159] presented two-dimensional gold nanoislands
(AuNIs) functionalised with complementary DNA receptors, which can perform a sensitive
detection of the selected sequences through nucleic acid hybridisation.

However, further work is required to develop the clinical sensitivity and specificity of
the biosensors-based POCT for COVID-19 towards the levels of qRT-PCR ones (79–97%
and 100%, respectively) [160,161].

5.5. Nanotechnological Approaches

Metallic, silica, polymeric or carbon-based nanomaterials (nanoparticles or nan-
otubes) functionalised with biomolecules such as DNA, RNA, peptides, aptamers, an-
tibodies or antigens are used on a large scale for virus detection through colourimetric
or antigen-binding assays [162–165] due to their optical, magnetic, electric or catalytic
properties [166–168]. The main advantage of the nanomaterials is the high surface-to-
volume ratio that can accelerate the sensor–analyte interaction for faster and effective
detection of the virus [169]. Nanotechnological approaches were used in the detection of
the SARS-CoV-2 virus. Moitra et al., in [170], proposed a colourimetric method based on
plasmonic Au nanoparticles that were thiol-modified with antisense oligonucleotides and
optimised specifically for the SARS-CoV-2 nucleocapsid phosphoprotein. In the presence
of the targeted RNA, the gold-modified nanoparticles aggregated. The next step identified
the positive samples if precipitation of Au nanoparticles occurred in the solution in the
presence of RNase H. The processing time of the above-described method was relatively
short (10 min), and the method did not require expensive instrumentation; however, the
cost of the reagents limited its applicability. The graphene nanosheets of the FET [154]
were modified with specific antibodies against the S protein. The device’s detection limit
was 1 fg/mL S protein in buffered saline and 100 fg/mL in clinical transport medium.
Nasopharyngeal swabs from patients with COVID-19 were used to validate the system,
and the detection limit in clinical samples was evaluated at 2.42 × 102 copies/mL. The
method’s main advantage was that it did not require sample preparation, being also highly
sensitive. Zhong et al. [171] used SARS-CoV-2 spike protein antibody-functionalised mag-
netic nanoparticles to detect SARS-CoV-2 by measuring the magnetic particle spectroscopy
signal. Their study used 100 nm polystyrene nanoparticles conjugated with SARS-CoV-2
spike proteins for testing (no clinical samples). Detection of IgM and IgG antibodies is also
based on gold colloidal nanoparticles in conjunction with lateral flow assay [99,172,173].
Chen et al. [174] reported the use of near-infrared (NIR) aggregation-induced emission
nanoparticles for IgM and IgG detection using lateral flow immunoassay. The main ad-
vantage of the proposed method was the reduced autofluorescence of the nitrocellulose
membrane when NIR excitation was used.

5.6. Point of Care Testing (POCT)

One way to control the COVID-19 outbreak that registered an exponential increase of
cases in populations worldwide is to afford screening and diagnostic testing protocols that
identify the positives quickly and accurately and facilitate quarantine and treatment. Since
preanalytical factors contribute essentially to the testing procedure’s quality, the collection
of specimens for on-site testing is crucial. In response to the SARS-CoV-2 pandemic,
Gibani et al. assessed the performance of the redesigned DNANudge, UK into RT-PCR
CovidNudge, as one rapid diagnostic test with no laboratory handling or sample pre-
processing. The device, implemented in UK hospitals since May 2020, used naso- and
oro-pharyngeal swabs and could facilitate rapid decisions for clinical care and testing
programmes at a sensitivity of 93–94% and a specificity of 100%. The SARS-CoV-2 assay’s
array consists of seven viral targets (rdrp1, rdrp2, e-gene, n-gene, n1, n2 and n3) and one
control (Ribonuclease P, RNase P). It had a run time of less than 90 min and allowed safe
testing outside a lab setting; however, the relatively low throughput imposed multiple
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processing units depending on the clinical setting for centralised testing (Figure 1D) [175].
The same principle used by laboratory-based testing permits partial automation and faster
results (13–45 min). Therefore, they might be recommended for urgent clinical cases.
However, the compromise between the turnaround time and the accuracy of the current
systems is one serious barrier to be addressed. Since POCT is one viable alternative, it is
supported by solid regulatory guidance for the laboratories that develop and implement
COVID-19 molecular diagnostic tests. POCT provides an easy solution when mass testing
is required because the testing protocol can be followed easily step-by-step, and the testing
can be performed without any special medical training. Since the POCT systems are simple
devices for easy-at-home use, they offer the users the ability to run a complete test, from
sample preparation to results readouts, within minutes. Therefore, the users will seek
timely and specific professional advice, which is essential for pandemic control.

Figure 1. Examples of detection systems for SARS-CoV-2: (A) Nucleic Acids Amplification Testing-reverse transcription-
polymerase chain reaction (NAAT-RT-PCR, gold standard for diagnostic), colorimetric real-time Loop-Mediated Isothermal
Amplification (RT-LAMP) reaction; (B) detection of viral antigens and IgG/IgM antibodies using lateral flow tests/ELISA
(enzyme-linked immunoassays); (C) schematic representation of a biosensor for SARS-CoV-2 detection; (D) schematic
workflow of CovidNudge Point of Care diagnostic for SARS-CoV-2 (adapted from Gibani et al. [175]).

Yin et al. [176] integrated multiplex digital RPA and fluorescence-based detection
of nucleic acids into a sample-to-answer-chip-based PDMS device. The three-step pro-
cess on a simple instrument and control system tested for nucleic acids in 45 min and
proved to have immense potential as POCT in COVID-19 detection. Furthermore, au-
tomation and coupling with a smartphone are steps forward towards PoCT devices. For
instance, Ma et al. [177] proposed a PDMS-LAMP-based system that quantified the results
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on colourimetric signals by HNB in 40 min. Most recently, an RT-LAMP-based benchtop as-
say demonstrated its performance and potential as a COVID-19 diagnosis tool: it similarly
showed positive results with the WHO-approved RT-qPCR-based standard device [178].
Moreover, the LAMP protocol’s simplicity has been considered a great advantage for its
use in POCT devices [161,179]. Such results further support the new protocol’s capability
to be implemented on microdevices for at-home testing. The outcome will be effective
for mass-at-home testing for a more robust prevention strategy for a diminished risk of
spreading viruses such as SARS-CoV-2. More attractive than the chip-based alternative is
the paper-based alternative, due to its cost-effectiveness. The method includes biodegrad-
able materials and employs affordable fabrication processes that allow modifications and
functionalization [180–182]. For instance, a lateral flow-based system can increase the
potential of both molecular and serological testing for COVID-19 diagnosis. Since its first
version in 2016 [183], several improvements have developed. One of them incorporated
Fast technology Analysis (FTA) for nucleic acids extraction, LAMP for amplification (with
small portable heater) and lateral flow for detection, all assembled with hydrophobic
polyvinyl chloride to control the flow onto the platform [184]. Further simplification by
Tang et al. [185] introduced semi-automation and on-board reagent storage and equipment
free LAMP. The recent solution proposed by Reboud et al. [186] is a lateral flow-based
test strip that incorporates elements to control the flow and prevent reagents from mix-
ing. The new combination showed the ability to detect SARS-CoV-2 nucleic acids in less
than 50 min in an unprocessed sample such as sputum. It also can be a future diagnostic
tool in resource-limited locations. Trinh et al. [187] recently proposed two versions of 3D
paper-based microfluidics sensors and evaluated molecular testing methods. The first is
a fully integrated and foldable biosensor with LAMP-based amplification and multiplex
fluorescence-based detection. The design included the reaction zone and the detection zone
encapsulated with agarose for the reagents’ long-term storage. The detection used silver
nitrate as a reaction indicator and UV light to visualise the reaction between the amplicons
and the silver ions. The second model is an alternative that uses fuchsin for colourimetric
detection of DNA amplicons. This version comprises a sample zone, a reaction zone (LAMP
based process) and a detection zone that provide a simple naked-eye-detectable colouri-
metric signal. Furthermore, Kukhtin et al. [188] proposed a film-based biosensor as POCT
of unprocessed samples via amplification and fluorescent imaging. The system is easy to
fabricate, user-friendly, cheap and compatible with amplification processes. Moreover, it
demonstrated its potential for detecting SARS-CoV-2 infection.

To date, there are commercial tests available to measure antigens and antibodies
levels, but only a few are POCT [189]. The FDA-EUA-POC Xpert Xpress SARS-CoV-2
test by Cepheid, USA, provides results in 30 min using the GenXpert benchtop system.
This simplified device is for medical offices and clinics. It is an automated, molecular RT-
PCR test which qualitatively identifies SARS-CoV-2 multiple regions of the viral genome
and Flu A, B and RSV in nasopharyngeal, nasal and aspirate samples. Cepheid’s Xpert
Xpress Test detects both N2 and E SARS-CoV-2 genes, offering an additional assurance
to the diagnosis [190]. Abbott Diagnostics introduced products closer to POCT concepts.
The Scarborough, Inc.’s BinaxNOW COVID-19 Ag Card received the EUA for use at the
POCT [191]. Interestingly, Abbott BinaxNOW COVID-19 Ag card’s evaluation as a rapid
antigen diagnostic test at the Point-of-Care to supplement molecular testing was reported
in a high-throughput, drive-through, free community testing site in Massachusetts [192].
The participants in the study, adults and children, were tested using paired reverse tran-
scriptase PCR (RT-PCR)/BinaxNOW on anterior nasal (AN) swab samples upon providing
their symptoms-related data. BinaxNOW demonstrated very high sensitivity in both age
groups and high sensitivity in newly symptomatic adults, supporting the recommenda-
tions for using this test in adults with symptoms for less than seven days without RP-PCR
confirmation. The study also highlighted the high throughput and the attention to be
paid to fluctuations in temperature. Furthermore, the BinaxNOW COVID-19 Ag Card
Home Test is a to-be-used-completely-at-home test. Interestingly, the test was offered
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by prescription in partnership with a telehealth service, bringing the POCT procedure
to a new level: home collection and pool testing. However, caution was advised as the
antigen tests are less sensitive than molecular PCR-based ones, even though highly specific.
Compared with PCR, the FDA EUA ID NOW COVID-19 [193], as an isothermal nucleic
acid amplification-based test, runs at a constant temperature, without thermal cycles, and
amplifies six distinct regions on the target gene with the help of four sets of primers and
a polymerase with high strand displacement activity. It targets one unique region of the
RNA-dependent RNA polymerase (RdRP) gene of SARS-CoV-2. Therefore, the ampli-
fication is better and faster (~13 min for oropharyngeal, nasopharyngeal or nasal swab
samples) than standard PCR. The kit is stable when stored at 2–30 ◦C and gives a simple
method for mixing the sample with the specific reagents and transferring the prepared
specimen for testing. The confirmed LoD in the natural nasopharyngeal swab matrix was
125 copies/mL, with analytical sensitivity and specificity of 100%. Clinical sensitivity and
specificity were 100% at 2 × LoD and 5 × LoD, respectively. Similarly to Abbot’s test, Cue
COVID-19 (Cue Health) [194] employed isothermal amplification with similar accuracy.
This portable assay detected the SARS-CoV-2 N gene from nasal swab samples in less than
25 min and connected to a mobile phone to enable a diagnostic POCT platform.

For easy and fast diagnosis, multiplex platforms were considered. One example
is Mesa Biotech Inc., which developed the Aculla SARS-CoV-2 Test as a multiplex that
combines RT-PCR and lateral flow immunoassay and targets the SARS-CoV-2 N gene to
detect the virus in nasal swabs specimens. The simple procedure, the visually displayed
results and the short turnaround time (~30 min) indicate the test’s potential as POCT. The
confirmed LoD in natural nasal swab matrix was 150 copies/mL, with an analytical sensi-
tivity of 97%. The analytical specificity, Overall Precent Agreement (OPA), reported was
100% (95% CI: 93.15–100%) in a prospective clinical study, and 98% (95% CI: 89.35–99.95%)
in a retrospective clinical study. Even though the accuracy of these systems is similar,
the cost-effectiveness and user-friendliness levels favour the isothermal-based platforms.
However, detecting genes on isothermal amplification-based devices is slightly more com-
plex than on PCR-based systems, making these platforms preferred in clinical settings for
diagnosis. Authorising multiplexed nucleic acids testing is one step towards simultaneous
qualitative detection and identification of multiple respiratory pathogens. One example is
BioFire Respiratory Panel 2.1 (RP2.1), in which the first COVID-19 diagnostic test granted
marketing authorisation using the de novo review pathway. A multi-target POCT-based
test recently received the marketing authorisation to screen individuals suspected of respi-
ratory tract infections, including COVID-19, through testing for viral and bacterial nucleic
acids in nasopharyngeal swabs [195]. The device supports the diagnosis of respiratory
infection in conjunction with other clinical, epidemiologic and laboratory data or other risk
factors. One factor that influences the efficiency of tests is the time factor eventually related
to the collection of the specimens. This preanalytical step could be the key to fast and
effective laboratory screening and timely diagnosis, depending on the collection timing
and specimen types. MatMaCorp COVID-19 2SF Test (DBA MatmaCorp, Inc.) [196] and
Real-time GENETWORx COVID-19 Nasal Swab Test and kit, RCA Laboratory Services
LLC dba GENETWORx, received EUA limited to authorised laboratories for the qualita-
tive detection of nucleic acid from SARS-CoV-2 in unsupervised at home self-collected
nasal swab specimens when determined to be appropriate by healthcare providers. This
test belongs to the group Real-time RT-PCR, Home Collection [197], similarly to Verily
COVID-19 RT-PCR Test, Verily Life Sciences, one Real-time RT-PCR, Pooling, Home Col-
lection [44] and CRSP SARS-CoV-2 Real-time Reverse Transcriptase (RT)-PCR Diagnostic
Assay, Clinical Research Sequencing Platform (CRSP), for authorised laboratories at MIT
and Harvard [45]. The rapid and accurate diagnostic strategy also included an ongoing
evaluation of screening methods that use saliva specimens to determine patients’ infection
status. Since the SARS-CoV-2 NA is generally detectable during the acute phase of infec-
tion, combining patient history and clinical and other diagnostic information increased the
chances of successful POCT. Therefore, the FDA issued EUAs to special testing devices
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in the group called “Saliva Collection Device”. Some of the tests from this category are
limited-to-authorised-laboratories tests and qualitatively detect nucleic acid from SARS-
CoV-2 in saliva specimens collected with the assistance of a healthcare professional (HCP).
For instance, TRUPCR SARS-CoV-2 Kit (3B Black Biotech India Ltd) incorporated the
OMNIgene ORAL OM-505/OME-505 saliva collection device [46], while SalivaDirect (Yale
School of Public Health, Department of Epidemiology of Microbial Diseases) permitted a
fast and direct collection of saliva in sterile containers without preservatives [20]. One step
forward was taken when combining Phosphorus COVID-19 RT-qPCR Test (Phosphorus
Diagnostics LLC) and easy-to-use Oragene® Dx (OGD-510) saliva collection was authorised
as a self-collected at-home device [47].

The results of focused lab work on POCT for COVID-19 manifested as FDA authori-
sation of several tests for screening asymptomatic individuals as over-the-counter (OCT),
with or without prescriptions, POCT [198]. This possible testing strategy is an essential step
towards breaking the epidemiological chain of pandemic infection because it also reduces
the exposure of medical personnel and identifies new cases in the population. Table 3
summarised the authorised POCT systems.

Table 3. Authorised POCT systems.

Name/Manufacturer Type of Test Detection/Turnaround
Time Sample Intended Use Performance Sensitivity LoD Reference

BD
VeritorTM/Becton,

Dickinson

Chromatographic
digital

immunoassay

Rapid test Qualitative
det. Of viral
nucleocapsid

antigens 15 min

direct anterior
nasal swabs from

symptomatic,
asymptomatic
individuals for

processing
within 60 min

For prescription
use as POCT/

screening with a
prescription

under CLIA with
the BD Veritor™
Plus Analyzer

PPA: 84% (95%
CI: 67–93%)

NPA: 100% (95%
CI: 98-100%)

1.4 × 102

TCID50/mL [189,199]

QuickVue
At-Home OTC

COVID-19 Test and
Kit/Quidel Corp.

LFIA

Rapid test,
Qualitative det. of
viral nucleocapsid

antigens 10 min

direct anterior
nasal swabs

OTC at-home
serial screening

for symptomatic,
asymptomatic

individuals

PPA: 83% (95%
CI: 74.9–89.6)

NPA: 99.2% (95%
CI: 97.2–99.8)

does not
differentiate

between
SARS-CoV and

SARS-CoV-2

1.91 × 104

TCID50/mL [200]

BinaxNOW
COVID-19 Antigen

Self Test/Abbott
Diagnostics

LFIC membrane
assay

Qualitative detection
of nucleocapsid

protein antigen w/o
viral transport media

15 min

direct anterior
nasal swabs

OTC at-home
serial screening

for symptomatic,
asymptomatic

individuals

PPA: 77.2% (95%
CI: 70.1–83.4)

NPA: 98% (95%
CI: 96.6–99.5)

Sensitivity of the
assay decreases

over time.
The presence of
mupirocin may

interfere with the
BinaxNOW
COVID-19

Antigen Self Test
and may cause
false negative

results

140.6
TCID50/mL [201]

BinaxNOW
COVID-19 Ag Card

2 Home
Test/Abbott
Diagnostics

LFIC membrane
assay

Qualitative detection
of nucleocapsid

protein antigen w/o
viral transport media

15 min

direct anterior
nasal swabs from

symptomatic,
asymptomatic

individuals

OTC at-home
serial screening
only with the

supervision of a
telehealth

proctor.
The results are
reported to the
user and to the
relevant public

health
authorities

PPA: 78.3% (95%
CI: 71.1–84.4)

NPA: 98% (95%
CI: 96.6–99.5)

Sensitivity of the
assay decreases
over time does

not differentiate
between

SARS-CoV and
SARSCoV-2.

140.6
TCID50/mL [202]
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Table 3. Cont.

Name/Manufacturer Type of Test Detection/Turnaround
Time Sample Intended Use Performance Sensitivity LoD Reference

BinaxNOW
COVID-19 Ag 2
Card kit/Abbott

Diagnostics

LFIC membrane
assay

Qualitative detection
of nucleocapsid

protein antigen w/o
viral transport media

15 min

direct anterior
nasal swabs

POCT screening
in patient care

settings
operating under

a CLIA
Certificate for
symptomatic,
asymptomatic

individuals

PPA: 77.2% (95%
CI: 70.1–84.4%)
NPA: 98% (95%
CI: 96.6–99.5%)

sensitivity of the
assay decreases
over time does

not differentiate
between

SARS-CoV and
SARSCoV-2

140.6
TCID50/mL [203]

MatMaCorp
COVID-19 2SF

Test/
DBA MatmaCorp,

RT-PCR +
isothermal NAA

Qualitative detection
of nucleic acid from

SARS-CoV-2

nasopharyngeal,
mid-turbinate,
anterior nasal

swabs

POCT screening
in patient care

settings. for
symptomatic,
asymptomatic
individuals; it

comprises
sample

preparation and
amplification
and detection.

PPA: 88.5% (95%
CI: 79.5–93.8%)

NPA: 100% (95%
CI: 88.7–100%).

2000 genome
equivalents per
ml (100 genome
equivalents per
50 µL reaction)

[204]

GENETWORx
COVID-19 Nasal

Swab Test and
Kit/RCA Lab.
Services LLC

rt RT-PCR
(Home

Collection)

Qualitative detection
of nucleic acid from

SARS-CoV-2
nasal swab

unsupervised at
home

self-collected
samples, by

qualified
laboratory
personnel

PPA: 99.6% NPA
as expected with

the correct
collected
samples

1.8 × 104
NDU/mL ** [43]

Verily COVID-19
RT-PCR Test and
Kit/Verily Life

Sciences

rt RT-PCR
qualitative detection
of nucleic acid from

SARS-CoV-2

anterior nasal,
mid-turbinate,

nasopharyngeal,
and

oropharyngeal
swab

Pooling, Home
Collection,

unsupervised at
home

self-collected

PPA: 100% (95%
CI: 89.9–100%)

NPA: 100% (95%
CI: 88.7–100%)
low viral loads

may not be
detected in

sample pools
due to the
decreased

sensitivity of
pooled testing

60 GCE/mL [205]

CRSP SARS-CoV-2
RRT-PCR

Diagnostic
Assay/CRSP, LLC
at MIT & Harvard

Real-time
RT-PCR

qualitative detection
of nucleic acid from

SARS-CoV-2

unsupervised at
home

self-collected
nasal swab

individuals
suspected of
COVID-19 by

their healthcare
provider

PPA: 98.3% (95%
CI: 91–99.7%)
NPA: 100.0%

(95% CI:
96.6–100)
Improper
collection,

transport, or
storage of

specimens may
lower the
efficiency

1600 copies/mL [206]

Phosphorus
COVID-19 RT-

qPCR/Phosphorus
Diagnostics

Real-time
RT-PCR

the qualitative
detection of nucleic

acid from
SARS-CoV-2 in

Upper
respiratory tract
swabs, washes/

aspirates,
bronchoalveolar

lavage (BAL)
specimens from

(2) saliva
specimens

For individuals
suspected of
COVID-19 by

their healthcare
provider;

PPA: 95.0% (95%
CI: 76.4–99.1)

NPA: 99.2% (95%
CI: 95.7–99.8)

5 copies/
µL in NP swab;
1.0 copy/µL in

saliva

[207]

Legend: (PPA: Positive Percent Agreement = True Positives/(True Positives + False Negatives); NPA: Negative Percent Agreement = True
Negatives/(True Negatives+ False Positives); ** NDU/mL: RNA NAAT detectable units/mL.

Other research attempts supported the role of various technological arrangements as
POCT. For instance, the combination of electrochemical biosensors and the recombinase
polymerase amplification (RPA) assay is a rapid, sensitive and convenient platform that
can be potentially used as a Point-of-Care test to diagnose COVID-19 [208]. The combi-
nation worked without expensive thermo-cycling equipment and allowed the detection
of multiple genes by differential pulse voltammetry, which was possible because of the
hybridisation of the RPA amplicon with modified primers followed by amplicons’ build-up.
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The assay also demonstrated a better turnaround time and cost-efficiency compared with
conventional PCR. The detection was better than the RPA based on electrophoresis without
post-amplification purification: ~0.972 fg/µL for the RdRP gene and 3.925 fg/µL for the
N gene.

The knowledge accumulated from studies on both analytical and clinical sensitivity
of AgPOCTs, and compared with the standard RT-rtPCR, continue to support their util-
ity as screening in outpatient departments and testing in the workplace or the general
population. One recent study compared the performances of medical diagnostic devices
available in many countries as outside-the-laboratory tests but restricted to the interpre-
tation of results by medical personnel: Panbio COVID-19 Ag Rapid Test (Abbott, Jena,
Germany), BIOCREDIT COVID-19 Ag (RapiGEN, St Ingbert, Germany), Coronavirus
Ag Rapid Test Cassette (Swab; Healgen, Houston, TX, USA), COVID-19 Ag RespiStrip
(Coris BioConcept, Gembloux, Belgium), RIDA QUICK SARS-CoV-2 Antigen (R-Biopharm,
Darmstadt, Germany), NADAL COVID-19 Ag Test (nal von minden, Moers, Germany) and
SARS-CoV Rapid Antigen Test (Roche-SD Biosensor, St Ingbert, Germany) [209]. These
AgPOCTs have a short turnaround time and real potential on one condition: to have
sufficient sensitivity and specificity. The conclusion of the study highlighted the limitations
in sensitivity and specificity again. However, these results should be interpreted as (1)
on-the-spot assessment of infectiousness and not as a concluded diagnosis in the very
early and later phases of COVID-19; (2) including a need for confirmatory RT-rtPCR if
possible; (3) a reminder that false-positives with AgPOCTs occur at a higher rate than
with RT-rtPCR. With the sensitivity ranging within values that coincide with the infectious
period in most patients, these assays (except BIOCREDIT COVID-19 Ag) could limit the
virus transmission. Continuous studies are required for clinical validation accuracy confir-
mation of the AgPoCTs to incorporate them into clinical guidelines. Concomitantly, there
is a need for a better understanding of serologic tests at the POCT level. For instance, the
performance of a microfluidic quantitative immunomagnetic assay (IMA) (ViroTrack Sero
COVID IgM + IgA/IgG Ab, Blusense Diagnostic) was compared with an enzyme-linked
immunoabsorbent assay (ELISA) [210]. The results showed that, at 14 days after symptoms
onset, the sensitivity of IMA was 91% (ELISA 91%) and specificity was 100% (ELISA 97.5%).
Therefore, the study concluded that IMA for COVID-19 is a rapid simple-to-use POCT with
accuracy similar to commercial ELISA. Since serological testing cannot replace RT-PCR for
diagnosing acute COVID-19, it may serve as a valuable supplement when used to elucidate
classic symptoms of COVID-19 associated with repeated negative RT-qPCR, while its
primary application is to assess immunity. The FDA’s decision regarding the addition of
the OTC and POCT for screening will give schools, workplaces, communities and others
several options for serial screening tests that are accurate and reliable.

It is very likely that the extensive use of POCT for COVID-19 virus testing paved the
way for new models of healthcare delivery. Management of the SARS-CoV-2 pandemic has
enabled a large number of stakeholders and patients to experience the benefits of POCT for
the first time. POCT harbours several important advantages (Figure 2), including:

- clinical benefits (i.e., quicker diagnostic, exclusion of diagnostic, more appropriate
treatment and subsequent improved clinical outcome);

- better access to testing in case of rural and remote sectors;
- economic benefits—POCT enables the rapid identification and isolation of infected

individuals, hence avoiding lockdown measures.
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Figure 2. Point-of-Care Testing (POCT) advantages for the diagnosis and surveillance of SARS-CoV-2 infection.

6. Interpretating the Tests’ Results for Clinical Applications

Since COVID-19 quickly became a pandemic, new viral variants’ spread and the
emergence require ubiquitous, fast, user-friendly, low cost and high-quality POC testing
and results’ interpretation. In this context, mitigating the epidemiologic risk factors and
relying on consistent guidelines (Table 4) for test specifications and requirements are cru-
cial [211]. Therefore, applying mathematical relationships and visual logistics could help
reveal patterns of SARS-CoV-2 tests’ performance [212]. Furthermore, established criteria
(prevalence boundaries, predictive values, false omission rates, risk tolerance and repeat
testing) of a realistic foundation for the design, selection and understanding of the disease
diagnostics will diminish the risk for missed diagnosis [213]. Nevertheless, the difficulty
in choosing the tests and the diagnostic protocols resides in interpreting and calibrating
diagnostic tests’ performance. This task could be based on mathematical analysis that
considers the above-mentioned criteria and compares positive predictive values (PPV) and
negative predictive values (NPV) for the existing diagnostic test of COVID-19 (multiplex
antigen, PCR kit, POCT antibody, home tests). [214] For instance, three performance tiers
were derived for tests in relation to sensitivity, specificity, false omission rate and preva-
lence boundaries (tiered sensitivity/specificity comprises T1: 90%/95%; T2: 95%/97%;
T3: 100%/>99%). Furthermore, graphical representations presented the uncertainty for
EUA tests sensitivity and specificity (CI:95%) with regards to specific COVID-19 diag-
nostics and compared their mathematical Bayesian profiles at various prevalence levels.
Visual logistics showed that, at a higher prevalence, false omissions are high, favouring
the viral spread. Tier 3 (sensitivity 100%, specificity > 99%) offered a solution in a low
prevalence setting. Furthermore, rapid antigen tests may assist in outbreaks with a large
proportion of asymptomatic cases with high viral load (40%). The suboptimal sensitivity
of the rapid antigen tests makes them less recommendable as a single test and requires
a confirmatory molecular diagnostic test, especially in specific settings such as nursing
homes and airports. Therefore, low prevalence is disruptive to all except the highest quality
tests. Since prevalence is essential in clinical practice [215] and the SARS-CoV-2 pandemic
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develops with rapid emerging viral mutants, the prevalence is unpredictable, inconsistent
and largely unknown [216], which imposes rapid testing and clear recommendations. For
instance, multiplex molecular diagnostics (SARS-CoV-2, Influenza A/B, +/− RSV) are
recommended in moderate prevalence settings as differential diagnostic tools. Conversely,
the performance of rapid antigen test improves with prevalence and shows past infections.
Furthermore, from a clinical point of view, single testing with low sensitivity rapid antigen
tests (<90%) generates a high rate of false negatives as prevalence increases, hypothesising
the safer-to-use repeat testing (e.g., rapid test followed by molecular diagnosis). Theoretical
profiles show that repeat testing improves PPV and implicit test performance. Furthermore,
the predictive value performance patterns suggest Tier 2 with PPA 95% and NPA 97.5% to
optimize rapid testing [213]. The serological tests, which qualify under FDA EUA, require
a sensitivity of 90% and a specificity of 95%. However, poor performance occurs at 80%
prevalence due to increased false negatives relative to true negatives. Conversely, the ratio
of false positives to true positives increases in low prevalence cases, and PPV decreased
significantly. At an intermediate prevalence level (20%–50%), the risk of misdiagnosis is
low. Therefore, one key to accurate diagnostics is the prevalence of the disease. Further
detailed analysis of prevalence, mathematically derived calculations of PPV and NPV to
reflect Bayesian (conditional probability) viewpoint of healthcare providers concerning
tests’ performances, regulations (FDA, Infectious Disease IDSA) and clinical context will
be required to ponder the value of positive test results and the merits of negative tests for
COVID-19 for increased geospatial POC strategies.

Table 4. The current IDSA recommendations for serology and molecular testing.

Test Type Recommending for Comments

Serological

the evaluation of patients with a high
clinical suspicion for COVID-19 and with
negative molecular testing at at least two

weeks since symptom onset

The certainty of available evidence
supporting the use of serology for either
diagnosis or epidemiology was, however,

graded as very low to moderate.
[211]

he assessment of multisystem
inflammatory syndrome in children

the serosurveillance studies

Molecular

all symptomatic individuals suspected of
having COVID-19

prioritization of testing will depend on
institutional-specific resources and the
needs of different patient populations.

[211]
asymptomatic individuals with known or
suspected contact with a COVID-19 case

asymptomatic individuals without
known exposure is suggested when the

results will impact
isolation/quarantine/personal protective
equipment (PPE) usage decisions, dictate

eligibility for surgery, or inform solid
organ or hematopoietic stem cell

transplantation timing

7. Conclusions and Perspectives

Since the economic and psychological consequences of the COVID-19 pandemic are
measurable at society and individual levels, the availability of specific and sensitive assays
for at-home detection of this viral infection is essential. Medical professionals will gather
information for accurate diagnosis, assess the outbreak’s extent and monitor intervention
strategies and surveillance studies. Accurate and scalable POC tests to diagnose COVID-19
will increase the value of diagnosis made in the community and outside the lab settings
while reducing the time to results, supporting rapid identification of COVID-19 patients
and the appropriate isolation means, infection control measures, and enrolment into clinical
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trials of treatment. The current and evolving protocols [217] based on viral and antibody
testing consolidate the clinical data for a clearer epidemiological picture. Currently, the
primary targets of the diagnostic procedures are the viral genome (RNA) and the encoded
proteins [218,219]. Different diagnostic tests have been developed for SARS-CoV-2 based
on serological, molecular and nanotechnology techniques [93,219,220]. For instance, molec-
ular testing is based on high throughput sequencing, reverse-transcription-polymerase
chain reaction (RT-PCR), RT-loop-mediated isothermal amplification (RT-LAMP) and quan-
titative real-time PCR (qPCR) to detect the viral nucleic acid. Out of them, qPCR is
recommended by the World Health Organisation (WHO) as the most rapid and effective
method [66,85,221,222]. The range of molecular-based diagnostic tests has increased. How-
ever, they have severe limitations such as their unavailability in the remote and simple
laboratory, primary or community settings, long turnaround times that facilitate noso-
comial infections [223] or limited efficiency [224–226]. Therefore, serological testing was
considered to be another critical component of the COVID-19 control effort. It is imperative
to determine the prevalence of SARS-CoV-2 exposure and quantify individual immune
responses to prior SARS-CoV-2 infection or vaccination. Available serological assays for
SARS-CoV-2 used antigens derived from the spike or nucleocapsid proteins, the principal
targets of the humoral response to natural infection [94]. Serological surveillance has
become one crucial epidemiological tool during the COVID-19 pandemic, as it provides
information regarding the protective antibodies and seroconversion after SARS-CoV-2
infection or vaccination and guides towards coherent patient care plans and public health
policies [227].

Coupling clinical and laboratory data could identify active or past infection, as well as
the individual at high risk of COVID-19, thus enabling prioritisation of PCR testing and
quarantine and therapeutic efforts for absolute containment of the infection. However,
a need for affordable and scalable tests to diagnose and monitor populations vulnerable
to SARS-CoV-2 and gauge exposure at a population-wide level remains, especially when
considering the asymptomatic individuals [228] and when shortcomings of molecular
tests impede the rapid diagnostic and decisions. Thus, there is an urgent need for tests
capable of providing accurate and timely qualitative and quantitative data, ideally from
single sample measurements, which can be widely implemented [99,229,230]. It is already
acknowledged that laboratories push their work performing molecular SARS-CoV-2 tests
to increase their throughput and decrease the result rendering time.

Moreover, the efforts focus on an optimal testing protocol to use various clinical
specimens to accurately detect SARS-CoV-2 infection by minimizing consumables usage
and reducing hazard exposure to healthcare workers. In this review, we evaluated the
diagnostic methods from various points of view, such as the type of test, the turnaround
time, accuracy, adaptability, cost-effectiveness, setting’s capacity for specialised testing, the
throughput and the integration of the recent developments. POCT may improve triage
during the present pandemic and prepare for better community control, either as viral
or surrogate tests [231,232]. Evaluating the current assays will support developing a self-
consistent Point-of-Care system for the accurate detection of virus and infection progression
testing and the global deployment of COVID-19 vaccines. Even if a test has high sensitivity
and specificity (close to 100%), the prevalence of disease, user-to-user variation and sample
type can impact the accuracy of a test. These values should be key measures that we
use to diagnose and monitor COVID-19, beside testing frequency, vaccination rate and
variant trends. Evaluating these key principles contributes to better assessment of tests’
performances and coherent testing strategies in risk reduction and disease management.

Recent advances in fabrication, manipulation and characterisation of nanomaterials
should lead to the rapid and exciting development of new nanobiosensors, which can
precisely and quickly detect minimal concentrations of analyte molecules even without
pre-treatment or labelling [233,234]. Besides the established performances, nanobiosen-
sors face several challenges which need to be addressed. One is to obtain nanoparti-
cles/nanowires/nanotubes in a reproducible manner to ensure constant properties to
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permit scalability and reproducible nanobiosensors production for commercial usage. Dif-
ferent nanopatterning and functionalization technologies developed in the last two decades
for biosensors development can also be used to obtain biosensors for COVID-19 diagno-
sis [154,235]. However, research needs to be intensified to develop antibody preparation
techniques and for a better immobilization of immunological recognition elements on the
surface of nanomaterials for performance improvement. Sensitivity and dynamic range
should be matched to the patients’ SARS-CoV-2 viral load. Furthermore, nanobiosensors
for COVID-19 detection require sample preparation (pre-concentration or pre-dilution)
to match the analyte concentration with the dynamic range of the nanobiosensor, which
increases the devices’ complexity and lowers its accuracy. The transport of analyte to the
biosensor active surface, often provided by micro/nanofluidic devices, can increase the
response time of the nanobiosensor. Therefore, new delivery systems were developed as
solutions in patterned paper or evaporation-driven flow to reduce the complexity of the
sensor device. Since nanomaterials facilitated the miniaturisation of the sensing platforms,
new optimised fabrication techniques can further accelerate the transfer of this technology
to commercial bionanosensors for COVID-19 detection. Finally, nanobiosensing should
integrate the extraction system into the proposed biosensor as wearable and user-friendly
e-skin devices. The present efforts in this rapidly developing domain should continue
and materialise [236]. One possibility would be the microneedles-based biosensors to use
interstitial fluid samples for continuous molecular and serologic monitoring of SARS-CoV-2
viral infection in symptomatic and asymptomatic populations. These wearable devices
would provide important epidemiological and clinical information on the pandemic for
better health policies and surveillance.

In conclusion, solving the existing or imminent significant challenges and investing
in developing future IoT wearable nanobiosensors tailored to SARS-CoV-2 or other viral
infections open new avenues towards rapid, accurate and in situ early diagnosis to track
infectious diseases and eventually prevent further pandemic outbreaks. Extensive research
synchronised with the healthcare industry goals will reach higher technological levels and
propose sensitive and specific methods, and affordable, user-friendly, rapid, robust and
simple diagnostic devices. The future belongs to comprehensive systems that integrate
POCT and IoT for holistic approaches and “sample-to-answer” solutions [9,237].
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