
Oncotarget90545www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/              Oncotarget, 2017, Vol. 8, (No. 52), pp: 90545-90556

Melatonin as a potential inhibitory agent in head and neck cancer
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ABSTRACT
Melatonin is a molecule secreted by the pineal gland; it is an important regulator 

of sleep and circadian rhythms. Through multiple interrelated mechanisms, melatonin 
exhibits various inhibitory properties at different stages of tumor progression. Many 
studies have explored the oncostatic effects of melatonin on hormone-dependent 
tumors. In this review, we highlight recent advances in understanding the effects 
of melatonin on the development of head and neck cancers, including molecular 
mechanisms identified through experimental and clinical observations. Because 
melatonin exerts a wide range of effects, melatonin may influence many mechanisms 
that influence the development of cancer. These include cell proliferation, apoptosis, 
angiogenesis, extracellular matrix remodeling through matrix metalloproteinases, 
and genetic polymorphism. Thus, the evidence discussed in this article will serve as a 
basis for basic and clinical research to promote the use of melatonin for understanding 
and controlling the development of head and neck cancers.

INTRODUCTION

Head and neck cancers constitute the sixth most 
common malignancy in the world. Most head and neck 
cancers occur in the epithelial lining of the oral cavity, 
hypopharynx, larynx, and oropharynx. Squamous 
cell carcinoma is the most frequent type, accounting 
for approximately 90% of all head and neck cancers. 
Approximately 50% of all head and neck cancers occur in 
the oral cavity [1, 2]. Alcohol and tobacco use are major 
risk factors for most head and neck cancers; studies have 
revealed that the incidence of head and neck cancers is 
higher in regions with high rates of alcohol and tobacco 
consumption [3, 4]. Also, experimental and clinical data 
indicate that human papillomavirus infection is also 

related to the development of head and neck cancers [5, 6]. 
The overall 5-year survival for head and neck cancers is 
approximately 50%; this statistic has not changed much in 
the past few decades.

Melatonin

Melatonin, chemically named N-acetyl-5-
methoxytryptamine, was discovered in the bovine pineal 
gland by Lerner in 1958 [7]. Since its discovery, melatonin 
has been extensively studied, and numerous benefits 
have been reported (Figure 1). Melatonin is widely 
distributed in bacteria, unicellular organisms, algae, plants, 
invertebrates, and in many organs of vertebrates [8–11]. Its 
production has also been documented in nonvertebrates 
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and plants that lack a pineal gland [8, 12]. In mammals, 
melatonin is a derivative of tryptophan. It is synthesized 
in the pineal gland and rhythmically secreted into the 
blood [13–15] and into the cerebrospinal fluid (CSF) 
[16, 17]. The production of melatonin begins at night 
during darkness; in humans, melatonin reaches maximal 
concentration near the middle of the dark period [13].

Melatonin is a molecule with pleiotropic functions; 
it is involved in regulating the circadian rhythms of 
physiological functions, including blood pressure, 
seasonal reproduction, and sleep timing [18–21]. Various 
receptor subtypes are available for melatonin binding and 
activation. Studies have demonstrated that membrane 
melatonin receptors are on perhaps all cells including 
retina, brain, suprachiasmatic nucleus, pituitary gland, 
ovary, cerebral artery, peripheral artery, kidney, pancreas, 
fat, and immune cells [22–24]. Among several signaling 
mechanisms, melatonin actions are activated through 
high-affinity G protein–coupled receptors (GPCRs), 
including the MT1 and MT2 [25–27]; they have amino 
acid sequences that have 60% homology and different 
chromosomal localization [28, 29]. These melatonin 
receptors have potential glycosylation sites at their 
N-terminus regions and have casein kinase 1 and 2, 
protein kinase A, and protein kinase C phosphorylation 
sites, which may be involved in the regulation of receptor 
function, as evidenced in other GPCRs [30]. In addition 
to the well described membrane melatonin receptors, 
melatonin has binding sites in the nucleus [31, 32] and 
couples with calmodulin and quinone reductase 2 in the 
cytosol [33, 34]. Major receptor-mediated actions of 
melatonin include the regulation of circadian rhythms 
including sleep [19, 35] as well as other actions such as 
anti-cancer and anti-inflammatory actions [36–47].

In normal cells, melatonin and its derivatives 
are powerful free radical scavengers and multi-faceted 
antioxidants [11, 48, 49]. Melatonin executes its direct 
free radical scavenging actions via non-receptor-mediated 
mechanisms. Melatonin reduces oxidative stress that is 
associated with many diseases, including optic neuritis, 
myocardial ischemia and neurological disease [50–53]. 
Compared with other antioxidants, melatonin has an equal 
or superior ability to protect tissues from oxidative injury 
even when compared with synthetic mitochondria-targeted 
antioxidants [54]. One difference between melatonin and 
other free radical scavengers is its amphiphilicity, which 
allows melatonin to distribute throughout the subcellular 
environment although in differing concentrations among 
organelles [55]. Furthermore, melatonin is estimated 
to detoxify up to 10 free radicals through the AFMK 
pathway, thus increasing its effective concentration [56]. 
As noted above, melatonin also interacts with the 
detoxifying enzyme, quinone reductase 2 [34]. Although 
the mechanism of this interaction is unclear, this coupling 
may be related to the regulation of cell redox status [57]. 
Also, the interaction between melatonin and calmodulin 
may be involved in antioxidant signaling and other 

signaling processes that reduce the oxidative burden [33]. 
In addition to directly scavenging toxic oxygen-based 
reactants, melatonin also indirectly limits oxidative 
damage by stimulating a variety of antioxidant enzymes 
which remove free radicals before they damage essential 
molecules [58–61].

Oxidative stress is defined as the imbalance between 
an organism’s cellular production of oxidative agents, such 
as reactive oxygen species (ROS), and the organism’s 
antioxidant capacity, ROS participate in many different 
cellular processes during physiological and pathologic 
reactions [62]. 

In cancer cells, melatonin functions as a conditional 
pro-oxidant [63–65]. For example, Wolfler et al. [65] 
showed that melatonin stimulates ROS generation and 
causes Fas-induced apoptosis in human leukemic cells. 
Osseni et al. [66] also reported that melatonin can be both 
anti-oxidant and pro-oxidant in a human HepG2 liver cell 
line. In cervical cancer cells, Pariente et al. [67] reported 
that melatonin enhances cisplatin-induced cytotoxicity 
and apoptosis due to ROS overproduction. Moreover, 
Um et al. [68] demonstrated that melatonin attenuates 
oxaliplatin-induced apoptosis and anti-oxidant action in 
renal carcinoma Caki cells.

ROS production promotes the release of 
inflammatory mediators, including the activation of redox-
regulated transcription factors, such as NF-κB, to produce 
cytokines by activating the intracellular inflammatory 
signaling pathways [69]. Melatonin scavenges a variety 
free radicals in body fluids, cells and in vitro [70–72]. 
These effects enable melatonin to reduce the level of 
ROS and decrease oxidative pathologies such as seen in 
atherosclerosis, neurodegenerative diseases, hypertension, 
ischemia, and cancer [73–75]. 

Clinical evidence that has accumulated in the last 
two decades suggests that melatonin inhibits the growth 
of many cancers, including cervical cancer, ovarian 
cancer, breast cancer, and colon cancer [76–79]. The drop 
in melatonin that occurs during aging correlates with 
immunosenescence, neurodegenerative disorders, and 
cancer. Moreover, breast cancer cell proliferation is higher 
during the daytime (when melatonin levels are low) than 
during the night (when melatonin levels are high). Thus, 
the age-associated reduction of melatonin with advancing 
age may promote the proliferation of breast cancer as well 
as other cancer types [80].

Melatonin released into the oral cavity by saliva may 
have protective effects on many oral disorders, such as 
herpes viral infections and Candida infection, periodontal 
diseases, xerostomia, local inflammatory processes, oral 
ulcers, and oral cancer [81, 82]. Moreover, Ortiz et al. [83] 
reported that melatonin gel applied in the oral cavity can 
reduce the development of erythema and prevents ulcer 
formation; therefore, it is a potential preventive therapy 
for radiotherapy-induced oral mucositis. Of melatonin’s 
various effects on oral disorders, the most widely studied 
is its role in periodontal disease, which is related to the 



Oncotarget90547www.impactjournals.com/oncotarget

anti-inflammatory and antioxidant properties of melatonin. 
In addition, radical scavengers, such as melatonin, reduce 
oxidative damage in in vivo and in vitro in head and neck 
cancers [84].

This article focuses on the role of melatonin in the 
treatment of head and neck cancers (Figure 2). Since head 
and neck cancers are among the list of life-threatening 
diseases with poor survival rates, an agent that retards 
or controls the occurrence of these tumors is in need of 
identification. Therefore, we focus the effects of melatonin 
on the development of head and neck cancers, including 
molecular mechanisms identified through experimental 
and clinical observations (Table 1). 

Melatonin: antiproliferative and pro-apoptotic 
actions in head and neck cancer 

The difference between head and neck cancer 
cells and normal cells is that head and neck cancer cells 
exhibit uncontrolled and sustainable growth. Normal 
cells regulate growth, division, and the cell cycle through 
complex cell growth messages (growth-promoting signals) 
that maintain a constant number and size of cells. Most 
head and neck cancer cells are over-reliant on specific 
signaling pathways (signaling transduction pathways) 
which promote cancer cell proliferation [85]. Aberrations 
in the critical pathways that regulate cell survival and 
cell proliferation are necessary for establishing all 
tumors [86]. The deregulation of cell proliferation and 

inhibition of apoptosis are common mechanisms involved 
in the development of all cancers [38, 87, 88]. Therefore, 
identifying the difference between tumor cells and normal 
cells and the appropriate use of this information are key 
issues in cancer treatment [89]. 

Empirical evidence unequivocally documents that 
toxic oxygen derivatives influence the balance between cell 
proliferation and apoptosis. If the mechanisms of apoptosis 
are overwhelmed, cell proliferation may predominate 
leading to tumor formation. Thus, radical scavengers 
such as melatonin may regulate the proliferation of head 
and neck cancers through the reduction of oxidative 
damage [84]. Multiple proliferative signals affect apoptosis 
programming by inducing Alternative reading frame 
protein (ARF), an alternate product of the INK4a locus, 
one of its functions is to trigger the upregulation of p53 by 
inhibiting MDM-2 [90, 91]. 

Apoptosis, a type of programmed cell death, is an 
important mechanism that normally occurs in all tissues. 
This mechanism is important for ridding tissues from 
damages on diseased cells. Apoptosis often also occurs 
during aging and development and acts as a homeostatic 
mechanism for maintaining the stability of the cell 
population in the tissues. It is also a defense mechanism 
for the immune response and for cells damaged by 
noxious agents or disease [92]. Although various 
physiological and pathological stimuli or conditions can 
trigger apoptosis, not all cells die from the same stimulus. 
Drugs or radiation for cancer chemotherapy also cause 

Figure 1: Effect of melatonin on the physiological and pathological functions. Melatonin regulates sleep and circadian 
rhythms. Moreover, melatonin also has anti-oxidant and anti-inflammation abilities to scavenge free radical and reduce the release of 
cytokines. Melatonin may reduce the development of cancer through affecting the mechanism of angiogenesis, metastasis and proliferation.
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DNA damage in some cells, which triggers apoptosis 
through a p53-dependent pathway [93, 94]. Cell apoptotic 
programs involve either the intrinsic or extrinsic pathway, 
as distinguished by the source of the death signal and 
initiator caspases involved [95]. The intrinsic apoptosis is 
a response to internal damage (e.g., mitochondrial stress 
or chromosomal defects) with the activation of caspase 
9, whereas the extrinsic apoptotic pathway is mediated 
through membrane-bound death receptors (e.g., FAS or 
tumor necrosis factor receptors) triggered by external 
stimuli, which activate caspase 8.

The tumor suppressor gene TP53, which encodes 
p53, is central to DNA damage recognition, DNA repair, 
cell cycle regulation, proliferation, and apoptosis [96]. 
Conceivably, multiple p53-related pathways play 
fundamental roles in the development of cancer, which 
explains why this gene is most commonly mutated in human 
malignancies [97]. Substantial evidence has indicated that 
melatonin regulates proliferation and apoptosis in various 
cancer types through the p53 signaling pathway, revealing 
a mechanistic link between melatonin and p53 signaling. Of 
note, melatonin inhibits cell proliferation by arresting the 
cell cycle through a p53-mediated rise in the expression of 
p21WAF1 protein in breast cancer [98]. 

Melatonin treatment also inhibits the proliferation 
of hepatocarcinoma cells by promoting cell apoptosis via 

the upregulation of mitogen-activated protein kinase family 
members, p38 and c-Jun N-terminal kinase (JNK)-1, -2, 
and -3, as well as the elevation of caspase-8 activity [99]. 
Additionally, melatonin affects the expression of miR-
24 microRNA, whose downstream target genes modulate 
p38 and p53, in colon cancer, breast cancer, and head and 
neck cancers [100]. A clinical study further revealed that 
the 1-year survival rate and objective tumor regression 
rate were significantly higher in cancer patients who were 
concomitantly treated with melatonin than in those receiving 
chemotherapy alone [101]. These findings suggest that 
melatonin contributes to suppression of cell proliferation 
and induction of apoptosis in head and neck cancer.

Melatonin counteracts metastasis in head and 
neck cancer

Cancer metastasis, the spread of cancer cells from 
the tissues or organs of tumor origin to other sites, is the 
leading cause of death in cancer patients [39, 102–109]. 
The cascade of metastasis can be divided into three 
processes: invasion, intravasation, and extravasation 
[39, 102, 110, 111]. In the process of invasion, the loss of 
cell-cell adhesion allows malignant tumor cells to escape 
from primary tumors and to invade the surrounding matrix 
[112]. This process involves the secretion of enzymes 

Figure 2: Proposed oncostatic actions of melatonin on head and neck cancer (HNSCC). Melatonin treatment reduces HNSCC 
cell metastasis through inhibiting the expression of MMP-9 by targeting the ERK/JNK signal pathway to mediate histone acetylation and 
SP-1 expression. Melatonin inhibits HNSCC cell proliferation through upregulating p38, H2AX and p53 expression and downregulating 
the expression of hnRNPA1 and mir-24. Melatonin supplementation suppresses NHSCC cells angiogenesis by reducing the expression 
of angiogenesis molecular markers, HIF-1α and VEGF. ERK, mitogen-activated protein kinase; JNK, c-Jun N-terminal kinase; MMP-9, 
matrix metalloproteinase 9; H2AX, H2A histone family member X; hnRNPA1, heterogeneous nuclear ribonucleoprotein A1; HIF-1α, 
hypoxia inducible factor 1 alpha subunit; VEGF, vascular endothelial growth factor.
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such as matrix metalloproteinases (MMPs) that degrade 
the extracellular matrix (ECM) and basement membrane 
[113] and the expression/suppression of proteins involved 
in controlling cell motility and migration [114]. MMPs, 
belong to a family of enzymes that contain zinc atoms at 
their active sites, are secreted by inflammatory phagocytes, 
connective tissue cells, and many different transformed 
cells [115]. As a key regulator of ECM remodeling, MMPs 
function to break down most of the ECM components, 
including elastin, laminin, collagen, serpin, and fibronectin 
[115, 116]. Among MMPs, MMP-2, MMP-9 and 
membrane-type matrix metalloproteinases (MT-MMPs) 
are believed to play an important role in cancer invasion 
and metastasis [109, 117–122]. Mounting evidence has 
indicated that the inhibition of MMP-2 and MMP-9 
activity reduces cancer cell metastasis in head and neck 
cancer [123–127]. Moreover, in highly metastatic head 
and neck tumors, MMP-9 is overexpressed compared with 
that in normal tissues [128–130]. Previous studies also 
mentioned that melatonin inhibited the gene expression 
of MMP-9 in head and neck cancers [131, 132]. The study 
of melatonin-regulated head and neck cancer metastases 
has demonstrated that melatonin targeted the ERK/JNK 
pathways to reduce MMP-9 transcription and cancer cell 
invasion through modulating histone acetylation and SP1 
activation [131].

In addition to ECM remodeling, tumor progression 
requires the activation of angiogenesis, a process defined 
as the formation of new blood vessels from pre-existing 
structures. Blood vessels surrounding the tumor not only 
supply the oxygen and nutrients [133] but also permit the 
invasion of cancer cells into the circulatory system and 
their migration to distal sites [134, 135]. The process of 
tumor angiogenesis is orchestrated by multiple signaling 
pathways elicited by interactions between the tumor 
cells and the surrounding stroma. Various proteins have 
been demonstrated to be pro-angiogenic, including but 
not limited to angiogenin, basic fibroblast growth factor, 
epidermal growth factor, granulocyte colony-stimulating 

factor, hepatocyte growth factor, interleukin-8, placental 
growth factor, platelet-derived endothelial growth factor, 
transforming growth factor (TGF)-α, TGF-β, tumor 
necrosis factor-α, and vascular endothelial growth factor 
(VEGF). Among them, the VEGF family and its receptors 
have drawn considerable attention to the field of tumor 
angiogenesis [136, 137].

Recently, multiple reports have shown that 
melatonin can decrease the expression of VEGF in 
various cancers [138, 139]. In oral carcinoma and oral 
cancer cell lines, melatonin inhibited the expression of 
the proangiogenic factors, HIF1α and VEGF revealing an 
effect of melatonin on inhibition of angiogenic responses 
in oral cancer [140]. These results suggest that melatonin 
has the potential to inhibit the invasion and metastasis of 
head and neck cancer by modulating tumor angiogenesis.

Polymorphisms of the melatonin receptor genes 
MTNR1A and MTNR1B in head and neck 
cancer

With the rapid development of the Human 
Genome Project, the science of pharmacogenetics, 
which incorporates information on the genetic variability 
for predicting the response to treatment, is booming. 
Because the therapeutic index of many chemotherapy 
drugs for cancer is narrow, a better understanding of 
pharmacogenetics on cancer chemotherapy may offer 
individualized cancer treatment [141]. Studies have 
shown that the variations of individual genomes and tumor 
genomes affect the drug response in tumors and the risk of 
developing cancers [142, 143].

Single-nucleotide polymorphism (SNP) occurs as 
a variation in one nucleotide, which occurs at specific 
locations in the genome, and each variation has an 
appreciable degree of detectability in the population [144]. 
The systematic analysis of candidate gene association has 
revealed that SNPs in genes involved in cell cycle control 
ECM remodeling, DNA repair, folate metabolism, and that 

Table 1: Melatonin and head and neck cancer 
Research object Measures Outcome References

250 metastatic solid tumour patients 
including 104 lung cancers, 77 breast 
cancers, 42 gastrointestinal tract 
neoplasms, 27 head and neck cancers

The percentage of 1-year survival was calculated 
in metastatic solid tumour patients that were 
randomised to be treated with chemotherapy alone 
or chemotherapy plus melatonin 

The 1-year survival rate and the objective tumour 
regression rate in patients concomitantly treated with 
MLT were significantly higher than in those who 
received chemotherapy (CT) alone

Lissoni P, et al. 
[101]

Oral squamous cell carcinoma cell lines, 
SCC-9 and SCC-25

In vitro studies of oral squamous cell carcinoma cell 
lines treated with melatonin

Melatonin inhibits expression of molecular markers of 
angiogenesis, VEGF and HIF-1 in SCC-9 cell line.

Goncalves Ndo N, 
et al. [140]

Oral squamous cell carcinoma cell lines, 
HSC-3 and OECM-1

In vitro studies of oral squamous cell carcinoma cell 
lines treated with melatonin

 Melatonin affect the motility of HSC-3 and OECM-1 
cells  in vitro  through targeting the ERK pathways to 
mediate histone acetylation and then inhibit MMP-9 
transcription

Yeh CM, et al. 
[131]

Nasopharyngeal carcinoma cell lines, 
HONE- 1, NPC- 39, and NPC- BM

In vitro studies of nasopharyngeal carcinoma cell 
lines treated with melatonin

Melatonin suppresses the motility of nasopharyngeal 
carcinoma cell lines in vitro  via inhibiting SP- 1- DNA 
binding ability to regulate MMP- 9 gene expression

Ho HY, et al. 
[132]

618 patients with oral cancer and 560 non-
cancer controls 

MTNR1A polymorphism was measured in genomic 
DNA samples extracted from blood samples

Oral cancer patients with the T/T allele of MTNR1A 
gene variants with betel nut chewing habit have a high 
correlation to develop a higher risk for late clinical 
staging and lymph node metastasis

Lin FY, et al. 
[163]
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carcinogen metabolism may be associated with increased 
susceptibility to cancers [145–153].

Mounting evidence indicates that melatonin exhibits 
oncostatic properties in many cancer types mainly 
mediated by its membrane-bound receptors, melatonin 
receptor 1A (encoded by MTNR1A) and 1B (MTNR1B). 
Increased expressions of MTNR1A and MTNR1B have 
been shown to promote the inhibitory actions of melatonin 
on the growth of cancer cells [154, 155]. It is documented 
that the variations of melatonin receptor genes are 
associated with susceptibility to many diseases [156–160]. 

The frequencies of the genotypes and allelotypes of 
SNP rs2119882 for the MTNR1A gene significantly differ 
between patients with polycystic ovary syndrome and 
healthy controls [157], while another SNP in the MTNR1A 
gene, rs7665392, may contribute to breast cancer 
susceptibility [161]. In addition to MTNR1A, associations 
of MTNR1B rs3781638 and rs10765576 with osteoporosis 
[162] and breast cancer [161], respectively, have been 
reported. Melatonin receptor gene polymorphisms in 
combination with environmental parameters have been 
correlated with the risk for oral cancer [163]. Oral cancer 
patients who habitually chewed betel nut and carried the 
T/T allele of MTNR1A rs13140012, were more prone to 
develop lymph node metastasis and late-stage tumors. 

Summary and concluding remarks

Melatonin is not only a significant 
immunomodulatory compound but is also a powerful 
antioxidant that can effectively protect critical molecules 
from ROS-mediated damage, thereby serving as a vital 
regulator in cancer suppression. Moreover, melatonin 
has a very low toxicity profile and is not associated with 
significant side effects; hence, melatonin has been safely 
used in various clinical settings [164–166]. In this article, 
we discussed that melatonin regulates cell proliferation, 
apoptosis, and metastasis, to exert an anticancer effect. 
These data provide clues for further clarifying the 
mechanisms underlying melatonin-mediated inhibition of 
tumor progression as well as for designing clinical trials 
for combinational therapies against head and neck cancer.
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