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Non-invasive brain stimulation safely induces persistent large-scale neural modulation
in functionally connected brain circuits. Interruption models of repetitive transcranial
magnetic stimulation (rTMS) capitalize on the acute impact of brain stimulation, which
decays over minutes. However, rTMS also induces longer-lasting impact on cortical
functions, evident by the use of multi-session rTMS in clinical population for therapeutic
purposes. Defining the persistent cortical dynamics induced by rTMS is complicated
by the complex balance of excitation and inhibition among functionally connected
networks. Nonetheless, it is these neuronal dynamic responses that are essential
for the development of new neuromodulatory protocols for translational applications.
We will review evidence of prolonged changes of cortical response, tens of minutes
following one session of low frequency rTMS over the cortex. We will focus on the
different methods which resulted in prolonged behavioral and brain changes, such as
the combination of brain stimulation techniques, and individually tailored stimulation
protocols. We will also highlight studies which apply these methods in multi-session
stimulation practices to extend stimulation impact into weeks and months. Our data and
others’ indicate that delayed cortical dynamics may persist much longer than previously
thought and have potential as an extended temporal window during which cortical
plasticity may be enhanced.

Keywords: non-invasive brain stimulation, low frequency (1 Hz) repetitive transcranial magnetic stimulation,
clinical intervention, transcranial electric stimulation, prolonged neuromodulation

INTRODUCTION

Repetitive transcranial magnetic stimulation (rTMS) has been increasingly used in the last 20 years
to align cortical regions to cognitive function (Chen et al., 1997; Walsh and Cowey, 2000). The
impact of neuromodulation on targeted neural mechanisms and the concomitant behavioral
function depends critically on the delivery and protocol of stimulation. Whereas high-frequency
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rTMS (HF-rTMS) is associated with increased cortical excitability
(Pascual-Leone et al., 1994), low-frequency rTMS (LF-rTMS)
is an inhibitory protocol that results in acute temporary
impairments in function mediated by the stimulated brain region
(Chen et al., 1997), and interconnected areas (Grefkes et al., 2010;
Lee and D’Esposito, 2012; Plow et al., 2014; Battelli et al., 2017).
For example, LF-rTMS to the intraparietal sulcus (IPS) causes a
decrease in sustained attention (e.g., tracking multiple moving
objects) in the visual field contralateral to stimulation, indicating
the necessary role of the IPS in spatial attention (Battelli et al.,
2009; Edwards et al., 2017).

The immediate effects of neuromodulation typically
outlast the duration of stimulation (Thut and Pascual-Leone,
2010), and thus may be a marker of enduring plasticity.
Physiologically, TMS-related excitatory/inhibitory effects have
been associated with long term potentiation and depression
mechanisms, respectively (LTP/LTD, Thickbroom, 2007).
While the behavioral effect is short lived, the stimulation
effects upon physiology, expressed as a delayed change
in functional connectivity among nodes of the attention
network, persist much longer, indicating late developing
metaplastic changes (Sporns et al., 2004; Thickbroom,
2007; Battelli et al., 2017) In recent years, characterizations
of the underlying mechanisms following stimulation and
accumulating evidence of behavioral and brain modulation
beyond the initial phase after stimulation have opened the
field to the potential for rTMS to promote enduring plasticity
(Ridding and Rothwell, 2007).

Prolonged neuromodulation following LF-rTMS has received
less attention than acute stimulation effects, however, durable
LF-rTMS interventions have great potential as a therapeutic aid
(Hallett, 2007; Raffin and Siebner, 2014; Silasi and Murphy,
2014). rTMS can be readily paired with neurophysiological
and psychophysical measures to evaluate the persistent cortical
dynamics, and their potential behavioral correlates following
brain stimulation. The expected scientific gains are not
trivial: knowledge of brain and behavior fluctuations for
sustained periods of time following stimulation allow for more
statistically robust experimental designs and, crucially, for
better experimental and clinical protocols. Further, recording
beyond the initial phase following stimulation will bridge
models of acute changes in function with sustained, translational
intervention approaches.

Here we review the prolonged effects of LF-rTMS, highlighting
protocols used to increase durability across hours to days and
months. Prolonged duration of neuromodulation following LF-
rTMS has strong clinical potential and is yet to be highlighted
as thoroughly as those of high-frequency stimulation protocols
(Schutter, 2009; Berlim et al., 2013; Lefaucheur et al., 2014).
We will also feature the variables that interact with brain
stimulation to boost or alter predicted stimulation outcome.
Two lines of stimulation protocols will be considered: (1)
the long-term post-stimulation effects from one session of
stimulation, and (2) the summation effects of multi-sessions.
Durability from a single session is likely to translate to endurance
across sessions, yet single- and multi-session protocols have
been thus far studied independently. For details on each

stimulation protocol which resulted in prolonged stimulation
effects, see Table 1.

PROLONGED LF-rTMS EFFECTS FROM
ONE SESSION

Low-frequency rTMS is known to have the potential to modify
behavior for a duration that last approximately as long as the
stimulation interval itself (Chen et al., 1997). These behavioral
interventions are reflected in cortical changes at both the
systems and cellular levels (see Raffin and Siebner, 2014;
Tang et al., 2017; Hartwigsen, 2018). Animal models of the
neurosynaptic mechanisms confirm that rTMS induces altered
synaptic efficacy comparable to plasticity mediated through LTD
or LTP (Thickbroom, 2007; Vlachos et al., 2012; Muller et al.,
2014; Lenz et al., 2016). The frequency dependencies of the
experience-dependent plasticity mechanisms are believed to be
the basis of frequency dependent facilitation and inhibition from
HF-rTMS and LF-rTMS, respectively (Hallett, 2007).

In some LF-rTMS protocols, the impact of stimulation on
behavior may extend well beyond the duration of the stimulation
(Thut and Pascual-Leone, 2010). For example, 5 min of inhibitory
LF-rTMS to mice motor cortex reduces the motor response (as
measured with motor evoked potentials, MEP) for more than
45 min following stimulation. Interestingly, the inhibitory effect
is prevented if TMS is delivered with receptor-dependent LTD
antagonists (Muller et al., 2014). rTMS has potential to elicit a
cascade of biophysical changes which extend well beyond the
acute period after stimulation which is consistent with evidence
for distinct cellular mechanisms underlying LTP-LTD at a range
of timescales (Raymond, 2007; Pell et al., 2011).

The offline “perturb-and-measure” approach is also conducive
to combined LF-rTMS with neurophysiology. It is from these
combined methodological studies that documented lasting effects
from one session of LF-rTMS on sustained neural activity
(Siebner et al., 2009; Thut and Pascual-Leone, 2010). For
example, Schutter et al. (2001) identified increased theta power
(a suggested neuromarker for reduced anxiety, Panksepp, 2004)
sustained across three recordings up to 65 min after 20 min of LF-
rTMS. The increased theta was coupled with behavioral reports of
a reduction in anxiety. Using the offline rTMS, studies focused on
the distal, network-wide stimulation effects have also produced
lasting behavioral change (Nyffeler et al., 2009; Agosta et al.,
2014). This is crucial if one ought to use LF-rTMS protocols in the
clinical population to help recovery from stroke. Using LF-rTMS
to the healthy parietal cortex of unilateral stroke patients, Agosta
et al. (2014) suppressed unilateral visual neglect symptoms in the
neglected visual field for 30 min following stimulation. This is
likely a result of relief from the excess inhibition from the healthy
hemisphere upon the lesioned one in chronic stroke (Kinsbourne,
1977; Silasi and Murphy, 2014). Previous work using the more
intensive rTMS protocol of continuous theta burst on the healthy
hemisphere also resulted in lasting attentional improvement in
the neglect field (Nyffeler et al., 2009). These results demonstrate
that network-wide stimulation effects can outlast the acute effects
regularly reported.
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TABLE 1 | Summary of study protocols and prolonged stimulation effects.

Author Target Protocol Stimulation
duration

Post-
stimulation
effects

Measure Effect
direction

Subjects (n)

Studies with prolonged stimulation effects following LF-rTMS

Agosta et al.,
2014

P3 (left parietal
cortex)

LF-rTMS (1 Hz)
90% MT

10 min 30 min Bilateral multiple
object tracking

N Left visual
field

Right hemi
lesion patients
(6)/controls (6)

Battelli et al.,
2017

Left posterior
IPS

LF-rTMS (1 Hz)
75% MO

15 min 50 min Functional
connectivity

H/N Human (9)

Brighina et al.,
2003

P5 (left parietal
cortex)

LF-rTMS (1 Hz)
90% MT

15 min/ seven
sessions (over
2 weeks)

15 days Visuospatial
performance

N Left visual
field

Right hemi
lesion patients
(3)/controls (5)

Demirtas-
Tatlidede et al.,
2015

Primary motor
cortex

LF-rTMS (1 Hz)
100% MT

20 min
daily/10 weekdays

4 weeks Fractional
anisotropy and
motor eval.

N Chronic stroke
patients (10)

Fregni et al.,
2006

Primary motor
cortex

LF-rTMS (1 Hz)
100% MT

20 min
daily/5 days

14 days Clinical motor
evaluations

N Affected
hand

Chronic stroke
patients (15)

Stern et al.,
2007

rDLPFC LF-rTMS (1 Hz)
110% MT

20 min/
10 days (in
2 weeks)

2 weeks Hamilton
Depression Rating
Scale (21-HAM-D)

H Patients
(10)/Sham (5)

Iyer et al., 2003 Motor cortex HF-rTMS (6 Hz)
prime 90% MT→
LF-rTMS (1 Hz)
115% MT

10 min→
10 min

60 min Motor-evoked
potential amplitude

H Human (26)

Khedr et al.,
2005

Motor cortex
(stroke affected)

LF-rTMS
(intermittent-3 Hz)
120% MT

6 min daily/10
sessions

10 days Clinical motor
evaluations

N Affected
hand

Stroke patients
(52)

Muller et al.,
2014

Motor cortex LF-rTMS (1 Hz)
100% MT

5 min 47 min Motor-evoked
potential amplitude

H Rats (48)

Naeser et al.,
2005

Right broca
homolog

LF-rTMS (1 Hz)
90% MT

20 min/10 days
(in 2 weeks)

8 months Standardized
language tests

N Aphasia
patients (4)

Schutter et al.,
2001

rDLPFC LF-rTMS (1 Hz)
130% MT

20 min 65 min Theta-
power/behavioral
rating

N Theta/H
anxiety

Human (12)

Siebner et al.,
2004

Primary motor
cortex

a/c-tDCS prime
1 mA→ LF-rTMS
(1 Hz) 90% MT

10 min→
15 min

20 min Motor-evoked
potential amplitude

H Anodal/N
cathodal

Human (8)

Valero-Cabré
et al., 2007

Visual parietal
cortex

LF-rTMS (1 Hz)
135% MT

30 min 60 min Metabolic activity
(14C-2DG uptake)

H Cats (10)

Other stimulation protocols resulting in prolonged stimulation effects

Gersner et al.,
2011

Frontal cortex HF-rTMS
(intermittent-20 Hz)
120% MT

9 min/10
sessions (in
2 weeks)

3 days Neuroplasticity
markers

N Awake/H
anesthetized

Awake and
anesthetized
rats (68)

Hoppenrath
and Funke,
2013

Layers 2/3
cortex wide

HF-rTMS
(intermittent-TBS)
23% MO

192 s 160 min Cortical proteins
(inhib. and excit.
markers)

H Inhib./N
excite.

Rat (42)

Nyffeler et al.,
2006

FEF HF-rTMS
(continuous-TBS)
80% MT

33 s 30 min Saccade latency N Human (3)

Nyffeler et al.,
2009

P3 (left parietal
cortex)

HF-rTMS
(continuous-TBS)
100% MT

44 s 32 h Peripheral visual
attention

N Left visual
field

Right hemi.
lesion patients
(11)

Kasten et al.,
2016

Cz/Oz (occipital
cortex)

tACS (individual
alpha frequency)
1.2 mA

20 min 70 min EEG N Alpha power Human (22)

Cappelletti
et al., 2013

P3/P4 (parietal
cortex)

HF-tRNS 1 mA with
behavioral training

20 min
daily/5 days

16 weeks Numerosity
discrimination

N Human (40)

Herpich et al.,
2018

O1/O2
(occipital
cortex)

HF-tRNS 1 mA 20 min 60 min Phosphene
threshold

H Human (18)

(Continued)

Frontiers in Psychology | www.frontiersin.org 3 March 2019 | Volume 10 | Article 529

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-00529 March 8, 2019 Time: 17:25 # 4

Edwards et al. Prolonged Neuromodulation Following Low-Frequency rTMS

TABLE 1 | Continued

Author Target Protocol Stimulation
duration

Post-
stimulation
effects

Measure Effect
direction

Subjects (n)

Terney et al.,
2008

Motor cortex HF-tRNS 1 mA 10 min 60 min Motor-evoked
potential amplitude

N Human (80)

Snowball et al.,
2013

F3/F4 (DLPFC) HF-tRNS 1 mA 20 min
daily/5 days

6 months Near infrared
spectroscopy/
Arithmetic

N Efficient
coupling/H
behavior

Human (25)

Romei et al.,
2016a

V1—-V5 cc-PAS (0.1 Hz)
70% MO

15 min 60 min Visual motion
sensitivity

N Human (32)

Kuo et al., 2013 Motor cortex a/c-tDCS (high-def)
2 mA

10 min 120 min Motor cortex
excitability

N Anodal/H
cathodal

Human (14)

rTMS, repetitive transcranial magnetic stimulation; LF−, low-frequency; HF−, high-frequency; a/c-tDCS, anodal or cathodal transcranial direct current stimulation; tACS,
transcranial alternating current stimulation; tRNS, transcranial random noise stimulation; TBS, theta-burst stimulation; cc-PAS, cortico-cortical paired pulse stimulation;
MO, machine output; MT, motor threshold; P3, P5, F3, F4, 10–20 electroencephalography electrode placement; IPS, intraparietal sulcus; rDLPFC, right dorsal lateral
prefrontal cortex; FEF, frontal eye fields; V1, V5, visual cortex; EEG, electroencephalography; N, increased effect; H, decreased effect.

FIGURE 1 | Lasting functional connectivity changes in dorsal attention network following LF-rTMS to left IPS. (A) Battelli et al. (2017) methods: participants received
1 Hz rTMS applied to left IPS for 15 min at 75% intensity. Following stimulation participants perform bilateral tracking paradigm in the fMRI for 1 h. In the task, two
pinwheels are presented either side of fixation cross. One section of each pinwheel is marked to be tracked using a line. The line disappears, and the pinwheels
rotate bi-directionally with random changes in direction. When the pinwheels stop moving, one pinwheel is highlighted for the participant to indicate which section
they were tracking throughout the trial. Participants perform the tracking task for 12 min each run, and four runs in total. Each run followed directly after the other,
except one the final one which was performed after a 12-min break. (B) Battelli et al. (2017) functional connectivity changes during 1 h post-stimulation. Functional
connectivity scores reflect the difference between rTMS and sham sessions in the stimulated and unstimulated hemispheres. Scores outside the gray box indicate
significant change in functional connectivity between rTMS and sham sessions. Data in panel (B) adapted from Battelli et al. (2017), copyright obtained from Elsevier
and Copyright Clearance Center, licensee: Beth Israel Hospital.

Regional changes in cortical excitability have downstream
impact on functionally connected circuits. Physiological
measures demonstrate single pulses of TMS travel quickly to
distal cortical circuits (Hallett, 2007), including to the opposite
hemisphere within 30 ms of stimulation (Ilmoniemi et al.,
1997; Garcia et al., 2011). Repetitive trains of rTMS propagate
through functionally connected neural systems via callosal
and cortico-cortical pathways (Paus et al., 1997; Walsh and
Cowey, 2000; Hallett, 2007; Romei et al., 2008; Bestmann and
Feredoes, 2013; Dayan et al., 2013). Examining the functional
connectivity changes after LF-rTMS to the parietal cortex,
Battelli et al. (2017) discovered three stages of critical changes

in the dorsal attention network (Figure 1). First, an acute
decrease in connectivity between homotopic regions and
inter-regional activity correlation within the dorsal attention
network. Then, at 36 min post-stimulation, a normalization
of the activity, returning to baseline. Finally, a late 50-min
increase in connectivity between the unstimulated parietal
cortex, frontal eye fields (FEF) and human MT+ was observed
(Figure 1B). These dynamic changes across time demonstrate
not only the durable effects of LF-rTMS, but also the need to
extend data sampling beyond the time-point when behavior
seemingly returns to baseline. This might correspond to a
crucial timepoint where compensatory effects help recovery,
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potentially mimicking a post-stroke response in the brain
(Silasi and Murphy, 2014).

In a study comparing LF-rTMS and theta burst stimulation
over the FEF on saccade latency, an increase in latency lasted for
30 min after theta burst stimulation, whereas latency returned
to baseline within 12 min after LF-rTMS (Nyffeler et al., 2006).
Once at baseline, saccade latency after LF-rTMS was no longer
recorded. A later change in latency may have been demonstrated
with longer recording sessions post-stimulation, like the later
changes in functional connectivity found by Battelli et al. (2017).

PROLONGED EFFECTS OF LF-rTMS
WITH MULTIPLE SESSIONS

Given the prolonged stimulation effects following one session,
one might ask whether the beneficial effect of LF-rTMS can
be extended further to become sustained across months, and
thus indicating LTP and/or LTD like features. We therefore
look toward the long-lasting effect of LF-rTMS after multiple
sessions. Following the finding that rTMS to the healthy
hemisphere of a stroke patient results in behavioral improvement
contralateral to the stroke hemisphere, multi-session studies
have been performed to extend these effects (Brighina et al.,
2003; Khedr et al., 2005; Fregni et al., 2006; Demirtas-Tatlidede
et al., 2015). Patients with chronic stroke who received 5 days
of LF-rTMS to the unaffected motor cortex improved motor
abilities in their stroke-affected hand lasting up to 2 weeks
post-stimulation (Fregni et al., 2006). A following study, which
increased the stimulation protocol to 10 days, found 4 weeks
of post-stimulation improvement in the stroke-affected hand,
accompanied by an increase in transcallosal fractional anisotropy
values (Demirtas-Tatlidede et al., 2015). In another study patients
after acute ischemic stroke received 10 days of stimulation, and
motor effects of LF-rTMS lasted 10 days post-stimulation (Khedr
et al., 2005). A study which focused on rehabilitation with aphasia
patients found positive stimulation effects lasting 8 months
following 10 days of LF-rTMS (Naeser et al., 2005). Furthermore,
patients with left hemispatial neglect experienced amelioration of
their visuospatial deficits which lasted 15 days following seven
session of LF-rTMS over 2 weeks (Brighina et al., 2003; Figure 2).
Likewise, the antidepressant effects of LF-rTMS have also been
tested using multi-session protocols. LF-rTMS to right DLPFC
over ten sessions resulted in at least 2 weeks of antidepressant
effects post-stimulation (Stern et al., 2007). Although multi-
session studies regularly examine HF- and LF-rTMS protocols on
antidepressant outcomes (e.g., Fitzgerald et al., 2003), very few
follow-up with patients weeks after stimulation (Cao et al., 2018).

These studies demonstrate the potential for multi-session
stimulation protocols as an aid to therapeutic intervention with
patients. However, like single session protocols, more systematic
evaluation of protocol design is necessary (e.g., Robertson et al.,
2003). For example, in some protocols, stimulation is performed
alongside behavioral therapy (Khedr et al., 2005), whereas other
protocols stopped therapy during the experiment (Brighina
et al., 2003). Behavioral training has been demonstrated as an
effective tool in improving motor function in stroke patients

(Liepert et al., 2000). The mix of training and stimulation is
more effective than training or stimulation alone (Krause and
Kadosh, 2013; Looi et al., 2017; Brem et al., 2018), suggesting
the combination could be a very powerful therapeutic tool.
Furthermore, the incorporation of the methods employed to
elongate the efficacy of rTMS in one session could positively
impact the current designs in multi-session stimulation (see
section “State Dependency” below).

Physiology studies on multi-day protocols are yet to
study a similar timeline to that described in humans.
Markers associated with neuroplasticity were examined in
rats 3 days after a 10-day protocol of either HF- or LF-
rTMS (Gersner et al., 2011). It was found that HF-rTMS
significantly increased neuroplasticity markers in awake rats,
but there was no such impact following LF-rTMS. However,
a recording at 3 days may not have been sufficient to capture
the longer-lasting effects of LF-rTMS suggested by long-
lasting effects found in patients (Brighina et al., 2003; Fregni
et al., 2006; Stern et al., 2007; Demirtas-Tatlidede et al.,
2015). To conclude, while there is a clear evidence of the
benefit of multiple sessions of LF-rTMS upon behavior in
pathological conditions, there are much fewer studies on
benefits in the healthy population, despite empirical data
show the potential long-term potentiation LF-rTMS might
have on cognitive performance in the normal population
(Luber and Lisanby, 2014).

PROLONGING LF-rTMS: STATE
DEPENDENCY

Having demonstrated prolonged LF-rTMS effects from single-
and multiple-session protocols, we now examine the variables
which prescribe effective stimulation. By definition, brain
stimulation is expected to have an effect on brain state, resulting
in neurological impact, and potential behavioral alterations.
Therefore, the state of the brain at the time of intervention
may also influence the impact of stimulation. For example,
delayed effects of rTMS have been shown to depend on muscular-
exertion during stimulation in the motor cortex (Ziemann et al.,
2008; Todd et al., 2009). The concept of stimulation and state
dependency has been well discussed in previous reviews (see
Silvanto and Pascual-Leone, 2008; Romei et al., 2016b). Here, we
specifically highlight prolonged stimulation effects following the
control of brain state.

The common methods to control brain state prior to
brain stimulation include: (1) priming the brain with cortical
stimulation, (2) pharmacological intervention, (3) behavioral
task. The method which has been employed to successfully
prolong brain stimulation effects is priming. Simply, priming
involves applying brain stimulation to control neural activity
prior to another brain stimulation to affect the primed region.
Priming leverages off of meta-plasticity which is a persistent
form of plasticity where the history of synaptic activity predicts
lasting synaptic change (Abraham and Bear, 1996; Ridding and
Ziemann, 2010). One prominent study in the motor domain
demonstrated HF-rTMS followed by LF-rTMS to M1 resulted
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FIGURE 2 | Prolonged behavioral benefit following multiple session of LF-rTMS in the parietal cortex. (A) Brighina et al. (2003) methods: patients with ischemic
stroke to right hemisphere received seven session of 1 Hz rTMS to the healthy left hemisphere for 10 min at 90% individual motor threshold. The sessions were
delivered every other day for 2 weeks. At four different recording sessions spanning before and after the seven stimulation sessions, the patients performed a
line-bisection judgment. Participants were presented with lines which had been previously bisected and asked to determine if the bisection was at center, rightward
of center, or leftward of center. (B) Brighina et al. (2003), line bisection judgment recorded: (1) 15 days before the first stimulation day, (2) directly before the first
stimulation, (3) directly after the last stimulation, (4) 15 days after last stimulation day. Judgments are scored at zero for correct responses, positive values for
rightward errors and negative values for leftward values. Rightward errors are highly indicative of left visual field neglect. Error bars indicate SEM. Data from
(B) adapted from Brighina et al. (2003), copyright obtained from Rightslink R© and Copyright Clearance Center, licensee: Beth Israel Hospital.

in lasting depression of motor evoked potential for up to
60 min post-stimulation, whereas LF-rTMS alone returned to
baseline within 10 min (Iyer et al., 2003). Pre-conditioning the
motor cortex with transcranial direct current stimulation (tDCS)
followed by LF-rTMS can also elongate the effect of LF-rTMS on
motor cortex excitability (Siebner et al., 2004).

Pharmacological intervention and behavioral tasks
have also been demonstrated to influence the impact of
stimulation (Silvanto et al., 2007; Ziemann et al., 2015). Using
pharmacological intervention, stimulation induced LTP-like
plasticity can be shifted to LTD-like plasticity by administering
a partial NMDAR antagonist D-cycloserine prior to stimulation
(Nitsche et al., 2004). Comparably, behavioral color adaptation
can change the effect of TMS on the visual cortex causing
usually colorless visual phosphenes (little blips of light; Marg and
Rudiak, 1994) to appear in the adaptation color (Silvanto et al.,
2007). Although priming has demonstrated the dependency
of prolonged brain stimulation effects on brain state, to our
knowledge, pharmacological intervention and behavioral tasks
have not been used to prolong brain stimulation. Combined
CNS-active drugs and brain stimulation interventions may have
been overlooked as the two are usually paired to understanding
the separate roles of drug and stimulation protocols on cortical
plasticity (e.g., Liebetanz et al., 2002; Nitsche et al., 2004).
Likewise, in the study of brain-behavior relationships using TMS,
chronometric studies (single TMS pulses delivered at the onset
of the stimuli) have always been considered more appropriate
to study acute causal relationships (e.g., Silvanto et al., 2007).
However, with the evidence of priming prolonging LF-rTMS
effects, stimulation coupled with pharmacological interventions
or behavioral tasks could help exert sustained beneficial effects, a
desirable outcome when working with clinical population.

THE EFFECT OF INDIVIDUAL
DIFFERENCES

Thus-far our review has outlined the potential of LF-rTMS
in producing long-lasting behavioral change, however, there
is also a high variability in study outcome, which can be
explained through individual differences (Ridding and
Ziemann, 2010; Krause and Cohen Kadosh, 2014). A basic
method to control for individual subjects’ variability is to
measure either individual phosphenes or motor threshold
to set a stimulation intensity for a subsequent experiment
(Pascual-Leone et al., 1992; Marg and Rudiak, 1994).
Although this method is useful when stimulating at an
individualized level within their own target region (e.g.,
using phosphenes threshold for a subsequent visual task),
there is mixed evidence as to whether they are informative
of one another (Deblieck et al., 2008) as some studies
have found no correlation between motor and phosphene
thresholds (Stewart et al., 2001; Boroojerdi et al., 2002; Antal
et al., 2003). There is also high variability among individual
anatomical brain structures, and fMRI-guided neuro-navigated
TMS can help determine brain targets with good precision
(Sack et al., 2009).

Other individual differences are less easy to circumvent. For
example, a review by Ridding and Ziemann (2010) highlights
an increase in plasticity in females following brain stimulation,
but a decrease in plasticity following stimulation with age across
the whole population. Furthermore, some studies find highly
varied response to stimulation and have discovered the variance
is due to individual baseline task performance (Santarnecchi
et al., 2016). Santarnecchi et al. (2016) divided participants into
fast and slow performers following a complex logic task. They
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found only slow performers became significantly faster after
stimulation relative to baseline (Hedges’ g effect size = 0.80),
while fast performers did not show any change in performance
speed (Hedges’ g effect size = 0.21). One way to standardize pre-
stimulation baseline is to threshold performance capability well
below ceiling (for example, 75% task accuracy). Thresholding
performance can reduce intra-subject variability and increase
potential for stimulation effects (illustrated by Santarnecchi et al.,
2016). To illustrate, we calculated the effect sizes of two studies
with comparable stimulation protocols and measures, and found
the effect size was larger and more robust when all participants
were tested at threshold (Battelli et al., 2009; Hedges’ G = 0.86)
than in the study where a thresholding procedure was not
employed (Edwards et al., 2017; Hedges’ G = 0.63). Thus, testing
subjects at their performance threshold might reduce variability
and boost stimulation effects.

FUTURE DIRECTIONS

In light of the potential clinical application of LF-rTMS, the
durability of the positive outcomes should be well understood,
indicating a need for more physiological studies. Some
ground-breaking work has already been performed on the
effects of stimulation in non-human primates (NHPs) and
cats (Valero-Cabré et al., 2007; Bolzoni et al., 2013; Krause
et al., 2017). Valero-Cabré et al. (2007) studied the brain
metabolism in anesthetized cats post-stimulation and found
a decrease in 14C-2DG uptake for 30–60 min following LF-
rTMS stimulation. More recently, using anodal transcranial
direct current stimulation (a-tDCS) in anesthetized cats,
a network-wide boost in neuronal activation was found
hours after stimulation (Bolzoni et al., 2013). In contrast,
a-tDCS in awake behaving NHPs was found to effect low-
frequency brain oscillations, not firing rate, and accelerates
association learning (Krause et al., 2017). These findings
create a foundation for future physiology studies, which in
turn can inform human stimulation protocols. For example,
confirming the hypothesized mechanisms behind state-
dependent stimulation protocols would be incredibly valuable,
and aid individualization of protocols.

The purpose of this review was restrained to the long-
lasting effects of LF-rTMS, however, the inclusion of other
brain stimulation techniques has been necessary to better
illustrate meta-plasticity and priming. HF-rTMS and transcranial
electric stimulation (tES) also show huge promise in prompting
lasting plasticity in the brain, and our future directions would
not be complete without the suggestion of probing other
stimulation methods. With that, we would like to highlight a
few examples below.

PROLONGED BEHAVIORAL AND BRAIN
EFFECTS AFTER tES AND HF-rTMS

Transcranial electric stimulation techniques include transcranial
direct current stimulation (tDCS), transcranial alternating

current stimulation (tACS), and transcranial random noise
stimulation (tRNS), all of which have demonstrated lasting
behavioral and/or physiological effects in the visual (Herpich
et al., 2018), parietal (Cappelletti et al., 2013), and motor cortex
(Kuo et al., 2013). Kasten et al. (2016) found a sustained
enhancement of alpha power 70-min after individual alpha
frequency was presented to the occipital cortex using tACS,
indicating the selectivity of the effect of tACS. Moreover,
tRNS applied to the motor cortex and visual cortex has
induced consistent excitability recorded through increase
motor evoked potentials and decrease phosphene threshold,
respectively, which lasted 60 min post-stimulation (Terney
et al., 2008; Herpich et al., 2018). Furthermore, multi-session
tRNS to bilateral dorsolateral prefrontal cortex resulted in
a boost in mental arithmetic 6 months post-stimulation,
also correlated with an increase in activity over left DLPFC
(Snowball et al., 2013). Altogether these studies indicate
that tRNS might increase excitability and open up a critical
window during which the cortex might be more plastic and
responsive to treatment.

Transcranial magnetic stimulation protocols (other than LF-
rTMS) have also shown potential for prolonging post-stimulation
effects. For example, HF-rTMS over the FEF has resulted in
a 60-min increase in saccade latency (Nyffeler et al., 2006),
and effects on functional connectivity lasting 30–40 min (Rizk
et al., 2013). HF-rTMS over the rat cortex has demonstrated
local neural activity impact lasting 160 min post-stimulation
(Hoppenrath and Funke, 2013). Finally, an interesting recent
stimulation method, namely cortico-cortical paired association
(ccPAS), has been found to strengthen reentrant connectivity
30 and 60 min after stimulation, specifically from V5 to V1
(Romei et al., 2016a). ccPAS has the potential of inducing
selective pathway-specific changes with a multi-coil approach,
and enhance the precision and selectivity of the effect (Chiappini
et al., 2018). This has clear potential for individualized clinical
interventions. Thus, accumulating evidence for positive lasting
behavioral and brain activity changes following stimulation
indicates a real possibility for these stimulation protocols in
rehabilitation therapies.

CONCLUDING REMARKS

This review highlights prolonged neuromodulatory effects on
brain dynamics and behavior of humans and animals following
non-invasive cortical stimulation. Harnessing these long-term
effects should be a high-priority if brain stimulation is to
be a powerful aid in rehabilitation. We expect physiology
experiments will be a driving force in honing stimulation
protocols to better exploit long-term neurological and
behavioral benefits.
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