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ABSTRACT
COVID-19 an outbreak of a novel corona virus originating from Wuhan, China in December 2019 has
now spread across the entire world and has been declared a pandemic by WHO. Angiotensin convert-
ing enzyme 2 (ACE2) is a receptor protein that interacts with the spike glycoprotein of the host to
facilitate the entry of coronavirus (SARS-CoV-2) hence causing the disease (COVID-19). Our experimen-
tal design is based on bioinformatics approach that combines sequence, structure and consensus
based tools to label a protein coding single nucleotide polymorphism (SNP) as damaging/deleterious
or neutral. The interaction of wildtype ACE2-spike glycoprotein and their variants were analyzed using
docking studies. The mutations W461R, G405E and F588S in ACE2 receptor protein and population
specific mutations P391S, C12S and G1223A in the spike glycoprotein were predicted as highly desta-
bilizing to the structure of the bound complex. So far, no extensive in silico study has been reported
that identifies the effect of SNPs on Spike glycoprotein-ACE2 interaction exploring both sequence and
structural features. To this end, this study conducted an in-depth analysis that facilitates in identifying
the mutations that blocks the interaction of two proteins that can result in stopping the virus from
entering the host cell.
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Introduction

COVID-19 an outbreak of a novel corona virus originating
from Wuhan, China in December 2019 has now spread across
the entire world and has been declared a pandemic by
WHO. The SARS-CoV-2 belongs to the family of corona
viruses that caused severe acute respiratory syndrome (SARS)
in the year 2002 and can be transmitted from animals to
humans. The human-human transmission is currently prevail-
ing, increasing the number of total patients to 7,127,753 by
June 10th, 2020 including 409,150 deaths as reported by
WHO (https://www.who.int/). Currently, the only treatment of
this disease is self-isolation and several academic and com-
mercial groups are in search of a drug and/or a vaccine for
this disease.

The interaction of surface spike glycoproteins of SARS-CoV
with the receptor protein Angiotensin converting enzyme II
(ACE2) (EC number: EC 3.4.17.23) facilitates the virus entry
into the host cell. Spike glycoprotein is a homotrimer and
each monomer possess around 1200 amino acids. The recep-
tor binding domain (RBD) is a small domain of spike glyco-
protein spanning from 360-575 and from which the residues
424-494 make up the receptor binding motifs which directly
activates the interaction with ACE2. Moreover, the residues
of spike glycoprotein that interacts with ACE2 are

evolutionary conserved residues (Basit et al., 2020; Kalathiya
et al., 2020; Yan et al., 2020).

ACE2 is an enzyme that is found on the outer membranes
of lung cells, arteries, heart, kidney and intestines and
belongs to the renin-angiotensin-aldosterone system (RAAS),
which regulates blood pressure and body fluid, hence it has
an important contributing role in hypertension and cardio-
vascular/renal diseases. The protease Renin, cleaves angioten-
sinogen to create Angiotensin (Ang) I. ACE2 then cleaves
Ang I to produce Ang II. Decreasing the level of ACE2 can
help fight the infection as this might affect the interaction of
two proteins hence stopping the virus entry into the cell
(Imai et al., 2008).

Lately, much work has been done in determining the
exact cause of COVID-19 disease and in finding its cure by
designing vaccines/drugs against it. Haider et al. used
pharmacophore based virtual screening for in silico drug
design (Haider et al., 2020). The authors performed molecular
docking analysis and identified three potential drugs
ZINC20291569, ZINC90403206, and ZINC95480156 that
showed the strongest binding interactions against the active
site of main protease of SARS-CoV-2. The receptor binding
domain (RBD) of spike glycoprotein has been reported to
interact with ACE2 receptor protein (Othman et al., 2020).
This study also identified the importance of Q493, P499
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residues in the RBD which are important for maintaining the
stability of bound complex (Othman et al., 2020). The study
carried out by Peele et al. designed an in-silico based multi-
epitope vaccine that activates both CD4 and CD8 immune
response cells. The B and T cell epitopes were used to design
this vaccine that are responsible for provoking immune
response in the host cell. Further, the authors have per-
formed molecular docking and simulation studies which con-
firmed the protein-protein interactions and stability of the
binding pose (Ap & Vs, 2020). Recently, few studies have
conducted computational analysis on medicinal plant to
design a treatment against coronavirus. The study carried
out by Sinha et al. used Saikosaponins as a treatment for
COVID-19. It belongs to a group of oleanane derivates and
possess various antiviral and anti-inflammatory activities. The
molecular docking studies were carried out on nsp15 (PDB
ID: 6W01) and 2019-nCoV spike glycoprotein (PDB ID: 6VSB).
The resulting binding affinities showed the Saikosaponins
binds really well with both of the proteins and can be served
as a new future molecule for treating COVID-19 (Sinha
et al., 2020).

The complex of ACE2 with B0AT1 that stabilizes the ACE2
structure was studied with spike glycoprotein. The authors
(Armijos-Jaramillo et al., 2020) have identified the binding
affinities of the RBD of ACE2 with the extracellular peptidase
domain (PD) of spike glycoprotein and how the mutations
affect the bound complex. The structural interpretation may
enlighten the mechanisms of viral infection and helps in
developing antiviral therapeutics. Another study explored the
evolutionary dynamics of COVID-19 disease by exploiting the
spike glycoprotein interaction with ACE2 (Yan et al., 2020).
The evolutionary analysis was conducted for spike glycopro-
tein to determine if the genomic regions are under purifying
selection. The authors discovered few residues inside the
RBD that are highly conserved and are also thought to pro-
vide stabilizing interactions in the bound complex (nCoV-
ACE2) (Ji et al., 2020). A recent study has conducted a phylo-
genetic based evolutionary analysis to determine the com-
mon ancestor by carrying a comparative analysis on genomic
sequence similarity from humans, bat, snakes and mice. The
analysis predicted that snake is the major reservoir of this
disease also, there is a homologous recombination present in
the RBD of spike glycoprotein which may justify the trans-
mission of the disease from animals to humans (The UniProt
Consortium, 2017). Also, an experimental study conducted
by Wooster et al (Wooster et al., 2020) analyzed the variants
in ACE2 in 62 COVID-19 positive patients. The genotyping
was performed using the Illumina Infinium MEGA
Consortium v1 SNP array. GTEx was used to determine sig-
nificant SNP associated with ACE2. Out of 10 eQTL variants, 6
were significantly associated with hospitalization require-
ments for COVID-19. This study provides a genetic link
between ACE2 genotype and its severity with the disease
formation. Another, population specific study carried out by
Khayat et al (Khayat et al., 2020) used exomics analysis to
study the polymorphism in native and mixed American pop-
ulations. The data was gathered from 1000 Genomes Phase 3
database which contains the data from 26 different

populations. They have identified three polymorphisms
rs147311723 (L731F), rs142017934 and rs4646140 that are
common in African population. Among these the
rs142017934 variant was observed as more damaging and
can affect the translation of ACE2 gene, increasing the
expression of this gene. Moreover, higher frequencies of
rs1027571965 (A673G), rs889263894 (K541I), rs2285666 and
rs35803318 were observed in the American population.
These SNPs increased the ACE2 expression level in the brain
tissues. This particular population group has genetic distinct-
iveness and was also less exposed to the viral infections.
Calcagnile et al. also found polymorphisms in ACE2 gene in
African and European populations by carrying out docking
and simulations based study. The study reported two var-
iants S19P in African and K26R in European population as
significantly associated with ACE2 expression and it’s binding
with spike glycoprotein. S19P is predicted to decrease the
binding affinity, while K26R is predicted to increase the bind-
ing affinity of ACE2 with spike glycoprotein (Calcagnile
et al., 2020).

Understanding the fundamentals of virus entry into the
host cell including the protein interactions that facilitates
this process is the key step that can lead to the development
of vaccines and drugs. We have employed a computational
approach to determine the nsSNPs in ACE2 and to determine
which variants are more crucial in disrupting the structure-
function of the ACE2 protein and its interaction with the
2019-nCoV spike glycoprotein. So far, no extensive study has
been reported that identifies the effects of SNPs on 2019-
nCoV-ACE2 interaction by exploring both the sequence and
structural features. To this end, this study conducted an in-
depth analysis that facilitates the identification of the muta-
tions that are affecting the interactions of two proteins, and
might be responsible for preventing infections. Our study
will contribute effectively in providing better understanding
of disease mechanisms.

Materials and methods

Sequence retrieval and data mining of SNPs

The protein sequences and structures of nCoV spike glyco-
protein (PDB ID: 6VSB) and Angiotensin converting enzyme 2
ACE2 (PDB ID: 1R42) were downloaded from UniProt (https://
www.uniprot.org/) (Apweiler et al., 2004) and Protein Data
Bank (Kouranov et al., 2006). Further, the genomAD database
was queried to obtain the human ACE2 missense SNPs
(https://gnomad.broadinstitute.org/) (Karczewski et al., 2020).
After redundancy reduction a total of 230 SNPs were
retrieved for further analysis.

Functional annotation

The downloaded SNPs were further subjected to functional
annotation analysis using several bioinformatics tools. The
first group of tools includes sequence homology based tools:
SNPNexus (SIFT- PolyPhen) (Dayem Ullah et al., 2012), Protein
Variation Effect Analyzer (PROVEAN) (Choi & Chan, 2015) and
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Mutation Accessor (Reva et al., 2011). The second group
includes consensus based methods: Meta-SNP (Bendl et al.,
2014), SNPs&GO (Capriotti et al., 2013) and PredictSNP (Bendl
et al., 2014). The SNPNexus has built-in SIFT and PolyPhen
tools, as these are sequence homology based tools they first
obtain the homologous sequences of the query sequence
and perform the multiple sequence alignment. The score of
0-0.5 classifies the mutation as damaging or deleterious.
PROVEAN webserver takes in protein sequence along with
the list of mutations to run a homology search via BLAST
and constructs multiple sequence alignment. The PROVEAN
scores have a cutoff threshold of �2.5 for labelling the muta-
tion as neutral and deleterious otherwise. The multiple
sequence alignment built by Mutation Accessor determines
the evolutionary conservation profile of the query protein.
Mutation Assessor uses combinatorial entropy optimization
to determine the functionally important residues by cluster-
ing them into subfamilies. The residues were classified into
specificity residues, conserved residues or neutral residues.

The Meta-SNP, PredictSNP and SNPS&GO are consensus
based methods that incorporate various tools. Meta-SNP is a
random forest based binary classifier that combines four pre-
dictors SNAP (Screening for Non-Acceptable Polymorphism)
(Bromberg & Rost, 2007), SIFT (Sorting Intolerant from
Tolerant), PANTHER (Protein Analysis through Evolutionary
Relationships) (Thomas & Kejariwal, 2004) and PHD-SNP
(Predictor of Human Deleterious SNP) (Capriotti & Fariselli,
2017). PHD-SNP identifies if the particular SNP is disease
associated or neutral while the SNAP, PANTHER and SIFT
functionally annotate the variants. PredictSNP has eight tools
nsSNPAnalyzer (Bao et al., 2005), PolyPhen (Polymorphism
Phenotyping), SNAP, MAPP (Multivariate Analysis of Protein
Polymorphism), PHD-SNP, SIFT, and consensus PredictSNP.
SNPS&GO implements the PHD-SNP method which is SVM
classifier that combines features from sequence, evolutionary
information and functional features derived from GO terms.
A SNP is labelled as high risk if it is predicted as deleterious
from 5 out of these 7 tools for obtaining high confi-
dence results.

Predicting evolutionary conserved residues

The ConSurf webserver (Celniker et al., 2013) was used to
predict the evolutionary conserved residues and also to iden-
tify conserved motif patterns (if any). The FASTA protein
sequence of ACE2 was sent as input to ConSurf, the tool
then generates the multiple sequence alignment automatic-
ally and also builds the 3D model of the protein. Bayesian
algorithm was used to compute the conservation score by
performing phylogenetics analysis between the homologous
sequences. The scores in the range of 1-4 are annotated as
variable, 5-6 as intermediate and 7-9 as conserved.
Furthermore, the tool also predicts if the particular residue is
buried or exposed which can further reveal the structural
and functional importance of that residue. The tool is avail-
able at http://consurf.tau.ac.il/2016/.

In order to determine any population specific mutation
we have downloaded the genomic sequences of the new

coronavirus of different origins from the Global Initiative on
Sharing Avian Influenza Data (GISAID) database (Shu &
McCauley, 2017). Further detail is provided in Supplementary
File S1. The sequences were sent to MAFFT for multiple
sequence alignment (Katoh et al., 2005).

Analyzing protein stability

We have used mCSM webserver to predict the protein stabil-
ity analysis of the observed mutants (Pires et al., 2014). The
server is based on graph based signatures which are calcu-
lated as distance patterns around the wild type residue.
Given a mutation site the algorithm first creates the wild
type environment by defining a distance of atoms from its
geometric mean. A matrix is created which defines the pair-
wise distance between the two atoms. Furthermore, the
pharmacophore count was also added to the feature set. The
difference of Gibbs free energy DDG between wildtype and
mutant residue was analyzed which then labels a mutation
as destabilizer or neutral.

Predicting disease related mutations using MutPred

To predict the disease associated SNPs we have used
MutPred (Mort et al., 2014) that classifies a variant as patho-
genic (disease associated) or neutral by using structural,
functional and evolutionary features. It also includes tools to
predict structural disorder (TMHMM, MARCOIL, and DisProt)
that determines the molecular basis of the pathogenicity
associated with the amino acid substitutions. A consensus
based approach is likely to bring a high confidence predic-
tion score.

Protein 3D structure modelling

The deposited 3D structures of ACE2 and 2019-nCoV spike
glycoprotein were downloaded from RCSB PDB. We used I-
TASSER (Zhang, 2008) to generate complete 3D structure of
both proteins for their wild-type and mutated sequences, as
the resolved structures do not cover the full amino acid
sequence of the proteins. I-TASSER is an automated hom-
ology modeling based tool that combines threading and ab
initio structure prediction. The quality of the generated pro-
tein model was analyzed by ERRAT (Colovos & Yeates, 1993).
The wild-type and mutant models were superimposed and
visualized in Chimera 1.11 (Pettersen et al., 2004).The struc-
tural similarity of the models was then analyzed using TM-
Align (Zhang & Skolnick, 2005).

Molecular docking analysis

To predict the protein complex between the two interacting
proteins, we have used ClusPro webserver (Kozakov et al.,
2017) by using the default settings. The tool is based on a
Fast Fourier Transform Correlation approach that makes it
very flexible for computing billions of docked molecules by
using a simple scoring function. ClusPro rotated the ligand in
70,000 different orientations and 1000 poses were then
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picked up based on the lowest scores. The algorithm behind
ClusPro further used greedy approach to generate clusters
with a 9 Å C-alpha RMSD radius. The server outputs 10 differ-
ent docked poses which were ranked according to the
energy and cluster size. The 2019-nCoV spike glycoprotein
was docked with its receptor protein ACE2. Both the wild
type ACE2 and the mutant models of ACE2 were docked
with 2019-nCoV spike glycoprotein wildtype and mutant pro-
teins to analyze the effect of variants on the interaction of
the two proteins.

Results

Retrieval of non-synonymous (nsSNPs) in ACE2

Total of 230 missense SNPs in ACE2 were downloaded from
genomAD database. From these missense SNPs, SIFT and
PolyPhen predicted 145 SNPs as damaging/deleterious which
were further taken to PROVEAN server. From these 145 SNPs,
PROVEAN identified 92 mutations as deleterious/damaging.
The functional effect of the nsSNPs was further analyzed by
the Mutation Accessor, Meta-SNP, SNPs&GO, and Predict-SNP.
To predict with high confidence, we have labelled a SNP as
damaging only if it is predicted as deleterious/damaging
from at least 5 out of 7 tools. Based on this, 34 candidate
SNPs were selected as deleterious which were predicted
commonly as damaging from the 7 tools mentioned above.
Detailed predictions of the SNPs for each tool are tabulated
in Supplementary File Table S2, S3 S4 and S5. Figure 1 repre-
sents the general workflow of the methodology and (Table
1) summarizes the results obtained from functional annota-
tion tools..

Conservation profile of SNPs

The 34 candidate SNPs predicted as damaging/deleterious
from the functional annotation tools are further subjected to

evolutionary conservation analysis by ConSurf. We have con-
sidered those SNPs that have scores in the range of 7-9 to
pick the highly conserved mutations. From the 34 mutations,
21 are found to be conserved and buried and present at the
core of the protein, and 13 are conserved and present at the
surface of the protein. The detailed results are provided in
Supplementary File Table S6.

Further, the multiple sequence alignment was performed
on the genomic sequences of spike glycoprotein sequences
sampled from GSAID between December 2019 and April
2020. We found mutations P391S, R207C, and P2965L occur-
ring in the Pakistani population, variant G1223A in UK spe-
cific population and C12S in Indian population. All these
variants are occurring at evolutionary conserved regions as
predicted by ConSurf with R207C predicted to be buried
hence contributing structurally while the variants P391S,
P2965L, G1223A and C12S are predicted as functionally
important residues.

Predicting protein stability

The change in protein stability was predicted from mCSM
webserver. The change in Gibbs free energy determines if
the mutation at particular residue is disrupting the stability
of the protein. The results from mCSM showed that a few
mutants are highly destabilizing to the structure of the pro-
tein hence expected to disrupt the proper functioning of the
protein. These variants were found to be evolutionary con-
served using ConSurf. The results of the significant mutants
are tabulated in Table 2 while detailed results are presented
in Supplementary Table S7.

Predicting disease associated SNPs using MutPred

The SNPs predicted as potential destabilizers were further
checked with MutPred to predict their association with dis-
ease. MutPred predicts the change in the molecular proc-
esses upon mutation like alterations of transmembrane
helices, altered disordered interface, gain or loss of catalytic
sites, solvent accessibility and post translational modifica-
tions. The scores that have a p-value < 0.05 and g-value >

0.75 are considered as high risk SNPs. The results of MutPred
showed that the F588S, A191P, I544N, V184G, L186S, G405E
and L585P substitutions had the highest g-value. These
mutants were also predicted as deleterious from the func-
tional annotation tools. Moreover, the mutants F588S, A191P,
I544N, V184G, and G405E were also predicted as evolutionary
conserved residues. The results are tabulated in
Supplementary Table S8.

3D Structure modelling of ACE2 and molecular
docking analysis

The experimentally resolved 3D structure of ACE2 (PDB ID:
1R42) contains residues from 1-615, however the full protein
length of ACE2 is 805 amino acids. Therefore, the complete
tertiary structure was generated using I-TASSER. The mutant
models of high risk SNPs were also generated using I-

Figure 1. An overview of the methodology design of nsSNPs structure-func-
tion analysis.
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TASSER. Furthermore, the structural similarity between the
wild-type protein and its variants were calculated using TM-
Align. Three mutants (F588S, G405E and W461R) showed the
highest deviation with RMSD 1.86, 1.45 and 1.46 Å, respect-
ively. The rest of mutants either showed very less deviation
or no deviation.

Further, from the multiple sequence alignment we have
identified few variants among Pakistani (P391S), Indian
(C12S) and England (G1223A) populations. The mutant mod-
els of P391S, C12S, and G1223A showed significant deviation
with RMSDs of 1.56, 1.35 and 1.46 Å. The mutant models

were superimposed with the wild type protein model using
Chimera to identify the mutation positions. The quality of
the protein structures were checked with ERRAT which
showed the value of 80.83 for the wild type ACE2, 95.6 for
F588S, 90.53 for G405E and 95.06 for W461R mutant.
Similarly, we obtained 87.45 for wildtype spike glycoprotein,
91.36 for P391S, 97.34 for C12S and for 97.26 for G1223A
mutant. The results are figured in Figure 2.

In order to determine how strongly the proteins are
bound together in their wild form and how the mutations
are affecting this bound structure, we used the ClusPro pro-
tein docking webserver. We selected cluster 1 because of its
large size and lowest energy. Furthermore, we calculated the
buried surface area (BSA) using PyMol to interpret the pro-
tein-protein interactions (1R42-6VSB). We considered buried
surface area (BSA) as the measure of strength of two inter-
acting proteins. The bound complex of wildtype spike glyco-
protein with ACE2 is expected to be more stable with the
highest BSA. The results obtained showed that the mutations
are noticeably disrupting the bound complex. The Table 3
and Figure 3 shows the buried surface area of the docked
complexes of wild type and mutant models. Also, the docked
structures were analyzed via LIGPLOT1 (Laskowski and
Swindells, 2011) to check the interacting binding residues of
nCoV-ACE2. The binding pocket of wild type docked com-
plexes and the mutant models showed different set of resi-
dues with mutant F588S showed complete loss of binding
pocket hence, is largely effecting the interaction between
the two proteins as figured in Figure 3.

Table 1. Combined deleterious SNPs predicted from SNPNexus, PROVEAN, Meta-SNP, PredictSNP, SNPs&Go and Mutation Accessor.

Mutation SNPNexus PROVEAN Meta-SNP PredictSNP SNPs&GO Mutation Accessor Result

L595V Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
F588S Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
L585P Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
L570S Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
S563L Deleterious Deleterious Neutral Deleterious Deleterious Deleterious Deleterious
S547F Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
S547C Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
I544N Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
K541I Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
V506A Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
F504L Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
F504I Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
G466W Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
W461R Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
G405E Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
N397D Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
G377E Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
E375D Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
M360L Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
D355N Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
E312K Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
P263S Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
Y252C Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
A242V Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
Y207C Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
R204T Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
A191P Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
L186S Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
V184G Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
V184A Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
P178L Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
C141Y Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
S128T Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious

Table 2. Damaging variants predicted from mCSM and Consurf.

Mutation DDG Effect
Evolutionary Conservation

Analysis

F588S �3.33 Highly Destabilizing Buried – Highly Conserved
V573A �2.14 Highly Destabilizing Buried- Less conserved
L570S �3.03 Highly Destabilizing Buried- Highly conserved
Y521H �2.41 Highly Destabilizing Buried- Less conserved
V506A �2.40 Highly Destabilizing Buried- Less conserved
W461R �2.14 Highly Destabilizing Buried- Highly conserved
G405E �2.94 Highly Destabilizing Buried- Highly conserved
G377E �2.23 Highly Destabilizing Buried- Highly conserved
P263S �3.44 Highly Destabilizing Exposed- Highly conserved
R204T �2.06 Highly Destabilizing Exposed- Conserved
L186S �2.99 Highly Destabilizing Buried- Conserved
V184G �2.19 Highly Destabilizing Buried- Conserved
A164S �2.16 Highly Destabilizing Buried- Conserved
R207C �1.42 Destabilizing Buried- Highly conserved
P391S �1.22 Destabilizing Exposed- Highly conserved
P2965L �1.01 Destabilizing Exposed- Highly conserved
G1223A �1.42 Destabilizing Exposed- highly conserved
C12S �1.92 Destabilizing Exposed- highly conserved

JOURNAL OF BIOMOLECULAR STRUCTURE AND DYNAMICS 5



In addition to that, the molecular docking studies were
validated on electron microscopic crystal structures of spike
glycoprotein and ACE2 proteins (PDB IDs: 6ACJ, 6ACG, 6CS2,
6ACK). We separated the ligand from the receptor in the
electron microscope structure and then docked the ligand
on to the receptor using our above mentioned protocol. We
were able to capture the binding pose as demonstrated by
the similarity of the buried surface area values. The buried
surface areas computed on the structures 6CS2, 6ACJ and

6ACK showed the similar area to our modeled structures.
These were also analyzed with the mutant models of recep-
tor-ligand (PDB: 1R42, 6VSB) and the decrease in BSA was
observed in the mutants as compared to the wildtype
docked structures.

The PDB structures 6ACG and 6ACJ are Trypsin-cleaved
and low pH-treated SARS-CoV spike glycoprotein and ACE2
complex, ACE2-bound conformation 1 and ACE2-bound con-
formation 2. The two conformations of ACE2 showed differ-
ent BSA, the ligand docked with conformation 2
demonstrated similar trends in BSA as of our docked struc-
tures (1R42-6VSB). The results are tabulated in Table 4.

The mutant residue in G405E is neutral, bigger in size and
is more hydrophobic than the wild type residue. The muta-
tion is occurring at the conserved region and is also a part
of domain Peptidase M2, Peptidyl-Dipeptidase A which is
important for the main activity of the protein and mutation
can lead to function disorder. There is a difference of charge
as mutated residue is negatively charged this can cause
repulsion of ligands or other residues with the same charge.

Figure 2. (A) Structural position of the ACE2 mutants G405E, F588S and W461R in the protein 3D structure visualized in PyMol. (B) Structural position of population
specific mutations of spike glycoprotein, P391S, C12S and G1223A in the protein 3D model visualized in PyMol.

Table 3. Predicted buried surface area of the two interacting proteins with
wildtype ACE2 and with the mutant models of ACE2.

Interacting Complex ClusPro Buried SA (A2)

6VSB-1R42 (Wildtype) 3558
6VSB-1R42 (G405E) 2952
6VSB-1R42 (W461R) 2958
6VSB-1R42 (F588S) 2854
6VSB (P391S)- 1R42 2980
6VSB (C12S)- 1R42 2760
6VSB (G1223A)- 1R42 3215
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The hydrophobicity of the wild-type and mutant residue dif-
fers therefore, the hydrophobic interactions either in the
core of the protein or on the surface will be lost. The

mutation W461R also introduces the difference in charge
between the wild-type and mutant amino acid, which can
cause repulsion of ligands or other residues with the same

Figure 3. (A) Docked complex of wild type 2019-nCoV spike glycoprotein with wild type ACE2 receptor protein. (B) The docked complex of 2019-nCoV spike glyco-
protein with mutant G405E ACE2 receptor. (C) The docked complex of 2019-nCoV spike glycoprotein with mutant W461R ACE2 receptor.(D) The docked complex of
2019-nCoV spike glycoprotein with mutant F588S ACE2 receptor. (E) The docked complex of mutant 2019-nCoV spike glycoprotein P391S with wild type ACE2. (F)
The docked complex of mutant 2019-nCoV spike glycoprotein C12S with wild type ACE2. (G) The docked complex of mutant 2019-nCoV spike glycoprotein G1223A
with wild type ACE2.
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charge. The wild-type and mutant amino acids differs in size.
The mutant residue is smaller, this might leads to loss of
interactions.

For the mutation F588S the hydrophobicity of the wild-
type and mutant residue differs. Hydrophobic interactions,
either in the core of the protein or on the surface, will be

lost. Only this residue type was found at this position in mul-
tiple sequence alignment as predicted from HOPE webserver.
Mutation occurring at a 100% conserved residue is usually
damaging for the protein. Based on this conservation infor-
mation this mutation is probably damaging to the protein
(Venselaar et al., 2010).

Figure 3. Continued.
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The multiple sequence alignment of the genomic sequen-
ces predicted few population specific mutations. The docked
complexes of P391S from Pakistani population, C12S from
Indian population and G1223A from England population
showed the difference of interaction between the 2019-nCoV
spike glycoprotein with its receptor ACE2 protein. These
mutations expected to disrupt the bound protein complex
hence blocking the interaction between the two proteins.

Discussion

Single nucleotide polymorphisms (SNPs) refers to a change
in a single residue at a particular position in a sequence
which occurs at a frequency of more than 1% in a popula-
tion. SNPs can occur at both coding and non-coding regions
of the genome among which, coding SNPs have a high
potential of having a drastic effect on protein structure and
function (Khalid & Sezerman, 2020). A large amount of the
data has been deposited in the databases on non-synonym-
ous SNPs (nsSNPs) which has been in the limelight of the
current research. Identifying the nsSNPs has various implica-
tions in the medical research as these SNPs are associated
with diseases which can facilitate drug discovery.

Lately, many studies have been reported on nsSNPs to
predict structurally and functionally important variations that
are associated with disease formation. The features included
in these studies are either sequence related or structure
related or they can belong to both categories. This study
focused on carrying out a comprehensive study on the SNPs
associated with nCoV-ACE2 interactions. We have combined
various computational tools to validate the predictions. First,
all the nsSNPs were functionally annotated and were then
passed to evolutionary conservation analysis. The shortlisted
SNPs were then checked for their effect on protein stability.
The SNPs that are highly destabilizing to the structure of the
protein were further subjected to docking studies. The dock-
ing studies were carried out with ClusPro for both the wild-
type protein and with the mutant models of ACE2. To check
the strength of interaction of the bound complex we have
computed buried surface area of the protein complex. We
have calculated the values for both wild type and mutant
models and have taken this as a measure of strength of
interactions between the two proteins. The computed values
showed a difference of BSA between the wildtype interaction
and interaction of spike glycoprotein with the mutant mod-
els of ACE2. A larger variation has observed with the F588S
mutant model of ACE2. All these variants were also predicted
as highly conserved by the CONSURF webserver hence are

expected to be destabilizing for the structure of the protein.
This shows that particularly this mutation is affecting the
interaction of the two proteins. The spike protein interacts
with its receptor protein ACE2 which then facilitates the
entry of the virus in the host cell. As, the mutations are dom-
inantly affecting the interactions this further may stop the
entry of the virus in the host cell.

In addition to that, mutations predicted from multiple
sequence alignment (MSA) of spike glycoprotein were also
analyzed. MSA identified P391S, R207C, P2965L in Pakistani
population, C12S in Indian population while N1223R in
English population. These mutants were checked with the
functional annotation tools and all of them predicted these
mutations as either benign or neutral but the variants are
evolutionary conserved as predicted from ConSurf. Also,
when analyzed with mCSM webserver to check if the
mutants are affecting the protein stability the scores showed
that all mutants (P391S, R207C, P2965L, C12S and G1223A)
are destabilizing the structure and function of the protein.
Further, to validate this we have utilized HOPE webserver
and it was observed for R207C the size difference and the
difference of hydrophobicity between the two residues will
affect the hydrogen bond formation because the mutant
residue might not fit in well to make hydrogen bond. The
variant P2965L replaces prolines with leucine, proline is a
rigid amino acid that provides rigidity and provides the spe-
cial conformation of the protein which might be required
hence, leucine can disrupt this conformation. Further this
residue is exposed at the surface of the protein and have a
functional role as predicted by ConSurf involves the inter-
action with other proteins. On the other hand, the mutation
P391S has the size difference and change in hydrophobicity
will affect the contacts made by the wildtype residue.
Consequently, will affect the hydrophobic interactions. As
prolines are special amino acids which are rigid in nature
therefore, provide the special conformation which will be dis-
rupted by the mutant residue (Venselaar et al., 2010). Among
these, the highest deviated mutant was P391S, we per-
formed the docking analysis of mutant model with the wild
type ACE2 protein model to check if the mutation in spike
protein is affecting the interaction between the two mole-
cules. The difference of the Buried SA between wildtype
docked complexes and with the mutant P391S showed that
the mutations are affecting this interaction. The Pakistani
population specific mutation in 2019-nCoV spike glycopro-
tein shall be validated with experimental analysis in future
studies to further enlighten its effect on the interaction and
to the structure and function of the protein.

Table 4. The buried surface area of the wild and mutant models in experimental PDB structures.

Interacting
Complex

Wild-Type
Buried
SA (A2)

Wildtype Re-
docked.
Buried SA
(A2) 1R42

1R42- F588S
Buried
SA (A2)

1R42- W461R
Buried
SA (A2)

1R42- G405E
Buried
SA (A2)

Wildtype Re-
docked.
Buried SA
(A2) 6VSB

6VSB -P391S
Buried
SA (A2)

6VSB -C12S
Buried
SA (A2)

6VSB
-G1223A
Buried
SA (A2)

6ACJ 3549 3550 2756 2759 3559 2980 2788 2485 2958
6CS2 3562 3560 2547 2872 2972 3534 2218 3077 3402
6ACG 3045 3717 3722 3723 3723 4473 4435 4546 4479
6ACK 3552 3569 3438 3426 3443 3542 2123 3290 3421

JOURNAL OF BIOMOLECULAR STRUCTURE AND DYNAMICS 9



In the C12S variant the wildtype residue is more hydro-
phobic, this difference might disrupt the interactions with
other proteins. The mutation G1233A occurring in English
population is replacing Glycine the most flexible residue to
Alanine. The torsion angles for this residue are very unusual
only glycine is flexible enough to make these torsion angles,
mutation into another residue will force the local backbone
into an incorrect conformation and will disturb the local
structure. The size difference of two residues might abolish
the actual function of the protein.

Unlike the study carried out by Calcagnile et al
(Calcagnile et al., 2020) that predicted the two population
specific variants S19P and K26R as significant polymorphisms
in African and European population, our functional annota-
tion analysis predicted these mutations as neutral. Also,
when analyzed with CONSURF for identifying if the muta-
tions are occurring at evolutionary conserved sites, the server
predicted both of them as non-conserved with a score of 3.
These mutations are occurring within a specific population
hence, the frequency among different populations could be
low for this reason, the in-silico analysis predicted them as
silent mutations. As, these variants are not identified in the
evolutionary conserved regions of the genome therefore,
experimental verifications are required to confirm their
significance.

Conclusions

We have carried out an in-silico study to determine the dele-
terious mutations in ACE2 and spike glycoprotein. The func-
tional annotation identified the variants G405E, W461R,
F588S in ACE2 while, P391S, C12S and G1223A in spike
glycoprotein as lethal and also evolutionary conserved. These
were further checked with the docking studies to determine
their effect on the protein bound structure. The computed
buried surface area for each model showed the significant
decrease in the mutant models as compared to the wildtype
structures. The docking studied was also validated by com-
puting BSA on already crystallized docked structures of
ACE2-nCOV which demonstrated the similar trends of BSA to
our docked structures, thus supporting our docking protocol.
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