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� Chest deformities in Osteogenesis
Imperfecta patients affect pulmonary
function.

� We present the rib cage deformities
related to pulmonary function.

� There are significant relations
between ribs shape and spirometric
parameters.

� There is no relationship between
thoracic spine shape and spirometric
parameters.

� Correction of rib cage deformities will
serve for better patients’
management.
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The aim of the present study was to test the hypothesis that ribs shape changes in patients with OI are
more relevant for respiratory function than thoracic spine shape. We used 3D geometric morphometrics
to quantify rib cage morphology in OI patients and controls, and to investigate its relationship with forced
vital capacity (FVC) and forced expiratory volume in 1 s (FEV1), expressed as absolute value and as per-
centage of predicted value (% pred). Regression analyses on the full sample showed a significant relation
between rib shape and FEV1, FVC and FVC % pred whereas thoracic spine shape was not related to any
parameter. Subsequent regression analyses on OI patients confirmed significant relations between
dynamic lung volumes and rib shape changes. Lower FVC and FEV1 values are identified in OI patients
that present more horizontally aligned ribs, a greater antero-posterior depth due to extreme transverse
curve at rib angles and a strong spine invagination, greater asymmetry, and a vertically short, thoraco-
lumbar spine, which is relatively straight in at levels 1–8 and shows a marked kyphosis in the
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Table 1
Description of the samples analyzed.

Osteoge

Median

Age (years) 41.0
Body height (cm) 137.5
Body weight (kg) 51.0
Body mass index (kg/m2) 29.1

* Mann-whitney test.
** IQR: interquartile range.
thoraco-lumbar transition. Our research seems to support that ribs shape is more relevant for ventilator
mechanics in OI patients than the spine shape.
� 2019 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Osteogenesis Imperfecta (OI) is a rare disease, occurring in 1 per
15,000 to 20,000 births and affecting 1 in every 200,000 individu-
als, presenting no gender or race predominance [1]. OI is a genetic
disorder caused by a qualitative or quantitative defect of Type I col-
lagen – the most abundant protein of the extracellular matrix of
bone – mainly driven by autosomal dominant mutations in the
genes that code for collagen Type I alpha chains COL1A1 and
COL1A2 [2,3], although mutations in more than ten other genes
can also lead to OI [3].

The phenotypic expression of OI was originally classified by Sil-
lence et al. [4,5] into four clinical types: i.e. Type I, II, III, and IV.
Each four clinical types have a different life expectancy, ranging
from lethal (Type 2) to similar to the general population (Type I
patients), being slightly reduced in Type IV and strongly decreased
in Type III [6–8]. OI Type III is the most severe type among those
patients who survive the first year of life, leading to a progressive
and deforming evolution [9]. Additional types (up to nine types)
have been described as knowledge about OI genetics has increased
[10].

Previous studies have analyzed the clinical symptoms of OI
patients using different methods, concluding that OI patients are
characterized by bone fragility, frequent fractures, spine anomalies
and rib cage deformities [3–5,11–17]. Nevertheless, it is not com-
pletely clear how these features affect the ventilatory mechanics
of patients with this disease [7]; it is known, however, that respi-
ratory disease is the principle cause of death in OI patients
(81.6% of the deaths in OI Type III, 39% in the Type I and IV and
15.7% in the general population) [6]. The progressive chest defor-
mities presented by OI patients tend to affect pulmonary function
[14,17]. LoMauro et al. [14] studied the relationship between the
progressive chest deformities and the pulmonary function and
they suggested a direct relationship between the structural modi-
fications of the rib cage and the pattern of volume variations dur-
ing breathing in patients with severe OI. More specifically, these
authors suggested that the deformation of the ribs was more
important for respiratory function than scoliosis. More recently,
LoMauro et al. [17] suggested that the combination of flattened
vertebrae, floppy ribs, more horizontal ribs, spinal, and sternal
deformity are the causes of the impaired expansion of pulmonary
rib cage in severe OI.

However, LoMauro et al. [14,17] analyzed the external chest
wall only, while the complex morphology of the internal skeletal
thoracic anatomy (i.e. ribs, vertebrae, etc.) is best approached
through 3D geometric morphometrics on computed tomography
(CT) data [18–21]. To our knowledge, there is not any work quan-
tifying the anatomical relationship between the 3D morphology of
nesis Imperfecta

IQR**

30.5–50.75
116.25–167.25
39.5–69.0
23.53–33.15
the ribcage and the respiratory function. Therefore, the aims of the
present study were to quantitatively test by means of 3D geomet-
ric morphometrics if rib shape changes in patients with severe OI
are more relevant for respiratory function than thoracic spine
shape, and to detect the anatomic configuration related to a worse
respiratory function in OI patients.

Methods

Study population

Adult subjects with OI were recruited for this study on a volun-
tary basis after approval of the research protocol by the local Ethics
Committee of the University of Valencia, Spain (approval n.
H1417174744011). All OI patients were volunteers from the Fun-
dación AHUCE of Spain. Written informed consent was obtained
from each participant. Inclusion criteria were patients diagnosed
with OI [17], clinically classified as Type III and Type IV and con-
firmed by genetic testing. Patients with any other metabolic bone
disease except OI and those who underwent surgery for correction
of ribcage and/or spinal deformities were excluded. All patients are
currently receiving bisphosphonate therapy.

Additionally, as control group, sex-matched non-smoking
healthy adults were selected from La Paz Hospital cohort (Madrid,
Spain), recruited in previously published studies [19–22]. These
subjects were free of any pulmonary or spinal pathology. The study
was also approved by their institutional ethics committee (CEI
Hospital Universitario La Paz; HULP-PI-513) and each participant
gave written informed consent for the use of their medical data.

The final study population (Table 1) consisted of 12 patients
with OI (7 females, 5 males; 9 Type III and 3 Type IV) and 12 con-
trol subjects (7 females, 5 males).

Pulmonary function tests

Spirometry was performed on all subjects by trained clinicians
in accordance with the Spanish Society of Pulmonology and Tho-
racic Surgery guidelines [23] and equations of the Global Lung
Function Initiative 2012 [24] were used as reference values. Indi-
vidual measures of forced vital capacity (FVC) and forced expira-
tory volume in 1 s (FEV1), expressed as absolute value and as
percentage of predicted value, are shown in Table 2.

CT protocol and imaging evaluation

Two CT scans per subject were carried out in a 15 min interval.
The subjects were instructed to hold their breath in the maximal
inspiration during the first scan and in the maximal expiration
Control sample

Median IQR** p-value*

64.5 61–68.5 <0.001
166.0 157.75–175.5 0.006
68.0 59.25–87.25 0.032
24.55 23.18–28.13 0.179
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Table 2
Spirometric values obtained in the subjects analyzed.

Osteogenesis Imperfecta Control sample

Median IQR** Median IQR** p-value*

FVC (L) 2.31 1.45–3.19 3.54 3.07–4.84 0.003
FEV1 (L) 2.02 1.35–3.09 2.75 2.53–3.96 0.021
FVC, % pred (%) 81.9 67.8–112.15 121.0 104.3–125.63 0.005
FEV1, % pred (%) 86.85 69.55–128.48 113.9 105.55–122.95 0.073

FVC: forced vital capacity; FEV1: forced expiratory volume in 1 s, FVC% pred: forced vital capacity expressed as percentage of predicted value; FEV1% pred: forced expiratory
volume in 1 s expressed as percentage of predicted value.

* Mann-whitney test.
** IQR: interquartile range.
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during the second one. The CT scans were post-processed to obtain
multiplanar, maximum intensity projection and 3D reconstruction
images [25]. Finally, the marching cubes algorithm was applied to
obtain 3D virtual models of the ribcages [26].
3D geometric morphometrics analysis and respiratory function

Geometric morphometrics in 3D (3D GM) is defined as the sta-
tistical analysis of Cartesian landmark coordinates, which have
both, biological meanings and homologous locations on the anal-
ysed anatomical structures [27–31]. This technique allows for the
quantification of their geometric features and spatial relationships.
Using Generalized Procrustes superimposition (GPA) of landmarks
configurations [32], GM allows for a quantitative separation of size
and 3D shape. Size is measured as centroid size (the summed
squared distances between the centroid and each of the landmarks
of a given configuration). Shape contains all features of the land-
mark configurations that are invariant to scale, position and orien-
tation [27,31] and can be quantified through the Procrustes shape
coordinates of landmark configurations after GPA. While centroid
size is a 1-dimensional variable, shape is intrinsically multidimen-
sional (3D shape coordinates) and requires multivariate statistics
for its analysis [27,33]. Thus, the landmark configurations appear
as points in a multivariate shape space and the distances between
these points in shape space correspond directly to the distances
between all the homologous landmarks after GPA – also known
as Procrustes distances [28,34]. Therefore, any statistical analysis
in GM can directly be visualized as thin-plate splines transforma-
tions of 3D landmark configurations for graphic interpretation
[27,29].
Fig. 1. Thorax digitization template in (A) posterior view, (B) anterior view,
We designed two templates of digitization to measure the rib
cage and the thoracic spine morphology of the subjects composing
our sample. The 24 virtual models were digitized using Viewbox 4
software (www.dhal.com). The template for the ribs was devel-
oped by Bastir et al. [18,20] and consists of 402 landmarks and
curve semilandmarks distributed on ribs 1 to 10 (Fig. 1). Because
CT-scanning was carried out to include the skeletal thorax to the
level of the diaphragm, in many cases the 11th and 12th ribs were
not available for measurement. In consequence, we only took land-
mark coordinates on the non-floating ribs [20,35]. The landmarks
(140 in total) are located on the upper and lowermost parts of each
rib head, on the most anterior part of the intraarticular crests, on
the most lateral part of the tubercles, on the inferior part of the
costal angles, on the upper and lowermost parts of each sternal
rib end and on the superior and inferior parts of the manubrium.
In addition, 13 curve semilandmarks were placed along the inferior
shaft of each rib, which means a total of 260 semilandmarks.

The thoracic spine template was designed by González-Ruiz
[36] and is composed of a total of 240 landmarks and curve semi-
landmarks distributed on the 12 thoracic vertebrae (Fig. 2). The
landmarks (120 in total) are located on each vertebra on the most
anterior part of the superior and inferior costal facets, the most lat-
eral parts of both transverse processes, the most anterior part of
the spinous process (superior view) where it meets the most pos-
terior point of the vertebral foramen, the most posterior part of the
spinous process and the most inferior and lateral part of both lam-
inae. Also, five curve semilandmarks (120 in total) were placed
along both the upper and lower margins of the intervertebral sur-
faces (on the annular epiphysis) of each vertebra.

While landmarks are homologous points easily identifiable in
all the specimens, semilandmarks are not anatomically homolo-
and (C) left lateral view. Red: landmarks; Green: curve semilandmarks.

http://www.dhal.com


Fig. 2. Thoracic spine template in (A) anterior view, (B) right lateral view, and (C)
posterior view. Red: landmarks; Blue: curve semilandmarks.
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gous points and their localization in the specimens is uncertain
[37,38]. In order to minimize this uncertainty in terms of their
location when placing the semilandmarks along the curve, they
were allowed to slide along tangent lines to their corresponding
curves with respect to a reference configuration (template), as
described by Gunz et al. [37]. By means of this sliding process,
we find the optimal location for the semilandmarks (mathematical
homology) with the morphometric difference (quantified as bend-
ing energy) between each specimen and the digitization template
being minimal [37,38].
Table 3
Principal component analysis of the ribs (11 principal components account for 95% of
total variance).

PC Eigenvalues % Variance Cumulative %

1 0.00742277 42.922 42.922
2 0.00276568 15.993 58.915
3 0.00234285 13.548 72.463
4 0.00142597 8.246 80.708
5 0.00069614 4.025 84.734
6 0.00050447 2.917 87.651
7 0.00041652 2.409 90.059
8 0.0003123 1.806 91.865
9 0.00025462 1.472 93.338
10 0.00019087 1.104 94.441
11 0.00016462 0.952 95.393

Table 4
Principal component analysis of the thoracic spine (9 principal components
accounted for 95% of total variance).

PC Eigenvalues % Variance Cumulative %

1 0.00607063 44.958 44.958
2 0.0030622 22.678 67.637
3 0.00143914 10.658 78.295
4 0.00090092 6.672 84.967
5 0.00057603 4.266 89.233
6 0.00030397 2.251 91.484
7 0.00022045 1.633 93.117
8 0.00015541 1.151 94.268
9 0.00014872 1.101 95.369
Data analysis

First, Procrustes shape coordinates were analysed by means of
Principal components analysis (PCA) [31]. This analysis does not
allow the hypothesis to be tested statistically, but it is useful to
explore overall patterns of biological shape variation in the OI
sample.

Second, in order to explore the quantitative relationship
between the rib cage and thoracic spine shape and the respiratory
function of OI patients [14], and hence our hypothesis, we
regressed our shape data (both of the spine and the ribcage sepa-
rately) on the respiratory variables FVC, FEV1, FVC % predicted,
and FEV1 % predicted [39]. These regressions were carried out from
two different approaches: (1) we first carried out two PCA sepa-
rately for the samples of the ribs and the thoracic spines in order
to reduce the number of variables [31] and we regressed the result-
ing PC scores on respiratory function (FVC, FEV1, FVC % predicted,
and FEV1 % predicted) in a statistical shape space (PCA tangent
space) composed of a subset of PCs accounting for at least for
95% of total variance. (2) We secondly regressed Procrustes shape
coordinates (3D shape data collecting rib deformations and scolio-
sis) on respiratory function (FVC, FEV1, FVC % predicted, and FEV1
% predicted) in full shape space (100% of total variance). These
regression analyses were applied to the full sample consisting of
the OI-patients and the control group and corrected for sexual
dimorphism (pooled-within sex) and health condition (OI vs. con-
trol healthy sample). We corrected these differences because func-
tion is clearly related to sexual dimorphism [19,22,35] and we
wanted to identify non-sex specific features related to mal-
function. A final regression analysis of the OI sample only (pooled
within sex) was applied to identify those anatomical features that
lead to reduced respiratory capacities in OI-patients. Principal
component analyses and regressions were performed in MorphoJ
1.06d [40], and all visualizations were produced using landmark-
driven thin-plate spline transformations of 3D surface meshes by

Evan toolkit (http://www.evan-society.org/). Continuous variables
were presented as median and interquartile range. Difference
between groups was performed with the Mann-Whitney test.
Two-sided p < 0.05 was considered statistically significant. Statisti-
cal analyses were performed using SPSS v.23 software (SPSS Inc.,
Chicago, IL, USA).
Results

Results of the principal component analyses of the ribs and the
thoracic spine are shown in Tables 3 and 4 respectively. We found
that the 95% of the total variance required to carry out the regres-
sion analyses on statistical shape space was yielded by 11 PCs in
the rib sample and by 9 PCs in the spine sample. Subsequent
regression analyses on the full sample (OI + control subjects)
showed a significant relation between rib shape and FEV1, FVC
and FVC % pred (Table 5). On the contrary, no statistically signifi-
cant relation was found between thoracic spine shape and FEV1,
FEV1 % pred, FVC or FVC % pred on the full sample.

Results of the principal component analysis of the thorax of the
OI sample are shown in Figs. 3 and 4. We can see, respectively, how
OI-patients are distributed in shape space and the associated shape
variations that reflect complex patterns of 3D rib-deformations
(curvatures in the transversal planes) and variations in the declina-
tion both in sagittal and coronal planes of the thoracic cage, which
also generates scoliosis and kyphosis.

Subsequent regression analyses on OI patients confirmed signif-
icant relations between ribs and respiratory function (Fig. 5A,
Table 6), with Fig. 5B and C showing the associated shape changes.
Thus, lower FEV1 and FVC values are observed in OI patients

http://www.evan-society.org/


Table 5
Multivariate regressions of ribs and thoracic spine shape on respiratory function in Osteogenesis Imperfecta patients + control healthy subjects (pooled within sex and group).

Full shape ribs Full shape thoracic spine

% explained variance Significance % explained variance Significance

FEV1 16.5 0.001 6.8 ns
FEV1% pred 4.4 ns 5.7 ns
FVC 19.8 0.001 10.2 ns
FVC% pred 9.3 0.043 6.9 ns

ns: non-significant; FVC: forced vital capacity; FEV1: forced expiratory volume in 1 s, FVC% pred: forced vital capacity expressed as percentage of predicted value; FEV1%
pred: forced expiratory volume in 1 s expressed as percentage of predicted value.

Fig. 3. Principal component analysis of the thoracic cages of the OI sample. (A) Scatterplots of PC1 vs. PC2, and (B) PC1 vs. PC3.
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(males and females) with more horizontally aligned ribs, a greater
antero-posterior depth due to extreme transverse curve at rib
angles and a strong spine invagination, greater asymmetry, and a
vertically shorter, thoraco-lumbar spine, which is relatively
straight at levels 1–8 and shows a marked kyphosis in the
thoraco-lumbar transition.
Discussion

Here we present the first 3D geometric morphometrics study of
the thorax of OI patients. The correlation between impaired respi-
ratory function and thoracic spine deformity in OI has been previ-
ously investigated. Widmann et al. [41] demonstrated a correlation
between pulmonary function variables and the scoliosis angle but
did not find any correlation between kyphosis, chest wall deformi-
ties and FVC, while Wekre et al. [42] demonstrated correlations
between spirometry indexes corrected with arm span height and
spinal deformities reflected in spine deformity index. In this con-
text, Norimatsu et al. [43] suggested that respiratory dysfunction
may be secondary to progressive spinal deformity based on serial
pulmonary function testing in five patients with OI and a 14-year
follow-up of FVC. On the other side, Falvo et al. [44] concluded that
there are no significant differences in the results of pulmonary
function testing in patients with OI and associated kyphoscoliosis
and the general population with kyphoscoliosis without OI.

In addition, Lo Mauro et al. [14] noted that patients with severe
OI are characterized by pectus carinatum and it has been postulated
that this altered geometry causes considerable consequences in
terms of volume variations of the chest wall compartments during
breathing, since the deformed ribcage alters the normal action of
the intercostal muscles and requires the diaphragm to compensate
for the reduced contribution to tidal volume. However, rather than
the chest wall, we have analyzed the skeletal thorax of OI patients
by means of 3D geometric morphometrics. Our regression analyses
showed a significant relationship between ribs shape and FEV1,
FVC and FVC % pred, and no statistically significant relation
between thoracic spine shape and FEV1, FVC, FEV1 % pred, and
FVC % pred; as a consequence, our results support the hypothesis
that ribs are more relevant for respiratory function in OI patients
than the scoliosis, as suggested by Lo Mauro et al. [14].

The FVC denomination as vital capacity is not capricious [45]. In
fact, it is well known that reduced levels of ventilatory function,
measured as FVC or FEV1, are associated with higher all-causemor-
tality rates, and therefore shorter survival in the general population
[45–47]. Both for all-cause mortality and more specifically for cir-
culatory disease mortality, FVC and FEV1 are as strongly predictive
as body mass index and more strongly predictive than systolic
blood pressure, even among lifelong non-smokers [46]. Although
no specific information about the prognostic value of spirometric
measurements in patients with OI is available, pulmonary compli-
cations are a significant cause for morbidity and mortality in these
patients. Moreover, in a large cohort of individuals with OI enrolled
in a multicenter, observational study, patients with more severe
disease had lowest values of FVC and FEV1 [48]. These findings
are compatible with a restrictive ventilatory disorder, which
induces chronic respiratory symptoms and results in severe tho-
racic insufficiency syndrome and early death [49]. In turn, other cir-
cumstances have been implicated in the mortality excess reported
in patients with a restrictive disorder, such as a higher incidence of
cardiovascular disease, pulmonary hypertension, lung cancer, sys-
temic inflammation and diabetes, among other [45].



Fig. 4. Shapes associated to the PCA of the thoracic cages of the OI sample. Left column: shape associated with negative PC scores, Right column: shapes associated with
positive PC scores. (A) Negative PC1 scores show tall ribcages, with downwards inclined ribs, flatter ribcages. (A0) Positive PC1 scores show vertically shorter ribcages,
horizontal ribs, invaginated spines, deep rib cages. (B) Negative PC2 scores show ribcages are more barrel-shaped due to more horizontally aligned proximal ribs. (B0) Positive
PC2 scores show ribcages are caudally much wider than cranially due to proximal rib declination, also thoracic spine strongly invaginated. (C) Negative PC3 scores show
asymmetric features: barrel-shaped ribcage with scoliosis towards the right, thoracic spine relatively straight in the sagittal plane and vertically tall. (C0) Positive PC3 scores
show asymmetric features: caudally diverging ribcage with scoliosis towards the left, thoracic spine strongly kyphotic and vertically short.

182 J.A. Sanchis-Gimeno et al. / Journal of Advanced Research 21 (2020) 177–185
As related before, different researchers have analyzed the influ-
ence of spine, ribs and morphology of the thorax (i.e. pectus carina-
tum) of OI patients on respiratory function but, to our knowledge,
our study is the first one to present the complete internal skeletal
anatomy as a whole (ribs, spine and their deformities) and reveals
the relationship between rib shape and respiratory function. In this



Table 6
Multivariate regression of rib shape on respiratory function in Osteogenesis Imperfecta patients (pooled within sex).

Full shape ribs 95% rib shape variance

% explained variance Significance % explained variance Significance

FEV1 17.1 0.055 17.6 0.047
FEV1% pred 6.8 ns 6.4 ns
FVC 18 0.040 18.4 0.043
FVC% pred 7.1 ns 6.8 ns

ns: non-significant; FVC: forced vital capacity; FEV1: forced expiratory volume in 1 s, FVC% pred: forced vital capacity expressed as percentage of predicted value; FEV1%
pred: forced expiratory volume in 1 s expressed as percentage of predicted value.

Fig. 5. Regression analysis of the thoracic cages of the OI-patients sample (pooled within sex) indicating the shape features that are related to respiratory function. (A)
Regression of shape versus FVC; (B) Shape features related to lower FVC; and (C) shape features related to higher FVC values. Note the differences in the orientation of the ribs,
the relative height of the thoracic spine and the complex patterns of 3D curvatures.
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context, our results showed that worse respiratory function in OI
patients is related to an anatomic configuration characterized by
more horizontally aligned ribs, a greater antero-posterior depth
due to extreme transverse curve at rib angles and a strong spine
invagination, greater asymmetry, and a vertically short, thoraco-
lumbar spine, which is relatively straight in the superior part and
shows a marked kyphosis in the thoraco-lumbar transition being
scoliosis less evident in this 3D geometric morphometrics model.
Further research by means of magnetic resonance imaging may
be needed in order to analyze the possible shape changes of the
intercostal muscles as a consequence of the related rib cage defor-
mities we found.

Results obtained on the anatomic OI model are of special impor-
tance as OI is a progressive disease. Our results suggest that OI
patients need early therapeutic actions in order to retard and/or
avoid the appearance of the thorax deformities we described
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(Fig. 5), because subjects with severe OI present, since childhood, a
rapid and shallow breathing pattern characterized by significantly
higher breathing frequency [17], being the respiratory complica-
tion the main cause of death in OI also during childhood [6–8].
In this context, many studies have found that bisphosphonate ther-
apy for children with OI, when started early in life, leads to
increased bone density, decreased fracture rate, recovery of the
shape of vertebral bodies [50,51] and preservation of vertebral
shape [52]. Published data suggest that bisphosphonate treatment
decreases the rate of progression of scoliosis in children with OI
when therapy starts before the age of six years [53], but does not
modify the prevalence of moderate to severe scoliosis at maturity
[54]. It should be noted that all our patients were in treatment with
bisphosphonates. Together with this, Lo Mauro et al. [17] sug-
gested that specific physiotherapy targeted to the rib cage muscles
may be started in early childhood in severe OI to try to delay or
reduce the effects of the progressively reduced action of these
muscles. Furthermore, we suggest to combine the physiotherapy
targeted to the ribcage muscles proposed by Lo Mauro et al. [17]
with specific surgery and specific orthopedic care [55] in order to
avoid the appearance of the rib cage deformities we present.
Finally, we want to highlight the potential clinical implication of
our results. The identification that alterations in the ventilatory
mechanics of patients with OI is more depend on rib cage dynamics
than on the dorsal spine raises the possibility of developing thera-
peutic interventions aimed to promote thoracic cage mobility,
which a priori it is more feasible than modify the structure of ver-
tebral bodies

Our study presents some limitations: firstly, the relatively low
number of patients. It should be taken into consideration here that
OI has been classified as a rare disease. In addition, our study was
carried out by means of CT scans, with its associated radiation
exposure. Nevertheless, participation of all OI subjects was volun-
tary after being advised about the radiation exposure and CT stud-
ies were carried out in order to control the skeletal basis of the
evolution of their disease.
Conclusions

Therefore, despite the above-mentioned limitations, we con-
sider the results of this translational study may have important
consequences on future clinical functional evaluation and should
be completed by further studies that include a larger number of
patients. We also believe the results presented here will serve for
a better management of OI patients that may include a new clinical
approach based on control, avoiding and correction of the thorax
deformities for obtaining a better respiratory function in these
patients. Also, further research will be necessary in order to com-
pare the pulmonary function of OI patients after correction of their
thorax deformities.
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