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Background: The protozoan Trypanosoma cruzi is auxotrophic for purines and causes Chagas’ disease (CD), a
neglected illness affecting .6 million people. Combining the 3-deoxyribofuranose part of cordycepin with the
modified purine ring of a nucleoside ‘hit’ led to the discovery of 4-amino-5-(4-chlorophenyl)-N7-(30-deoxy-b-D-
ribofuranosyl)-pyrrolo[2,3-d]pyrimidine (Cpd1), revealing promising anti-T. cruzi activity.

Objectives: To further evaluate Cpd1 in vitro and in vivo to fully assess its therapeutic potential against CD, cov-
ering cell culture sterilization through washout assays, drug combination with benznidazole and long-term ad-
ministration in T. cruzi-infected mice.

Results: Although less susceptible to Cpd1 than amastigotes, trypomastigotes present an impaired capacity to
successfully establish intracellular infection of cardiac cultures. Combination of benznidazole with Cpd1 indi-
cated no interaction (additive effect) (FIC index"0.72) while administration to mice at one-tenth of the optimal
dose (2.5 mg/kg and 10 mg/kg for Cpd1 and benznidazole, respectively) suppressed parasitaemia but failed to
avoid mortality. Long-term treatment (60 days) gave a rapid drop of the parasitaemia (.98% decline) and 100%
mice survival but only 16% cure. In vitro washout experiments demonstrated that although parasite release into
the supernatant of infected cardiac cultures was reduced by .94%, parasite recrudescence did occur after
treatment.

Conclusions: Parasite recrudescence did occur after treatment corroborating the hypothesis of therapeutic fail-
ure due to subpopulations of dormant forms and/or genetic factors in persister parasites involved in natural drug
resistance.

Introduction

American trypanosomiasis, known as Chagas’ disease (CD), was
discovered in 1909 by Carlos Chagas and is largely ignored in terms
of R&D investment.1 CD is caused by the protozoan Trypanosoma
cruzi and has two clinical disease stages. The asymptomatic or oli-
gosymptomatic acute phase lasts up to 2 months and is character-
ized by patent parasitaemia. Due to an efficient host immune
response, the parasitism is controlled but not eliminated and the

disease moves to the chronic stage in which most infected people
will present an asymptomatic profile. After years or even decades
for reasons not fully known yet, 30%–40% develop progressive
cardiac and/or digestive complications with fatal outcome.2–4 The
nature of the host–parasite interaction as well as the host’s and
parasite’s genetic backgrounds may play a role in these symptom-
atic manifestations.5 Also, comorbidity with the new coronavirus
SARS-CoV-2 is a threat for chagasic patients.6
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Substantial improvement in vector control was achieved in sev-
eral endemic countries, and the number of new cases dropped
considerably. However, it still poses a public concern due to
remaining/new triatome foci,7 besides congenital and oral
transmissions.8

Only two old nitro-derivative drugs are available: benznidazole
and nifurtimox.9 Both have low efficacy in the chronic stage, limit-
ing a therapeutic benefit for millions of infected individuals.10,11

Also, they require long-term administration and elicit several side
effects leading to low patient adherence or discontinuation of
treatment. Finally, the nitro-drugs are contraindicated in pregnant
women and in people suffering from liver or kidney failure or
neurological disorders.9,12,13 Novel, safer and more efficacious
drugs are therefore mandatory.14

Like other trypanosomatid protozoa, T. cruzi depends on uptake
of host purines as it is not able to synthetize purine rings de novo,
rendering interference with the purine salvage attractive.15,16 In
fact, purine nucleoside analogues have a wide spectrum of activity,
including antiviral,17 antitumoral18 and antibacterial.19 Some nu-
cleoside derivatives exhibit nano- and submicromolar in vitro activ-
ity against African trypanosomes,20 Leishmania spp.21 and
T. cruzi.22,23

After revisiting the anti-trypanosomatid activity of the natural
nucleoside antibiotic tubercidin and a series of C-7 modified ana-
logues, phenyl-substituted compounds showed encouraging effi-
cacy against intracellular forms of T. cruzi, being more potent than
benznidazole, which motivated us to combine 7-substituted
7-deazapurine moieties with the carbohydrate group of cordyce-
pin.22,23 After rounds of optimization, compound 1 (Cpd1) or
4-amino-5-(4-chlorophenyl)-N7-(30-deoxy-b-D-ribofuranosyl)-pyr-
rolo[2,3-d]pyrimidine (Figure 1) revealed outstanding efficacy in
an acute mouse model of CD, however, without resulting in para-
sitological cure.23

In the present study, additional in vitro and in vivo protocols
were performed to assess and improve the efficacy of Cpd1,
including drug combination approaches with benznidazole, wash-
out assays, pretreatment of trypomastigotes prior to incubation

with host cells, and dose-titration and long-term (60 days) drug
administration experiments in mice aiming to control parasite
relapses.

Materials and methods

Compounds

Benznidazole (LAFEPE, Brazil) was used as reference drug. Cpd1 (Figure 1)
was synthesized as described by Hulpia et al.23 The identity and purity of
Cpd1 was confirmed via 1H NMR, 13C, HRMS and analytical LC/MS respective-
ly. The analytical data match those previously reported.23 Purity of Cpd1
was .95%. Stock solutions of benznidazole and Cpd1 were prepared in
100% DMSO, with the final in-test concentration never exceeding 0.6% for
in vitro experiments to avoid non-specific toxicity.24

Mammalian cell culture
Primary cultures of mouse embryonic cardiac cells (CC) were obtained as
described.25,26 L929 cell lines were cultivated (4.000 cells/well) in 96-well
microplates at 37 �C in RPMI 1640 medium (Sigma–Aldrich).27

Parasites
Bloodstream trypomastigotes (BT) of Y strain (DTU II) were obtained as
reported.24 The trypomastigote forms of Tulahuen strain (DTU VI) express-
ing the Escherichia coli b-galactosidase gene were collected from the super-
natant of L929 cell cultures previously infected (host: parasite cell ratio
10:1).27 For both strains, purified parasites were added to RPMI 1640 me-
dium supplemented with 5% FBS to perform assays at 37 �C in 5% CO2.

In vitro assays
The infections were performed using parasite: host cell ratio 10:1, at least
two assays in biological duplicate. Half inhibitory concentration (EC50) and
statistical analysis (95% CI of SD) were obtained through non-linear regres-
sion analysis by GraphPad Prism Version 9.1.0.

Pretreated BT forms

Bloodstream trypomastigotes were incubated for 24 h with Cpd1 and benz-
nidazole at their corresponding EC50 (23+4 and 11.5+1.1 lM, respective-
ly).23 Parasites were rinsed to remove compound, and the number of live
and motile parasites determined by light microscopic quantification to ad-
just the parasite: host cell ratio. After 24 h of interaction, the infected CC
were rinsed to get rid of non-internalized parasites, fixed with Bouin or sub-
mitted to additional incubation up to 72 h.28 After fixation and staining with
Giemsa, light microscopic analysis was performed to determine the num-
ber of infected host cells, parasites per infected cell and infection index (per-
centage of infected cells multiplied by the average number of intracellular
parasites per infected host cell).

Washout assays

After 24 h of plating, CC were infected for 24 h at 37 �C with BT (Y strain).
The cultures were rinsed to remove free parasites and treated for 168 h at
37 �C with the compounds at the non-toxic concentration of 5 lM in culture
medium that was replaced every 48 h. After 168 h of drug exposure, the
cultures were rinsed using PBS and drug-free culture medium was added
for another 168 h of incubation. Parasites released into the medium were
quantified using light microscopy.22

Figure 1. Chemical structure of Cpd1: 4-amino-5-(4-chlorophenyl)-N7-
(30-deoxy-b-D-ribofuranosyl)-pyrrolo[2,3-d]pyrimidine.
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Drug combination assays

The association of benznidazole ! Cpd1 was assessed by colorimetric read-
out using L929 cells that were infected for 2 h with trypomastigote forms
(Tulahuen-b-gal strain), followed by rinsing the cultures to remove non-
internalized parasites and further incubated for 24 h before drug adminis-
tration using a fixed-ratio method.29,30 Predetermined EC50 values were
used to determine the top concentrations of each drug ensuring that EC50

fell at the midpoint of a seven-point 2-fold dilution series. The fixed ratios of
5:0, 4:1, 3:2, 2:3, 1:4 and 0:5 were used.30,31 At least two independent
experiments in triplicate were performed. The FIC index (FICI) at the EC50 of
each drug was calculated as EC50 when in combination/EC50 of drug alone.
The sum of FICI of each compound (RFICI) was obtained.31 The mean
RFICI (xRFICI) was calculated as the average of RFICI. Isobolograms were
built by plotting the FICI values. The RFICI was used to classify the nature of
interaction as recommended by Odds:30 synergy for xRFICI �0.5, no inter-
action for xRFICI 0.5–4 and antagonism for xRFICI .4.

In vivo activity
Male Swiss Webster mice (18–20 g, 4–5 weeks of age) obtained from the
animal facilities of the Institute of Science and Biomodels Technology
(ICTB) Fiocruz were housed at a maximum of six per cage, kept in a specific-
pathogen-free room at 20 �C to 24 �C under a 12 h light and 12 h darkness
cycle, and provided sterilized water and chow ad libitum. The animals were
acclimated for 7 days before starting the experiments. Infection was per-
formed by intraperitoneal (IP) injection of 104 bloodstream trypomasti-
gotes (BT) (Y strain). The animals were divided into the following groups
(n�5): untreated (infected but treated only with citrate buffer vehicle) and
treated (infected and treated with the compounds). T. cruzi (Y strain)-
infected mice were treated by oral gavage for 60 consecutive days (except
for weekends) starting at 5 days post-infection (dpi), which corresponds to
the parasitaemia onset, using 0.25–25 mg/kg (q12h) of Cpd1 or 100 mg/kg/
day benznidazole. Co-administration for 11 days at suboptimal doses of
Cpd1 (2.5 mg/kg/day) ! benznidazole (10 mg/kg/day) was also performed.
Benznidazole at 100 mg/kg/day as the optimal dose was run in parallel.
Cpd1 was diluted in 10% (v/v) EtOH, 0.1 M aqueous citrate buffer (pH 3.02,
1.8 mg/mL and then dosed according to body weight of the animals and
drug concentration). The drug formulations were freshly prepared before
each administration. Only mice with positive parasitaemia were used in the
infected groups. Parasitaemia was individually checked by direct micro-
scopic counting of parasites in 5 lL blood, and mice were examined daily
for mortality until 261 dpi when blood was collected from surviving animals
for qPCR analysis. Animal survival is expressed as the percentage survival
rate at the endpoint. For blood qPCR analysis, 500 lL of blood was diluted in
a 1:2 volume of guanidine solution and heated for 60 s in boiling water, fol-
lowed by DNA purification using a High Pure PCR Template Preparation Kit
(Roche Applied Science) and quantitative Realtime multiplex PCR assays.
TaqMan probes were used for quantification of both T. cruzi satellite nuclear
DNA and internal amplification control (IAC) (Figure S1, available as
Supplementary data at JAC-AMR Online).32 Standard curves were con-
structed for absolute quantification through the serial dilution of total DNA,
ranging from 105 parasite equivalents to 1 parasite equivalents per mL of
blood, obtained with a negative blood sample in guanidine-EDTA. Parasite
load was then expressed as equivalent of parasite DNA per mL of blood.33

All animal studies were carried out in strict accordance with the guidelines
established by the FIOCRUZ Committee of Ethics for the Use of Animals
(CEUA L038-2017).

Statistical analysis
Statistical analysis was performed using ANOVA with the level of signifi-
cance set at P�0.05.

Results

Pretreatment of BT

BT were incubated with EC50 of Cpd1 or benznidazole. Drug-
treated and untreated parasites were rinsed, and live and motile
trypomastigotes quantified before infection of CC. After 24 h,
infected cultures were rinsed to remove non-internalized trypo-
mastigotes and followed-up for up to 72 h (Figure 2). Although not
presenting high potency, Cpd1 induced morphological alterations
(round-shape like phenotype) suggestive of impaired fitness.
When treated parasites were used to infect CC, although no major
effect could be found after 24 h post-infection (hpi), a high and
statistically significant (P , 0.025) drop in all parameters (percent-
age of infected host cells, parasites per infected cell and infection
index rates) was observed for Cpd1 pretreated trypomastigotes
after 48 and 72 h of CC infection. With benznidazole pretreated
parasites, the mean parasites per infected cell values gave a statis-
tically relevant decrease (P"0.0135) only at 48 hpi, while after
72 h all parameters were reduced (P�0.0093) (Figure 2a–d). Cpd1
and benznidazole interfere with parasite fitness, impairing the par-
asite’s ability to successfully establish and sustain infection in vitro,
affecting the proliferative capacity as clearly shown at 72 hpi with
earlier and greater reduction rates triggered by Cpd1 leading to
.90% decrease in the infection indexes (Figure 2c).

Drug combination

In vitro effect of co-treatment of Cpd123 and benznidazole was
assessed by colorimetric readout, using L929 cells infected with b-
gal Tulahuen strain with a fixed-ratio method.29–31The result of
xRFICI equal to 0.72 obtained from Cpd1 and benznidazole com-
bination confers the status of a merely additive effect (Figure 3).
The most promising results were obtained with the drug ratio of
1:4 (Cpd1: benznidazole) leading to the lowest IC50 and
RFICI"0.27 revealing a synergistic profile (Figure 3a). The isobolo-
grams (Figure 3b) show the drug interaction profile with almost all
ratios below the graphic threshold, except for 4:1 Cpd1: benznida-
zole ratio (RFICI"1.11).

A proof-of-concept in vivo co-administration study was con-
ducted with Cpd1 and benznidazole in male Swiss mice infected
with Y strain (five per group).27 The chosen drug ratio was near to
that which gave the best results in vitro (synergy profile reached at
1:4 of Cpd1: benznidazole ratio). The treatment started on the
onset of parasitaemia (5 dpi) and was given orally for 11 days
q12h for Cpd1 and q24h for benznidazole. Mice also received each
drug alone (Cpd1 at 2.5 mg/kg and benznidazole 10 mg/kg), benz-
nidazole at its optimal dose (100 mg/kg) or just vehicle.

Cpd1, benznidazole and their combination gave similar declines
in parasite load, reaching�94% at peak on 8 dpi (Figure 3c). Cpd1
(2.5 mg/kg) given alone resulted in 60% of animal survival.
However, mice treated with benznidazole ! Cpd1 showed
increased death rates (80% mortality) and enhanced toxicity,
exhibiting urination impairment, prostatic and hunched postures
with weight loss. All surviving mice in the different groups showed
parasite relapse after interrupting drug administration. Based on
the still promising results of Cpd1 in monotherapy at 2.5 mg/kg
producing .97% reduction in blood parasitaemia, follow-up
experiments were conducted adopting dose-dependent analysis
with reduced Cpd1 doses and introducing long-term drug
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administration (60 days) aiming to check whether sterile cure
could be achieved.

In vivo dose-titration and long-term drug
administration

To check for parasite sterilization, an extended and dose-response
protocol of drug administration (Cpd1 at 0.25–25 mg/kg for
60 days, excluding weekends) was used in the same mouse model
of acute T. cruzi infection. Cpd1 showed a dose-dependent de-
crease in both parasitaemia levels and mortality rates (Figure 4a
and b). At 25 and 2.5 mg/kg, a sharp drop (.98%) in blood parasite
load was reached similarly to benznidazole at 100 mg/kg
(Figure 4a). Cpd1 at 0.25 mg/kg resulted in .50% of parasitaemia
decline although was not able to prevent animal mortality
(Figure 4a and b). Blood analysis by qPCR of the surviving animals33

showed that the standard curves ranged from 105 to 1 parasite
equivalents per mL of blood. Parasite load referred as equivalent of
parasite DNA per mL of blood sample (parasite equivalents/mL)
showed 76% efficiency for the satellite nuclear DNA target with a
linearity coefficient of 0.996 (Figure S1b), confirming the sensitivity
and accuracy of parasite detection and quantification. When
infected mice were treated with benznidazole, three out of five ani-
mals presented negative blood qPCR (60% of cure) while another
showed very low amplification (0.0247 parasite equivalents/mL)
(Figure 5). Doses of 25 and 2.5 mg/kg of Cpd1 also decreased the
blood parasite load but to a lesser extent than benznidazole, with
the one animal from the 25 mg/kg group displaying negative qPCR
(17% cure) (Figure 5). Statistical analysis indicated no significant
differences between the groups (ANOVA P . 0.31).

Washout assays

The number of released parasites into the supernatant of the
infected CC cultures was quantified by light microscopy at different
timepoints (Figure 6a).

Both benznidazole and Cpd1-treated cultures sustained a
marked and significant (P�0.001) reduction in the number of
released parasites compared with the untreated samples,
which showed a continuous discharge of trypomastigotes into
the culture medium peaking at 144 h with .200 parasites/mL
(Figure 6a and b). Before drug withdrawal, Cpd1 fully sup-
pressed parasitism (light microscopy observation) while benzni-
dazole resulted in a minor parasite release (�8 parasites/mL) at
144 hpi (Figure 6a). After medium washout at 168 h, benznida-
zole and Cpd1 were able to sustain the absence of parasites into
the culture supernatant for 24 h, while untreated cultures exhib-
ited .75 parasites/mL. However, trypomastigotes were identi-
fied from the fourth day of drug removal (at 264 h) in
benznidazole as well as Cpd1-treated cultures. Benznidazole
and Cpd1 incubation resulted in comparable parasitism (6 and
10 parasites/mL, respectively) that was at least 19-fold lower
than the untreated group (180 parasites/mL). At the last time-
point (312 h or sixth day post-drug withdrawal), the number of
released parasites reached 15 (Cpd1) and 13 (benznidazole)
parasites/mL, being about 15-fold lower than the untreated
control (.210 parasites/mL). Washout assays demonstrated a
similar capacity of Cpd1 and benznidazole to temporarily arrest
parasite growth, ensuing a reduced number of released para-
sites into the supernatant of infected CC cultures. Cpd1 could
not provide definite sterile cure (Figure 6) even upon using long-
term drug administration (Figures 4 and 5).
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Discussion

After more than five decades since their introduction into clinical use,
the two old nitro-heterocyclic drugs benznidazole and nifurtimox still
represent the only available therapeutic arsenal to treat CD patients
who mostly belong to a vulnerable socioeconomic group.34,35 This
scenario has become even worse under the COVID-19 syndemic
since the 30%–40% of chronic chagasic patients are more vulnerable
to have a health outcome harmed or worsened by SARS-CoV-2

infection.36 Despite these serious challenges, some recent improve-
ment has been achieved based on the development of a paediatric
formulation of benznidazole37 and the potential adoption of a
shorter benznidazole treatment regimen.38 Fexinidazole, a 5-nitroi-
midazole derivative recently approved for sleeping sickness ther-
apy39 is under repurposing analysis in chronic chagasic patients.40

However, no novel chemical entity has yet been discovered or imple-
mented for this silent disease although some pre-clinical studies
have reported promising drug candidates for CD, including nucleo-
side derivatives that act on the purine salvage pathway.41 Our group
reassessed the natural antibiotic tubercidin and a series of 7-substi-
tuted analogues aiming to identify novel hits against Trypanosoma
brucei, the agent of human African trypanosomiasis.42 Besides being
very active against T. brucei, some phenyl-substituted analogues
also presented high in vitro potency against T. cruzi, which motivated
us to explore related 7-substituted 7-deazapurine moieties with the
carbohydrate group of cordycepin (i.e. 30-deoxy-D-ribofuranose).
Some of these derivatives, such as Cpd1, showed an acceptable
safety and efficacy profile in mouse models of T. cruzi infection.23

Cpd1 also presented desirable drug-like properties, such as good oral
bioavailability and in vitro metabolic stability, which are essential
characteristics to meet the target product profile (TPP) and allow po-
tential clinical translation. The current criteria for ‘hit’ and ‘lead’ can-
didate selection for CD comprises definition of compound profile
activity (preferably trypanocidal),43 efficacy against different T. cruzi
discrete type units (DTUs) and parasite forms relevant for human
infection,44,45 host–parasite interaction exploitation,14 capacity to
sustain sterile cure in vitro43 and parasitaemia suppression and
survival rates with sterile cure in vivo.46 Most of these criteria were
investigated for Cpd1, which proved highly potent against intracel-
lular forms from different parasite strains and DTUs, displayed
very high selectivity indices and was metabolically stable in the
presence of mouse, human, rat and dog S9 microsomal fractions.23

Unfortunately, no sterile cure could be achieved despite its high
capacity to fully suppress parasitaemia and provide 100% survival
in mouse models of T. cruzi infection.23 As observed with
other purine nucleoside analogues,22,47,48 Cpd1 was inactive
against BT despite its outstanding intracellular activity in infected
CC cultures (EC50"0.029+ 0.006lM) and L929 cell lines
(EC50"0.25+0.17 lM).23 At that time, the lack of in vivo steriliza-
tion by Cpd1 was attributed at least in part to its inefficacy towards
BT and/or to the short treatment period (only 5 days) adopted in
the initial in vivo study.

Our present study demonstrated that although Cpd1 is not po-
tent to induce a rapid lysis of the trypomastigotes, it induced mor-
phological alterations (round-shape like phenotype) suggestive of
impaired fitness. To check if these treated and surviving parasites
were able to invade host cells and differentiate into intracellular
amastigotes, a pretreatment assay on BT before infection was per-
formed, revealing impairment of the parasite’s ability to develop
successfully in CC. The pre-incubation of BT with Cpd1 followed by
rinsing and quantification of the live and motile forms to normalize
the parasite: host cell ratio resulted in reduced infection indices
(.90%) as compared with the infected untreated parasites.

When evaluated in a mouse model of acute T. cruzi infection
under extended drug administration (60 days), Cpd1 could control
parasitaemia but was unable to induce sterile cure as confirmed
by qPCR analysis. In vitro washout assays corroborated these find-
ings as Cpd1 was unable to accomplish sterilization even though
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the number of released trypomastigotes was .90% lower than in
untreated controls. As proposed in immunocompromised CD
patients, it is probable that trypomastigotes can flourish from ‘dor-
mant forms’ located in different organs, including the gastrointes-
tinal tract.49,50 Our present assays argue in favour of dormant
forms since even though it was not able to lyse trypomastigotes,
Cpd1 impairs their ability to establish a successful in vitro infection.
Despite outstanding efficacy against intracellular forms (Figure 7),

Cpd1 is not able to induce in vitro sterilization possibly due to its in-
efficacy against low metabolic latent (e.g. dormant) parasites.

Drug combinations have largely been encouraged to find
more efficient, shorter and safer therapies for different diseases,
thereby also mitigating drug resistance.51 For more than one
decade, combinations of nifurtimox/eflornithine (NECT)52 and
sodium stibogluconate/paromomycin (SSG&PM)53 have been
successfully used for human African trypanosomiasis and cuta-
neous leishmaniasis, respectively, but no combination therapy
is yet available for CD.54 Our data indicated an additive inter-
action profile when benznidazole ! Cpd1 was used in vitro. In
vivo co-administration using suboptimal doses of both agents
did not improve the outcomes of each compound used separ-
ately. Conversely, an unexpected toxic profile (urination impair-
ment) was noted that could be related to the exacerbation of
renal injuries induced by T. cruzi infection.55

Our drug research complies with current criteria for drug discov-
ery programmes of neglected tropical diseases (NTDs) caused by
kinetoplastids, seeking robust proof-of-concept in preclinical trials
to infer the ability of novel compounds to eliminate residual para-
site nests and avoid relapses. The excellent efficacies of Cpd1 on
intracellular amastigote forms and on trypomastigote fitness were
not enough to achieve in vitro nor in vivo sterilization, possibly due
to the presence of dormant forms of T. cruzi. It remains attractive
to evaluate nucleoside prodrugs to check for improved permeabil-
ity and/or improved in vivo efficacy as novel drug candidates for
NTDs like CD.
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