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Abstract
Huge	efforts	have	been	made	during	the	past	decades	to	improve	the	water	quality	
and	to	restore	the	physical	habitat	of	rivers	and	streams	in	western	Europe.	This	has	
led	to	an	 improvement	 in	biological	water	quality	and	an	 increase	 in	fish	stocks	 in	
many	countries.	However,	several	rheophilic	fish	species	such	as	brown	trout	are	still	
categorized	as	vulnerable	in	lowland	streams	in	Flanders	(Belgium).	In	order	to	sup-
port	cost-	efficient	restoration	programs,	habitat	suitability	modeling	can	be	used.	In	
this	study,	we	developed	an	ensemble	of	habitat	suitability	models	using	metaheuris-
tic	algorithms	to	explore	the	importance	of	a	large	number	of	environmental	varia-
bles,	 including	 chemical,	 physical,	 and	 hydromorphological	 characteristics	 to	
determine	the	suitable	habitat	for	reintroduction	of	brown	trout	in	the	Zwalm	River	
basin	(Flanders,	Belgium),	which	is	included	in	the	Habitats	Directive.	Mean	stream	
velocity,	water	 temperature,	hiding	opportunities,	 and	presence	of	pools	or	 riffles	
were	identified	as	the	most	important	variables	determining	the	habitat	suitability.	
Brown	trout	mainly	preferred	streams	with	a	relatively	high	mean	reach	stream	ve-
locity	(0.2–1	m/s),	a	low	water	temperature	(7–15°C),	and	the	presence	of	pools.	The	
ensemble	of	models	indicated	that	most	of	the	tributaries	and	headwaters	were	suit-
able	for	the	species.	Synthesis and applications.	Our	results	indicate	that	this	modeling	
approach	can	be	used	to	support	river	management,	not	only	for	brown	trout	but	also	
for	 other	 species	 in	 similar	 geographical	 regions.	 Specifically	 for	 the	 Zwalm	River	
basin,	future	restoration	of	the	physical	habitat,	removal	of	the	remaining	migration	
barriers	and	the	development	of	suitable	spawning	grounds	could	promote	the	suc-
cessful	restoration	of	brown	trout.
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1  | INTRODUC TION

Ecological	 water	 quality	 reached	 an	 absolute	 minimum	 status	
during	 the	 1990s	 in	 many	 European	 rivers	 (EEA,	 2015;	 Romero	
et	al.,	2016).	Both	large	and	small	rivers	suffered	from	hydromor-
phological	 degradation	 and	were	 characterized	by	 a	 poor	 chem-
ical	water	quality.	Consequently,	 the	diversity	and	abundance	of	
most	aquatic	and	especially	fish	species	were	influenced	by	these	
pressures	and	declined	in	several	west	European	river	basins	(e.g.,	
Belpaire	et	al.,	2000;	Boets,	Lock,	&	Goethals,	2011;	Den	Hartog,	
Van	 den	 Brink,	 &	 Van	 der	 Velde,	 1992).	 Since	 the	 enforcement	
of	 the	 European	 Water	 Framework	 Directive	 (EWFD)	 in	 2000,	
the	 ecological	 water	 quality	 has	 drastically	 improved	 in	 many	
European	waters	 (EEA,	 2015;	Hering	 et	al.,	 2010;	 Romero	 et	al.,	
2016),	 allowing	 the	 recolonization	 and	 restoration	of	 freshwater	
biota.

Recently,	 the	status	of	native	 freshwater	 fish	 species	and	 lam-
preys	 in	Flanders	 (northern	part	of	Belgium)	was	 investigated	and	
categorized	according	to	the	IUCN	Red	List	Guidelines	(Verreycken	
et	al.,	2014).	The	study	concluded	that	 five	species	 that	were	pre-
viously	categorized	as	 regionally	extinct	have	expanded	 their	area	
due	 to	 the	 improved	 water	 quality	 and	 reintroduction	 programs.	
Indeed,	in	Flanders,	similar	to	other	countries	in	Europe,	the	instal-
lation	of	wastewater	treatment	plants	and	the	development	of	river	
basin	management	plans	have	promoted	the	improvement	in	water	
quality,	especially	 in	 large	rivers.	However,	overall	water	quality	 in	
smaller	 rivers	 and	 streams	has	 improved	only	marginally	 since	 the	
late	1990s	(VMM,	2016),	and	this,	together	with	a	limited	restoration	
of	the	physical	habitat,	can	possibly	explain	why	several	rheophilic	
species	such	as	river	lamprey	(Lampetra fluviatilis	L.),	common	dace	
(Leuciscus leuciscus),	 and	brown	 trout	 (Salmo trutta	 forma	 fario)	 are	
still	categorized	as	vulnerable	in	Flanders.

The	EWFD	aims	 to	obtain	 a	 good	ecological	 status	 for	 all	 sur-
face	waters	by	2027.	For	this,	further	measures	are	needed	(Carrizo	
et	al.,	2017;	Hering	et	al.,	2010).	Currently,	the	commission	on	inte-
grated	water	management,	which	 is	 responsible	 for	 the	 follow-	up	
of	the	water	quality	in	Flanders,	has	assigned	different	priorities	to	
river	basins.	 In	 this	way,	 they	want	 to	maximize	 the	effects	of	 the	
investments	and	obtain	a	good	ecological	 status.	Those	areas	cat-
egorized	as	 “core	areas”	are,	with	some	extra	efforts,	expected	 to	
obtain	the	good	ecological	status	by	2021,	whereas	“priority	areas”	
are	expected	to	achieve	a	good	ecological	status	by	2027	(www.in-
tegraalwaterbeleid.be).

The	 Zwalm	 River	 basin	 (Central	 part	 of	 Flanders),	 which	 be-
longs	to	the	Upper	Scheldt	River	basin,	is	designated	as	a	priority	
area	(VMM,	2016).	Several	headwaters	and	tributaries	of	the	river	
basin	are	included	in	the	Habitats	Directive	to	ensure	the	protec-
tion	 of	 rare	 and	 endangered	 species.	 As	 a	 result	 of	 restoration	
efforts	 (i.e.,	 installation	 of	wastewater	 treatment	 plants	 and	 the	
redevelopment	 of	 natural	 banks),	 both	 the	 chemical	water	 qual-
ity	and	physical	habitat	conditions	have	improved	over	the	recent	
years	in	the	middle	reaches	of	the	Zwalm	River.	In	addition,	the	de-
sign	and	(future)	installation	of	several	fish	passages	should	make	

it	possible	for	fish	to	freely	migrate	in	most	stretches	of	the	river	
and	its	tributaries,	providing	possibilities	for	fish	to	build	up	more	
healthy	populations.

In	the	context	of	species	restoration	programs,	it	is	suggested	to	
reintroduce	brown	trout	in	the	Zwalm	River.	Brown	trout	originally	
occurred	in	this	basin,	but	largely	disappeared	since	the	1980s	due	to	
a	decrease	in	water	quality	and	a	loss	of	migration	possibilities.	Only	
a	very	small	relict	population	remained	present	in	one	of	the	head-
waters	of	the	basin	(Sassegembeek).	Reintroduction	was	considered	
since	it	allows	the	restoration	of	a	species	which	is	rare	in	Flanders,	
it	 increases	biodiversity,	and	above	all	 the	species	acts	as	an	 “am-
bassador	species”	leveraging	support	for	biodiversity	conservation.

Currently,	no	or	very	basic	and	 limited	 information	 (see	Dillen,	
Martens,	Baeyens,	Van	Gils,	&	Coeck,	2005)	is	available	on	the	suit-
ability	for	brown	trout	in	lowland	rivers	in	Flanders.	In	literature,	it	is	
indicated	that	Brown	trout	prefers	relatively	fast-	flowing	rivers	(av-
erage	flow	velocity	of	0.1–0.4	m/s)	with	a	good	vegetation	cover	and	
an	average	water	depth	of	40–60	cm	(Armstrong,	Kemp,	Kennedy,	
Ladle,	 &	 Milner,	 2003;	 Vismara,	 Azzellino,	 Bosi,	 Crosa,	 &	 Gentili,	
2001),	 conditions	 that	 are	present	 in	 the	Zwalm	River	basin.	Until	
now,	brown	trout	has	only	been	reintroduced	in	the	Terkleppebeek,	
a	small	stream	which	is	part	of	the	Dender	River	basin,	with	mixed	
success	(Dillen	&	Meulebrouck,	2009).	Given	the	good	water	quality,	
this	small	stream	was	considered	potentially	suitable	for	reintroduc-
tion.	However,	no	detailed	analysis	was	performed	a	priori	to	assess	
the	suitability.

Since	 resources	 for	 river	 restoration	are	often	 limited,	 it	 is	 im-
portant	to	provide	clear	and	robust	guidelines	and	solid	research	to	
support	decision	making.	In	this	respect,	habitat	suitability	modeling	
proved	useful	to	support	decision	making	in	river	and	conservation	
management	 (e.g.,	 Adriaenssens,	De	Baets,	Goethals,	&	De	Pauw,	
2004;	Guisan	et	al.,	 2006;	Mouton,	Alcaraz-	Hernández,	De	Baets,	
Goethals,	 &	Martínez-	Capel,	 2011).	More	 specifically,	 data-	driven	
and	 knowledge-	based	 habitat	 suitability	 models	 have	 often	 been	
used	to	assess	and	to	predict	the	area	that	is	suitable	for	a	species	
to	establish	and	reproduce	(e.g.,	Boets,	Pauwels,	Lock,	&	Goethals,	
2014;	 Elith	 &	 Leathwick,	 2009;	 Mouton,	 Schneider,	 Depestele,	
Goethals,	&	De	Pauw,	2007).	These	models	are	usually	developed	
as	a	relation	between	a	species	and	its	environment	based	on	occur-
rence	or	abundance	data	and	environmental	data,	but	can	be	com-
plemented	with	expert	knowledge.

The	aim	of	this	study	was	to	develop	a	habitat	suitability	model	
to	support	the	decision	making	for	possible	reintroduction	of	brown	
trout	 in	 the	Zwalm	River	 basin.	 To	 do	 so,	we	developed	 a	 habitat	
suitability	model	based	on	a	three-	step	approach	going	from	the	de-
velopment	of	a	conceptual	model	based	on	niche	and	filter	theory	
(1),	to	model	construction	with	derivatives	from	a	presence	data	set	
(2),	 and	 finally	 the	 search	 for	 alternative	models	with	 a	presence/
absence	data	set	and	a	metaheuristic	optimization	algorithm	(3).	This	
approach	was	used	to	obtain	flexible,	transparent,	and	performant	
models	with	adequate	representation	of	uncertainty.	It	is	important	
to	note	that	many	fields	in	environmental	modeling	have	discussed	
the	importance	of	transparent	and	flexibility	model	development	for	

http://www.integraalwaterbeleid.be
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management	applications	(Grimm	et	al.,	2006;	Jakeman,	Letcher,	&	
Norton,	2006).	To	our	knowledge,	this	is	the	first	practical	applica-
tion	for	freshwater	fish	species.

2  | METHODOLOGY

In	Figure	1,	 the	methodology	for	this	case	study	 is	 illustrated.	The	
aim	of	this	approach	was	to	develop	a	model	for	brown	trout	at	the	
scale	of	Flanders	 and	apply	 it	 for	 the	Zwalm	River	basin.	For	 this,	
we	considered	a	conceptual	model	based	on	filter	and	niche	theory	
(see	section	2.2)	making	a	minimum	set	of	assumptions	on	the	shape	
of	the	species	response	toward	a	gradient	(i.e.,	similar	as	in	Maxent	
(Phillips,	 Anderson,	&	 Schapire,	 2006)).	Habitat	 preference	 curves	
(HPCs)	were	 used	 for	 the	mathematical	 formulation	 of	 the	model	
(see	 section	 2.3).	 For	 the	 estimation	 of	 the	 parameters	 of	 these	
HPCs,	the	presence	data	from	the	Research	Institute	for	Nature	and	
Forest	(INBO)	and	expert	knowledge	were	used	(section	2.1).	Using	
and	analyzing	HPCs	as	 independent	model	elements,	we	aimed	to	
increase	transparency	and	flexibility	of	the	model	approach	(see	re-
quirements	“Model	structure,”	Figure	1),	facilitating	an	easy	analysis	
of	model	elements	by	stakeholders.	Next,	a	genetic	algorithm,	a	type	
of	metaheuristic	algorithm,	implemented	in	the	Species	Distribution	
Model	 Identification	 Tool	 (SDMIT)	 package	 of	 Gobeyn,	 Martin,	
Dominguez-	Granda,	and	Goethals	(2017)	was	used	to	optimize	the	
models	with	a	training	data	set	(see	section	2.4).	This	training	data	
set	contained	all	presence	records	and	an	equal	number	of	selected	
background	(i.e.,	samples	where	no	presence	was	recorded)	records	
for	which	observations	 for	 all	 abiotic	 features	were	 available.	The	
latter	was	important,	since	this	induced	a	restriction	on	the	number	

of	 available	data	points	 for	model	optimization.	By	 separating	 the	
process	 of	mathematical	 formulation,	model	 construction	 (section	
2.3),	and	model	optimization,	we	were	able	to	use	more	data	in	con-
trast	to	when	model	formulation	and	optimization	would	be	done	in	
one	step.	For	the	Zwalm	River	basin	simulations,	an	 input	data	set	
was	generated	by	coupling	INBO-		and	Flemish	Environment	Agency	
(VMM)	data	sets.	This	input	data	set	was	used	for	the	simulations	for	
the	Zwalm	River	basin.

2.1 | Data collection and data processing

For	development	of	 the	model,	we	used	data	 that	 have	been	 col-
lected	 by	 the	 Research	 Institute	 for	 Nature	 and	 Forest	 (INBO)	
during	 ongoing	 monitoring	 programs	 to	 assess	 the	 occurrence	
of	 fish	 and	 to	 determine	 the	 biotic	water	 quality	 based	 on	 fish	 in	
Flanders	 (referred	 to	 as	 “INBO	 data	 set”)	 (Figure	2).	 Occurrence	
data	 of	 brown	 trout	 were	 retrieved	 from	 the	 Fish	 Information	
System	 (VIS;	Brosens	et	al.,	 2015)	 that	was	accessed	 from:	http://
www.gbif.org/dataset/823dc56e-f987-495c-98bf-43318719e30f.	
Hydromorphological	 variables	 linked	 to	 the	 occurrence	 data	were	
retrieved	 from	 INBO	 as	 well.	 For	 detailed	 information	 about	 the	
data	 collection,	we	 refer	 to	Brosens	 et	al.	 (2015),	whereas	 in	 sup-
porting	information	(A),	it	is	explained	how	data	were	processed	for	
this	case	study.	Next	to	data	on	the	occurrence	of	brown	trout,	we	
also	used	data	on	the	physicochemical	water	quality	of	streams	and	
rivers	in	Flanders.	This	information	was	retrieved	from	the	database	
of	the	Flemish	Environment	Agency	(VMM)	that	has	been	monitor-
ing	the	water	quality	in	Flanders	at	more	than	2,500	sampling	loca-
tions	since	the	beginning	of	the	1990s.	Data	could	be	accessed	from:	
http://geoloket.vmm.be/Geoviews/.	 For	 a	 detailed	 description	 of	

F IGURE  1 Overview	of	the	
methodology	used	in	this	paper.	The	
aim	of	this	approach	was	to	develop	a	
model	on	the	scale	of	Flanders	which	is	
applicable	for	the	Zwalm	River	basin

http://www.gbif.org/dataset/823dc56e-f987-495c-98bf-43318719e30f
http://www.gbif.org/dataset/823dc56e-f987-495c-98bf-43318719e30f
http://geoloket.vmm.be/Geoviews/
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the	physicochemical	data	collection,	we	refer	to	the	Web	site	of	the	
VMM	 (https://en.vmm.be/).	 Physicochemical	 data	 were	 collected	
eight	times	a	year	at	different	sampling	locations	resulting	in	a	large	
number	of	observations.	The	data	from	the	VMM	were	coupled	for	
the	Zwalm	River	basin	to	the	INBO	data	to	increase	the	number	of	
records	used	as	input	for	the	scenario	analysis	(section	2.7).

A	number	of	variables	were	selected	for	the	modeling	approach	
based	on	five	selection	criteria:	(1)	were	there	sufficient	data,	(2)	was	
there	sufficient	variance	in	the	data,	(3)	was	the	considered	variable	
ecologically	 relevant,	 (4)	 was	 the	 considered	 variable	 relevant	 for	
management,	 and/or	 (5)	 was	 the	 considered	 variable	 significantly	
correlated	(5%	level)	to	another	variable?	An	overview	of	the	avail-
able	data	and	the	processing	and	explorative	analysis	steps	prior	to	
the	variable	selection	can	be	found	in	supporting	information	(A)	and	
Table	1.

From	 the	 INBO	 and	 VMM	 data	 set,	 three	 data	 sets	 were	 ob-
tained:	one	presence	data	set	for	model	construction	of	the	HPCs	
(through	 derivative	 statistics),	 one	 presence/absence	 data	 set	 for	
model	optimization,	and	one	input	data	set	for	the	simulations.	The	
first	 data	 set	was	 compiled	 from	 the	 INBO	data	 set	 containing	 all	
presence	 instances	 of	 Flanders	 (166	 records),	whereas	 in	 the	 sec-
ond	set	only	records	which	had	a	value	for	all	abiotic	features	were	

retained	 (25	 records).	 For	 the	 latter,	 25	 records	were	 retained	 as	
background	 samples	 (thus	 the	 training	data	 set	had	50	 instances).	
The	input	data	set	for	the	simulations	was	compiled	from	coupling	
the	INBO	data	to	the	VMM	data	set	(with	a	delta	of	100	m).	For	the	
latter,	it	is	important	to	note	that	no	records	of	the	Zwalm	River	basin	
were	used	for	model	development.

2.2 | Conceptual model and theoretical basis

Filter	theory	and	niche	theory	were	used	to	shape	the	conceptual	
model	of	the	suitability	models.	Using	filter	theory,	we	aimed	to	
structure	 the	processes	driving	 species	 absence	 in	 a	number	of	
elements	 (Guisan	&	Rahbek,	2011;	Poff,	1997).	Filter	 theory	as-
sumes	that	the	realized	species	assemblage	in	a	given	spatial	unit	
is	the	result	of	a	number	of	hierarchical	filters,	in	this	study	spe-
cifically	abiotic	 filters.	The	concept	of	niche	was	used	to	define	
each	of	 these	abiotic	 filters	 in	order	 to	 reflect	 the	 fundamental	
niche	 in	 which	 species	 were	 able	 to	 survive.	 This	 fundamental	
niche	was	assumed	to	be	only	shaped	by	abiotic	features	and	not	
by	 dispersal	 and	 species	 interaction	 effects	 (Guisan	 &	 Rahbek,	
2011).	In	practice,	it	was	highly	likely	that	the	realized	niche,	i.e.,	
niche	 shaped	 by	 species	 interactions	 and	 dispersal,	 was	 fitted	

F IGURE  2 Overview	of	Flanders	and	available	data	to	construct	and	optimize	the	models	(1	presence,	1+	presence,	and	background	
absence)	and	to	perform	simulations	for	the	Zwalm.	The	gray	and	black	points	indicate	the	presence	of	brown	trout	(1+:	more	than	one	
observation	over	time,	1:	one	observation	over	time).	The	small	dots	indicate	background	absence	data	(points	where	no	presence	was	
observed)	available.	The	coordinate	system	reported	on	the	x-		and	y-	axis	is	in	Lambert	(1972)

https://en.vmm.be/
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TABLE  1 Overview	of	the	available	data	and	the	reason	for	variable	exclusion

Variable Inclusion Unit Values Reason exclusion

Presence	of	algaea X — Present	or	absent

Area m2 Continuous	value Area	was	related	to	the	sampling	area,	which	
was	independent	of	the	species	presence/
absence

Average	depth X m Continuous	value

Bankb X — Strengthened,	partly	strength-
ened,	or	natural

River	bank	slopeb X — Gradual,	average,	steep

Presence	of	barriers P/A Present	or	absent Not	relevant	for	management	(migration	
barriers	have	been	removed	in	the	Zwalm,	
except	for	which	will	be	solved	in	the	near	
future)

Brackish P/A Yes	or	no All	considered	systems	in	this	study	were	
freshwater	systems

Conductivity X μS/cm Continuous	value

Curvatureb X Present	or	absent

Dissolved	oxygen X mg O2	L
−1 Continuous	value

Distance	from	spring — Continuous	value Pooled	variables	not	directly	indicating	the	
cause	of	presence/absence	were	omitted

Hiding	opportunitiesb X — Many,	plenty,	average,	rare	or	
none

Land	use — Trees,	mixed,	agricultural,	
industry,	or	city

Only	direct	pressures	were	considered

Sampling	length m Continuous	value	(usually	
100	m)

Length	was	related	to	the	sampling	length,	
which	was	independent	of	the	species	
presence/absence

Presence	of	nonsubmerged	
plantsb

X P/A Present	or	absent

pH X — Continuous	value

Presence	of	poolsb X P/A Present	or	absent

Presence	of	rifflesb X P/A Present	or	absent

Slope	of	thalweg X cm/m Continuous	value

Presence	of	submerged	
plantsb

X P/A Present	or	absent

Substrateb X — Mixed,	fine,	sand,	stone

Water	temperature X °C Continuous	value

Tidal P/A Yes	or	no All	considered	systems	in	this	study	were	
nontidal	systems

Transparency M Continuous	value Correlation	(r = .75*	with	average	depth)

Turbidity X NTU Continuous	value

Mean	reach	velocity X m/s Continuous	value

Water	depth — ? Insufficient	metadata

River width X m Continuous	value

Width	of	sampling	transect m Continuous	value Width	transect	was	related	to	the	sampling	
width,	which	was	independent	of	the	
species	presence/absence

aAny	type	of	algae	(e.g.,	thread	algae)	that	was	visually	observed.
bVisual	observation/by	hand	by	expert.
*Significant	at	the	5%	level.



5196  |     BOETS ET al.

as	 this	 is	 the	 niche	 which	 was	 observed	 in	 the	 field.	 However,	
Beale	and	Lennon	 (2012)	 stated	 that	 it	 is	preferable	 to	model	a	
fundamental	niche	rather	than	a	realized	niche,	because	the	nar-
rower	 precision	of	 a	 realized	niche	 likely	 underestimates	model	
uncertainty.	 That	was	why	we	 pursued	 the	 idea	 of	 reflecting	 a	
fundamental	niche,	so	to	obtain	a	more	realistic	insight	into	model	
uncertainty.	It	is	important	to	note	that	in	this	study,	we	only	con-
sidered	abiotic	filtering,	as	the	aim	was	to	assess	the	habitat	pref-
erence	of	brown	trout.

2.3 | Mathematical formulation

Habitat	preference	curves	were	used	to	define	the	biological	re-
sponse	 (in	this	case	presence/absence)	to	abiotic	gradients.	The	
abiotic	and	abundance	data	of	the	INBO	data	set,	coupled	on	lo-
cation	and	date,	were	used	to	develop	these	HPCs.	It	is	important	
to	note	that	abiotic	data	over	the	whole	of	Flanders	for	which	the	
species	was	observed	as	present	were	used.	As	explained	below	
in	this	section,	only	derivative	statistics	of	the	histogram	(i.e.,	per-
centiles)	were	used	to	develop	the	HPCs.	The	HPCs	described	the	
response	 of	 the	 species	 over	 the	 entire	 range	 of	 abiotic	 condi-
tions	 in	which	 the	 species	 can	 survive,	 so	 to	 reflect	 the	 funda-
mental	niche.	The	curves	were	assumed	to	have	a	nonsymmetric	
unimodal	 trapezoid	 shape	 as	 a	 simplification	of	 the	 bell-	shaped	
curve.	These	 curves	 can	be	 asymmetric,	 allowing	 to	 skew	away	
from	 extreme	 conditions	 (i.e.,	 heavily	 polluted)	 (Austin,	 2007;	
Guisan	&	Zimmermann,	2000;	Hirzel	&	Le	Lay,	2008).	 In	case	of	
continuous	variables,	four	parameters	(a1,	a2,	a3,	a4)	were	consid-
ered	for	the	HPCs,	defining	the	range	and	optimal	range	in	which	
a	species	can	survive.	The	lower	and	upper	boundaries	(a1	and	a4)	
were	determined	by	taking	the	lower	and	upper	values	of	the	en-
vironmental	variable	for	which	the	species	was	observed.	These	
values	were	calculated	several	times	to	account	for	uncertainty,	
by	bootstrapping	the	presence	records	(i.e.,	166	records	in	total)	
a	number	of	times	(200	bootstraps,	until	the	statistics	converged	
of	the	bootstraps).	The	median	for	the	lower	and	upper	values	of	
the	bootstraps	was	taken	as	the	final	value	for	parameters	a1	and	
a4.	The	values	for	the	parameters	(a2	and	a3)	defining	the	optimal	
range	were	estimated	in	a	similar	manner;	the	25	and	75	percen-
tiles	of	the	histogram	for	which	a	species	was	observed	as	present	
were	calculated.	The	suitability	index	(SI)	values	for	a	given	input	
variable	xj	were	then	calculated	with	equation	(1),	with	j	the	index	
of	 the	variables.	 It	 is	 important	 to	note	 that	 the	25	and	75	per-
centiles	were	chosen	arbitrarily,	based	on	 the	 trade-	off	of	 their	
robustness	to	different	bootstrap	samples	(25	percentile	will	be	
more	robust	 than	10	percentile)	and	the	optimal	 range	they	de-
scribe	(xj:	SI(xj)	=	1).

For	the	categorical	and	binary	variables,	a	SI	value	per	class	was	as-
signed	by	dividing	the	relative	share	of	the	class	for	which	the	spe-
cies	was	observed	as	present	by	the	relative	share	of	the	class	in	the	
data.	Afterward,	 these	values	were	normalized	with	 the	maximum	
obtained	value,	 so	 an	SI	 value	between	0	 and	1	was	obtained	 for	
every	class.	Also	here,	bootstrapping	was	applied	on	the	presence	
records.	The	habitat	suitability	index	(HSI)	was	then	defined	as	the	
interference	of	the	different	HPCs:

where m	is	the	number	of	HPCs	considered	in	the	model.	The	geo-
metric	mean	was	chosen	as	aggregation	function	since	it	was	consid-
ered	to	reflect	 the	 interference	of	different	environmental	 factors	
as	defined	in	the	niche	theory	of	Hutchinson	(1957).	In	this	model,	it	
was	considered	that	unsuitable	conditions		(i.e.,	xj:	SI	(xj	=	0)),	caused	
by	 abiotic	 features,	 cannot	 be	 compensated	 by	 other	 features	
(Langhans,	Reichert,	&	Schuwirth,	2014).	In	addition,	the	multiplied	
SI	values	were	relaxed	by	the	root	(i.e.,	1/m).

2.4 | Model optimization and ensemble approach

The	 SDMIT	 implemented	 by	 Gobeyn	 et	al.	 (2017)	 (https://github.
com/Sachagobeyn/SDMIT)	was	 used	 to	 optimize	 the	 habitat	 suit-
ability	model.	In	this	tool,	a	simple	genetic	algorithm	was	used	to	se-
lect	the	HPCs	best	explaining	the	presence/absence	of	the	species.	
This	package	was	used	as	it	is	a	flexible,	open	source	package	that	
fits	the	needs	set	in	Figure	1.	The	package	allows	to	use	a	number	of	
objectives	and	allows	a	flexible	implementation	of	model	structures.	
In	this	way,	users	can	define	their	own	model	in	the	code,	with	as-
sumed	distributions,	complying	with	their	expert	knowledge	on	spe-
cies	response.	For	additional	information	on	the	algorithm	settings	
and	used	objective	function,	we	refer	to	the	supporting	information	
(B)	and	Gobeyn	et	al.	(2017).

For	 the	 optimization,	 the	 INBO	 data	 were	 used	 to	 generate	
a	 training	data	 set.	Here,	background	absence	samples	 from	 the	
INBO	 data	 set	 were	 also	 used,	 in	 addition	 to	 presence	 samples	
used	for	mathematical	formulation	(section	2.3).	It	is	important	to	
note	that	an	equal	number	of	presence	 (i.e.,	25)	and	background	
records	were	bootstrap	sampled	to	obtain	50	records	and	to	avoid	
prevalence	 dependency	 of	 the	 objective	 function	 used	 for	 the	
optimization	 (Mouton,	De	Baets,	&	Goethals,	 2010).	 In	 addition,	
the	chance	that	a	background	record	was	selected	for	the	training	
data	 varied	 as	 a	 function	 of	 the	 distance	 from	 the	 closest	 pres-
ence	record.	Thus,	the	farther	the	background	record	was	situated	
from	a	presence	record,	the	lower	the	chance	that	a	background	
record	was	selected.	This	way,	the	conditions	 in	case	of	absence	
were	tested	to	conditions	for	presence,	in	the	same	geographical	
unit.	 As	 a	 consequence,	 the	 effect	 of	 geographical	 filtering	was	
eliminated.

In	 order	 to	 account	 for	 uncertainties	 caused	 by	 the	 imperfec-
tions	 in	 the	 ecological	 data	 and	 the	 SDMIT	 analysis,	 the	 process	
of	sampling	presence/background	records	and	model	optimization	

(1)SI(xj)=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0 if xj<a1
xj−a1

a2−a1
if xj∈

�
a1,a2

�

1 if xj∈
�
a2,a3

�
a4−xj

a4−a3
if xj∈

�
a3,a4

�

0 if a4<xj

(2)HSI=
(∏m

j
SI

(
xj
))1∕m

https://github.com/Sachagobeyn/SDMIT
https://github.com/Sachagobeyn/SDMIT
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was	 repeated	 a	 number	 of	 times	 with	 different	 sets	 of	 the	 data.	
This	repeated	model	optimization	generated	an	ensemble	of	models	
(Araújo	&	New,	2007),	which	was	used	to	reflect	simulation	uncer-
tainty.	The	process	of	optimization	was	repeated	with	200	samples	
of	the	data,	thus	obtaining	an	ensemble	of	200	models	(see	support-
ing	information	[C]).

2.5 | Model evaluation

Each	model	was	evaluated	by	calculating	a	number	of	evaluation	cri-
teria	(Table	2)	based	on	the	confusion	matrix.	The	confusion	matrix	
is	based	on	binary	values,	and	thus,	the	HSI	values	had	to	be	trans-
formed	to	estimate	presence/absence	P:

The	confusion	matrix	was	used	 to	compute	 the	Cohen’s	kappa	
(kappa),	correctly	classified	instances	(CCI),	sensitivity	(Sn),	specific-
ity	(Sp)	and	true	skill	statistic	(TSS).	The	kappa	and	TSS	are	statistics	
that	 measure	 interrater	 agreement	 for	 categorical	 items,	 normal-
izing	the	accuracy	of	a	model	by	the	accuracy	that	might	occur	by	
chance	alone,	whereas	sensitivity	and	specificity	are	measuring	the	
share	of	correct	estimation	of	presence	and	absence,	respectively.	
In	this	study,	the	models	were	evaluated	with	the	threshold	leading	
to	the	highest	value	for	the	evaluation	criteria	(TSS).	In	addition	to	
the	described	measures,	the	area	under	the	ROC	curve	(AUC)	was	
calculated.	This	measure	 is	often	used	as	a	threshold-	independent	
measure	for	model	performance	(Allouche,	Tsoar,	&	Kadmon,	2006;	
Mouton	et	al.,	2010).	The	AUC,	 ranging	from	0.5	to	1.0,	estimates	
the	 discrimination	 capacity	 of	 the	model.	 A	model	with	 good	 dis-
crimination	 ability	 is	 a	 model	 that	 can	 correctly	 discriminate	 be-
tween	 species	 presence	 and	 absence	 observed	 in	 the	 data.	 For	 a	
model	 with	 perfect	 discrimination,	 the	 AUC	=	1,	 and	 for	 a	 model	
with	no	discrimination	ability,	the	AUC	=	0.5	(Hosmer	&	Lemeshow,	
2000;	Pearce	&	Ferrier,	 2000).	The	models	were	 assessed	as	well	
performing	for	river	management	when	the	kappa	was	higher	than	
0.6	(Gabriels,	Goethals,	Dedecker,	Lek,	&	De	Pauw,	2007).	Based	on	
the	AUC,	the	performance	of	the	models	was	assessed	as	poor	(AUC	
∊	[0.5,	0.7]),	reasonable	(AUC	∊	[0.7,	0.9]),	and	very	good	(AUC	>	0.9).

2.6 | Scenario building

The	developed	models	were	used	to	perform	an	ensemble	simula-
tion	 of	 the	 habitat	 suitability	 for	 brown	 trout	 in	 the	 Zwalm	 River	
basin.	The	streams	in	the	Zwalm	River	basin	range	from	nearly	pris-
tine	headwaters	to	severely	impacted	reaches	near	the	mouth	of	the	
Zwalm	River.	Specifically,	 the	physical	habitat	quality	 is	 still	 excel-
lent	in	the	forested	spring	areas,	but	ranges	from	moderate	to	poor	
in	the	inhabited	parts	of	the	river	basin	due	to	flood	control	weirs,	
straightened	river	channels,	and	artificial	embankments	(Dedecker,	
Goethals,	Gabriels,	&	De	Pauw,	2004).

The	 input	 data	 used	 for	 this	 scenario	were	 based	 on	 the	 data	
available	 from	 the	 Institute	 for	Nature	 and	Forest	 (INBO)	 and	 the	
Flemish	Environment	Agency	(VMM)	(see	section	2.1).	First,	all	INBO	
and	VMM	data	within	the	same	section	of	the	river	were	coupled.	
Data	were	excluded	when	the	distance	between	the	location	of	the	
INBO	and	the	corresponding	VMM	measurement	exceeded	100	m.	
A	distance	of	100	m	was	chosen	as	this	is	the	resolution	at	which	data	
were	available	(i.e.,	data	were	collected	in	the	field	at	reach	scale	of	
100	m).	Other	thresholds	(200,	500	m)	were	tested;	however,	it	was	
observed	 that	 coverage	did	not	 increase.	The	VMM	database	was	
used	as	a	base	for	the	coupling,	because	the	sampling	network	was	
denser.	Then,	a	scenario	was	generated	by	taking	the	average	state	
of	each	variable.	In	case	the	median	did	not	coincide	with	a	class	(for	
binary	and	categorical	variables),	the	worst	case	scenario	was	used	
(e.g.,	median	for	algae	was	0.5;	then,	the	value	1	(presence	of	algae)	
was	considered).	These	compiled	data	were	then	used	as	 input	for	
the	ensemble	models.

3  | RESULTS

3.1 | Model development

In	Figure	3,	 the	results	of	the	estimated	HPC	for	mean	stream	ve-
locity	and	substrate	are	shown,	whereas	in	supporting	information	
(A),	all	plots	for	the	HPCs	are	shown.	For	mean	reach	stream	veloc-
ity	(Figure	3,	upper	left	panel),	it	is	seen	that	brown	trout	were—on	
average—observed	 at	 higher	 velocities,	 suggesting	 that	 their	 opti-
mal	preference	for	stream	velocity	was	located	in	rivers	with	higher	
velocities	 (0.2–1	m/s).	 In	 addition,	 there	 was	 a	 larger	 uncertainty	
on	the	upper	boundary	of	the	stream	velocity	of	the	range	than	on	
the	lower	boundary.	For	substrate	(Figure	3,	right	lower	panel),	the	
classes	sand,	stone,	and	mixed	had	a	relatively	high	SI,	whereas	for	
fine	sediments	(clay	and	silt),	the	SI	was	rather	low,	since	no	observa-
tions	for	these	classes	were	available.	In	addition,	a	large	uncertainty	
was	observed	on	the	SI	values	of	the	classes	mixed	and	stone.

The	 support	 and	 uncertainty	 for	 the	HPCs	 identified	with	 the	
SDMIT	 package,	 analyzed	 for	 200	models,	 are	 shown	 in	 Figure	4.	
Water	 temperature,	 mean	 stream	 velocity,	 hiding	 opportunities,	
presence	of	pools	and	to	a	small	extent	presence	of	riffles	were	iden-
tified	as	steering	factors	determining	the	presence	or	absence	of	the	
species.	The	variable	water	temperature	had	the	highest	support	(al-
most	100%),	whereas	 the	variable	stream	velocity	had	the	second	

(3)
P=

{
1 if HSI≥ threshold

0 if HSI< threshold

TABLE  2 Used	evaluation	criteria

Criterion Symbol Formula

Cohen’s	kappa Kappa
[
A+D

N

]
−[(A+B)(A+C)+(C+D)(D+B)]∕N2

1−[(A+B)(A+C)+(C+D)(D+B)]∕N2

Correctly	classified	
instances

CCI (A+D)
N

Sensitivity Sn A

A+C

Specificity Sp D

B+D

True	skill	statistic TSS Sn	+	Sp−1

A	is	the	number	of	true	positives;	B,	the	false	positives;	C,	the	false	nega-
tives;	and	D,	the	true	negatives.	N = A +	B +	C +	D	(Mouton	et	al.,	2010).
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highest	 support.	 Hiding	 opportunities	 and	 the	 presence	 of	 pools	
were	identified	as	the	third	and	fourth	important	explanatory	vari-
able.	Although	they	were	assessed	as	explanatory	features	steering	
the	presence,	the	uncertainty	on	the	selection	of	the	input	variable	
“presence	of	pools”	and	specifically	 “hiding	opportunities”	was	as-
sessed	as	rather	high.	This	uncertainty	 is	reflected	in	the	Shannon	
entropy	(Shannon,	1948),	indicating	that	the	inclusion	in	50%	of	the	
models	leads	to	an	uncertainty	of	one	(on	the	scale	of	zero	to	one).	
The	source	of	this	uncertainty	stems	from	the	stochastic	behavior	
of	the	simple	genetic	algorithm	used	in	SDMIT	and	the	uncertainty	
introduced	by	bootstrapping	data.	The	obtained	uncertainties	 can	
be	assessed	as	high,	especially	 for	 factors	 that	 tend	 to	have	some	
explanatory	power.	This	shows	the	importance	of	using	the	ensem-
ble	approach,	reflecting	uncertainties	in	species	presence	estimates.	
Other	factors	were	excluded	from	the	model,	with	a	higher	certainty.

An	 overview	 of	 the	 accuracy	 of	 the	 200	 models	 is	 given	 in	
Figure	5.	The	accuracy	was	evaluated	with	the	threshold	that	led	to	
the	highest	TSS	(on	average	this	threshold	was	equal	to	0.6).	The	un-
certainty	on	the	values	is	given	by	the	standard	deviation.	Presences	
were	 fitted	 better	 than	 the	 absences	 (i.e.,	 Sn>Sp);	 however,	 the	
standard	 deviation	 on	 the	 values	 shows	 that	 this	 difference	 was	
characterized	by	uncertainty.	The	ensemble	of	models	was	assessed	
as	performant	giving	equal	weight	to	the	estimation	of	species	pres-
ence	and	absence.	Based	on	kappa,	the	performance	of	the	models	
was	assessed	as	moderate	and	substantial	(∊	[0.4,	0.8]),	whereas	for	
AUC	reasonable	(∊	[0.7,	0.9])	and	very	good	(>0.9).

3.2 | Ensemble forecast for the Zwalm River basin

The	model	ensemble	was	used	to	run	a	simulation	of	the	habitat	
suitability	of	 the	Zwalm	River	basin	 for	brown	 trout.	 In	order	 to	
do	so,	a	scenario	for	the	Zwalm	was	created	(see	section	2.6).	 In	
Figure	6,	a	map	shows	the	mean	of	the	simulated	HSI	values	and	

the	uncertainty	for	a	number	of	points	in	the	Zwalm	River	basin.	
In	Table	3,	 the	 results	of	 the	minimum	of	ensemble	 simulated	SI	
values	for	every	input	variable	are	shown.	In	this	table,	only	points	
with	a	HSI	lower	than	0.6	are	reported,	since	this	was	the	median	
threshold	which	maximizes	 the	evaluation	criteria	 (TSS,	 see	 sec-
tion	2.6).

A	relatively	large	number	of	locations	were	assessed	as	suitable	
for	brown	trout.	When	using	a	suitability	threshold	of	0.6,	brown	
trout	was	estimated	to	be	present	in	48	locations,	whereas	absent	
in	31	locations.	For	a	scenario	favoring	overestimation	(HSI	>	0.2)	
and	underestimation	(HSI	>	0.8),	the	species	was	estimated	to	be	
present	 in	 respectively	 69	 and	 42	 locations.	 Suitable	 locations	

F IGURE  3 Example	of	habitat	
preference	curve	for	a	continuous	(left,	
mean	stream	velocity,	m/s)	and	categorical	
(right,	substrate)	variable.	In	the	upper	
left	panel,	the	boxplot	and	barplot	of	the	
variable	values	are	shown	for	species	
presence	and	absence.	In	the	lower	
panels,	the	HPCs	derived	with	the	variable	
values	for	which	the	species	were	present	
are	shown.	The	different	suitability	curves	
were	generated	by	bootstrapping	the	
velocity	values	of	the	presence	data	a	
number	of	times.	The	black	curve	(line)	
was	determined	by	taking	the	median	of	
the n	values	of	a1,	a2,	a3,	and	a4

F IGURE  4 Support	and	uncertainty	on	support	(Shannon	
entropy)	of	HPCs,	analyzed	for	200	models.	The	support	(in	%)	
is	given	on	the	x-	axis,	while	the	uncertainty	on	input	variable	
selection	is	shown	by	the	color	scale	(yellow	to	red,	see	color	print).	
The	Shannon	entropy	was	selected	as	measure	for	uncertainty
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were	mainly	 concentrated	 in	 the	 side	 branches	 (tributaries)	 and	
not	in	the	main	river	(i.e.,	northeast,	Molenbeek,	in	the	south,	up-
stream	in	the	Slijpkotmolenbeek,	Zwalmbeek,	and	Wijlegemsebeek	
or	 in	 the	 southwest	 in	 Paardestokbeek	 and	 Krombeek).	 In	 gen-
eral,	a	large	number	of	unsuitable	locations	were	estimated	to	be	
present	 in	 the	 main	 river.	 Interestingly,	 a	 number	 of	 unsuitable	

locations	were	simulated	to	be	located	upstream	in	the	River	basin	
(i.e.,	point	3,	14,	15,	4,	10,	18,	2).	When	inspecting	these	locations	
(Table	3),	stream	velocity,	substrate,	and	river	width	were	identi-
fied	as	limiting	variables.	For	all	these	points,	the	stream	velocity	
was	 in	general	suboptimal,	being	too	 low	(∊	 [0.21–0.39]	m/s);	 for	
points	 3	 and	 14,	 the	 substrate	 was	 fine,	 which	 was	 nonoptimal	
(Figure	3).	In	the	main	river,	the	habitat	of	points	0,	76,	11,	12,	and	
22–26	was	 less	suitable	 for	brown	trout,	with	absence	of	pools/
riffles,	fine	substrate,	and	a	 low	mean	stream	velocity	 leading	to	
unsuitable	conditions.	As	for	the	upstream	tributaries	(south	part	
of	the	River	basin),	the	low	stream	velocity	was	causing	these	sub-
optimal	conditions.	In	addition,	for	points	22	and	25,	the	absence	
of	 pools/riffles	was	 assessed	 as	 an	 important	 factor	 influencing	
the	suitability	of	the	habitat.	Fine	substrate	(points	12	and	23)	was	
also	assessed	as	nonoptimal.	It	was	observed	that	the	conditions	
for	temperature	were	only	suboptimal	 in	three	of	the	31	investi-
gated	points	(Table	3;	locations	72,	74	and	76),	ranging	from	an	av-
erage	15.85–17.85°C	(see	supporting	 information	[A],	Figure	A9).	
It	 is	 important	to	note	that	the	uncertainty	for	points	with	a	 low	
HSI	was	generally	higher.	Typically,	these	conditions	refer	to	con-
ditions	on	the	slope	of	the	suitability	curves	(see	Figure	3),	which	
were	 in	 general	more	 uncertain	 than	 the	 optimal	 ranges	 (i.e.,	 x: 
SI(x)	=	1).

4  | DISCUSSION

4.1 | Model development

In	 this	 study,	we	 developed	 data-	driven	 habitat	 suitability	models	
to	assess	the	locations	that	are	suitable	for	reintroduction	of	brown	

F IGURE  5 Values	for	the	evaluation	measures.	The	uncertainty	
on	the	evaluation	measures	is	given	by	the	standard	deviation	on	
the	measure	(for	the	abbreviation	of	the	evaluation	measures,	see	
Table	2)

F IGURE  6 Overview	map	of	simulated	
HSI	with	the	ensemble	of	models.	In	this	
map,	the	mean	simulated	HSI	(color	red	
to	yellow)	over	the	200	ensemble	models	
is	shown.	The	uncertainty	(Unc.)	on	the	
simulation	is	estimated	by	computing	
the	standard	deviation	of	the	HSI	over	
the	200	simulations	(indicated	by	the	
size	of	the	points).	The	ID	of	the	point	is	
indicated	when	the	HSI	of	the	point	was	
lower	than	0.6
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trout	in	the	Zwalm	River	basin.	The	aim	was	to	provide	performant	
models	 in	 terms	of	precision	 and	accuracy,	 but	 also	 flexibility	 and	
transparency	of	the	model	structure.	We	followed	a	three-	step	ap-
proach:	(1)	the	development	of	a	conceptual	model	based	on	niche	
theory	 and	 filter	 theory	 to	 model	 construction	 with	 derivatives	
from	a	presence	data	set,	(2)	the	search	for	alternative	models	with	
a	presence/absence	data	set,	and	(3)	the	use	of	an	optimization	al-
gorithm.	 Although	 the	 final	 end-	product	 was	 mainly	 data	 driven,	
the	model	does	reflect	prior	knowledge	embedded	in	niche	and	fil-
ter	 theory	 in	 its	model	 concept.	 In	 contrast	 to	many	 available	 ap-
proaches	 used	 to	model	 species’	 occurrence	 and	 thus	 also	 brown	
trout	(Filipe	et	al.	2013;	Mostafavi	et	al.,	2014),	we	explicitly	split	the	
model	construction	and	optimization	phase,	to	increase	model	flex-
ibility	and	transparency.	This	allows	a	critical	review	in	every	stage	
of	model	development	(Grimm	et	al.,	2006;	Jakeman	et	al.,	2006).	It	
is	expected	that	 fully	 reporting	 the	model	development	process	 is	
beneficial	 for	model	developers	and	those	relying	on	model-	based	
insight	and	model	recommendations	to	make	decisions.	In	this	way,	
the	proposed	approach	complements	to	this	idea,	in	the	context	of	
habitat	suitability	modeling,	and	it	is	the	first	to	present	a	practical	
application	for	reintroduction	of	a	freshwater	species.

Data-	driven	models	have	been	previously	shown	to	be	very	useful	
in	predicting	the	habitat	preference	of	fish	(Ahmadi-	Nedushan	et	al.,	
2006;	Mouton	et	al.,	2011;	Muñoz-	Mas,	Martínez-	Capel,	Schneider,	
&	Mouton,	2012).	 In	our	 study,	 the	boundaries	of	 the	HPCs	were	
based	on	 the	median	of	 the	minimum	and	maximum	values	of	 the	
environmental	field	data,	whereas	the	optimal	range	was	based	on	
the	25	 and	75	percentiles	of	 these	data	 (i.e.,	 derivative	 statistics).	
The	four	different	parameters	of	the	HPC	were	determined	purely	
data	driven,	but	the	choice	to	use	the	25–75	percentile	values	as	the	
optimal	range	for	brown	trout	was	based	on	knowledge.	Although	a	
similar	approach	to	determine	the	habitat	range	was	used	in	previous	
studies,	several	studies	used	the	95%	confidence	level	to	set	toler-
ance	limits	(e.g.,	Strakosh,	Neumann,	&	Jacobson,	2003).	We	believe	
that	by	using	the	25–75	percentile	approach	we	get	an	optimal	range	
that	 is	 biologically	 more	 relevant	 and	 closer	 to	 reality	 compared	
to	 the	95%	confidence	 limit.	Recent	 research	by	Muñoz-	Mas	et	al.	
(2012)	showed	that	the	preference	intervals	of	brown	trout	based	on	
data-	driven	HPCs	are	rather	restricted,	compared	to	other	studies.	
Therefore,	they	also	suggest	to	apply	some	expert	knowledge	to	set	
the	optimal	occurrence	range,	especially	when	the	data	are	scarce	
and	when	 reliable	 information	 or	 scientific	 experience	 is	 available	
in	other	formats.	The	outer	range	of	the	suitability	was	defined	by	
the	bootstrapped	minimum	and	maximum	value	of	the	abiotic	vari-
ables.	The	minimum	and	maximum	values	were	selected	in	order	to	
approximate	the	fundamental	rather	than	the	realized	species	niche.	
This	 led	 to	 higher	 observed	 uncertainties,	 but	 is	 considered	more	
realistic	from	an	ecological	point	of	view	(Beale	&	Lennon,	2012).

To	develop	the	final	habitat	suitability	model,	the	interference	of	
the	different	HPCs	was	used.	Afterward,	a	simple	genetic	algorithm	
implemented	in	the	SDMIT	package	of	Gobeyn	et	al.	(2017)	was	used	
to	optimize	our	model	and	to	identify	alternative	models	by	reducing	
the	number	of	input	variables	and	decreasing	model	complexity	and	

risk	of	overfitting	(see	also	D’heygere,	Goethals,	&	De	Pauw,	2006;	
Gobeyn	et	al.,	2017).	In	addition,	appropriate	selection	of	input	vari-
ables	not	only	is	important	for	modeling	objectives	as	such,	but	also	
ensures	 reliable	decision	 support	 in	 river	management	and	policy-	
making	(D’heygere	et	al.,	2006).	Although	water	temperature,	mean	
stream	 velocity,	 hiding	 opportunities	 and	 presence	 of	 pools	 were	
identified	as	the	most	important	variables	explaining	the	occurrence	
of	brown	trout,	they	had	a	relatively	high	uncertainty.	Therefore,	it	
is	suggested	to	apply	an	ensemble	approach,	reflecting	uncertainties	
in	species	predictions	(Araújo	&	New,	2007;	Muñoz-	Mas,	Martínez-	
Capel,	Alcaraz-	Hernández,	&	Mouton,	2017),	as	used	in	this	study.	
The	performance	of	 the	ensemble	models	 generated	 in	 this	 study	
could	be	considered	good	since	the	average	performance	of	the	dif-
ferent	 performance	 criteria	was	 higher	 than	 0.7.	 Indeed,	 previous	
studies	have	shown	that	CCI	values	higher	than	70%	and	kappa	val-
ues	higher	 than	0.6	 indicate	 reliable	models	 (Gabriels	 et	al.,	 2007;	
Mouton	et	al.,	2010).

The	 ensemble	 of	 models	 was	 finally	 used	 to	 run	 a	 simulation	
of	the	habitat	suitability	of	the	Zwalm	River	basin	for	brown	trout.	
Because	outcomes	of	habitat	suitability	may	have	significant	conse-
quences	for	management	and	reintroduction	of	species,	it	is	crucial	
to	have	insight	into	the	uncertainties	of	the	estimations.	The	results	
indicated	that	 the	uncertainty	 for	 locations	with	a	 low	HSI	 is	gen-
erally	higher,	whereas	for	locations	with	a	high	HSI	the	uncertainty	
is	lower.	This	indicates	that	the	conditions	where	brown	trout	does	
not	occur	are	 less	clear	and	probably	are	characterized	by	a	wider	
environmental	range	compared	to	the	conditions	that	are	favorable	
for	brown	trout	to	occur.	When	the	input	data	lie	on	the	steep	parts	
of	the	curves,	input	uncertainty	largely	determines	the	uncertainty	
of	the	HSI	(Van	der	Lee,	Van	der	Molen,	Van	den	Boogaard,	&	Van	
der	Klis,	2006).	At	these	positions	on	the	curves,	small	deviations	in	
input	data	cause	a	large	variation	in	the	resulting	HSI.	Nevertheless,	
the	reliability	of	the	HSI	obtained	in	this	and	other	studies	is	often	
sufficient	for	management	purposes	since	the	aim	is	to	generally	as-
sess	potential	locations	for	rehabilitation	or	conservation	activities	
(Van	der	Lee	et	al.,	2006).	 In	 this	 regard,	our	 final	model	 could	be	
considered	acceptable	and	fit	for	purpose.

The	developed	model	serves	as	an	indication	for	suitability,	as	no	
validation	data	were	available	to	verify	its	robustness.	Future	sam-
pling	campaigns	 in	 the	Zwalm	River	basin	are	planned,	and	at	 that	
stage,	the	value	of	this	model	can	be	properly	evaluated.	Not	only	
can	this	verify	 its	use	for	the	Zwalm	River	basin,	but	also	 its	value	
for	the	whole	of	Flanders.	Even	more,	the	modeling	approach	could	
serve	as	a	guide	to	develop	models	allowing	interaction	with	stake-
holders.	This	way,	suggestions	and	improvements	formulated,	allows	
the	models	to	be	supported	by	a	larger	audience	(i.e.,	policy-	makers).

4.2 | Habitat suitability variables

Although	the	habitat	suitability	of	brown	trout	has	been	studied	be-
fore,	most	 studies	only	 considered	hydromorphological	 river	 char-
acteristics	(e.g.,	Strakosh	et	al.,	2003;	Vismara	et	al.,	2001)	to	assess	
the	 optimal	 occurrence	 conditions	 for	 brown	 trout.	 In	 this	 study,	
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hydromorphological,	chemical,	and	physical	variables	were	included	
in	the	analysis	to	investigate	the	habitat	suitability	for	reintroduction	
of	brown	trout	in	the	Zwalm	River	basin.	Water	temperature,	mean	
stream	velocity,	 hiding	opportunities,	 and	presence	of	 pools	were	
selected	by	the	model	as	the	most	important	variables	explaining	the	
occurrence	of	 brown	 trout.	 Previous	 research	on	 the	habitat	 suit-
ability	of	brown	trout	in	the	southern	parts	of	Europe	and	in	the	USA	
indicated	that	water	temperature	and	stream	velocity,	two	key	vari-
ables	selected	by	our	model,	are	indeed	important	variables	deter-
mining	the	occurrence	and	abundance	of	the	species	(Mouton	et	al.,	
2011;	 Muñoz-	Mas,	 Vezza,	 Alcaraz-	Hernández,	 &	 Martínez-	Capel,	
2016;	Strakosh	et	al.,	2003;	Vismara	et	al.,	2001).

Recent	 research	 has	 indicated	 that	 water	 temperature	 and	 a	
species	thermal	niche	are	considered	important	factors	determining	
the	maximum	distribution	of	brown	trout	in	Spanish	Mediterranean	
rivers	 (Santiago	 et	al.,	 2015).	 In	 the	 central	 part	 of	 the	 Iberian	
Peninsula,	it	was	found	that	the	thermal	niche	of	the	species	is	set	
at	a	maximum	of	18.7°C,	whereas	its	physiological	maximum	is	set	
at	25°C	(Santiago	et	al.,	2015).	In	our	study,	the	optimal	water	tem-
perature	that	is	preferred	by	brown	trout	is	situated	between	7	and	
15°C,	whereas	the	maximum	temperature	at	which	the	species	still	
occurred	 is	 situated	 around	 20°C.	 Although	 our	 model	 indicated	
temperatures	 between	 15	 and	 17°C	 as	 suboptimal,	 these	 values	
are	 still	 below	 the	 thermal	 niche	 of	 adult	 brown	 trout	 in	 Spanish	
Mediterranean	 rivers.	 However,	 research	 has	 indicated	 that	 with	
increasing	temperatures	the	species	requires	higher	oxygen	concen-
trations	(Raleigh,	Zuckerman,	&	Nelson,	1986),	which	could	explain	
why	temperatures	between	15	and	17°C	were	indicated	as	subop-
timal.	The	watercourses	in	the	Zwalm	River	basin	are	typically	small	
fast-	flowing	 streams	 and	 rivers	 with	 a	 relatively	 high	 vegetation	
cover.	The	upper	parts	of	the	Zwalm	River	basin	are	fed	by	sources	
which	supply	groundwater	at	a	steady	cool	temperature	the	whole	
year	 round.	These	characteristics	explain	why	 the	water	 tempera-
ture	is	relatively	low,	even	in	summer	when	air	temperatures	rise	and	
water	temperatures	are	still	well	below	the	maximum.

In	our	study,	the	optimal	velocity	ranged	between	0.2	and	1	m/s,	
whereas	other	 studies	 indicated	 that	 the	optimal	 range	 for	brown	
trout	is	situated	lower,	with	a	maximum	of	around	0.2	m/s	(Strakosh	
et	al.,	2003;	Vismara	et	al.,	2001).	Vismara	et	al.	 (2001)	 found	that	
especially	 juveniles	 prefer	 lower	 stream	velocities,	 but	 that	 adults	
also	occurred	at	microhabitats	which	are	 relatively	deep	and	have	
a	high	stream	velocity.	 In	contrast,	Ayllón,	Almodóvar,	Nicola,	 and	
Elvira	 (2009)	found	that	much	depends	on	the	 local	habitat	condi-
tions	and	the	 life	stage	since	older	trout	prefer	slower	and	deeper	
waters,	whereas	young-	of-	the-	year	showed	a	strong	preference	for	
shallow	habitats	with	a	higher	stream	velocity.

Besides	stream	velocity	and	water	temperature,	the	presence	of	
pools	and	hiding	opportunities	seemed	to	be	two	important	factors	
which	were	included	in	some	of	our	models.	Previous	research	has	
indicated	 that	 the	presence	of	 pools	 and	hiding	opportunities	 be-
comes	more	important	(compared	to	stream	velocity)	as	trout	grows	
and	becomes	older	 (Ayllón	et	al.,	2009).	Ayllón	et	al.	 (2009)	 found	
that	the	interaction	between	presence	of	pools	and	stream	velocity	

seems	to	be	driven	by	the	structural	overhead	cover	and	the	type	
of	 water	 (fast	 vs.	 slow	 running	waters).	 In	 addition,	 the	 influence	
of	cover	on	habitat	selection	remains	along	the	whole	 life	cycle	of	
brown	trout,	being	probably	the	most	important	single-	site	attribute	
determining	salmonid	abundance	(Armstrong	et	al.,	2003).	Although	
reproduction	was	not	considered	 in	 this	 study,	brown	 trout	needs	
gravel	beds	to	spawn	(Louhi,	Mäki-	Petäys,	&	Erkinaro,	2008).	In	this	
respect,	the	presence	of	riffles	is	very	important	not	only	as	suitable	
habitat	for	juveniles	and	adults,	but	also	since	it	serves	as	a	habitat	
for	spawning.

In	this	study,	we	considered	to	assess	the	preference	of	juveniles	
complementary	to	pooled	adult/juvenile	models	to	obtain	an	insight	
into	the	essential	components	driving	a	juvenile	population	toward	a	
stable	multigeneration	population.	As	no	information	was	available	
in	the	data	set	on	the	age	of	the	population,	a	length	of	15	cm	(based	
on	De	Laak,	2008)	was	used	to	differentiate	 juveniles	 from	adults	
leading	 to	 31	 presence	 records	 useful	 for	 model	 construction	 (in	
contrast	to	166	when	using	all	samples).	With	these	samples,	HPCs	
were	 constructed,	 showing	minor	 deviance	 from	 the	HPCs	 devel-
oped	using	all	presence	records	(see	supporting	information	[D]).	In	
general,	the	range	of	the	HPCs	was	smaller	and	uncertainties	were	
lower.	In	addition,	absence	of	pools	and	riffles	and	a	preference	for	
lower	 stream	 velocities	 (see	 supporting	 information	 [A])	were	 ob-
served	 for	 juveniles.	We	 aimed	 to	 optimize	 the	models	 as	we	 did	
with	all	presence	data	from	INBO;	however,	there	were	not	enough	
records	with	a	value	for	all	abiotic	variables.	This	leads	to	a	training	
set	holding	six	records	which	was	considered	as	inadequate	for	train-
ing.	As	a	consequence,	no	difference	was	made	between	juveniles	
and	adults	and	the	simulations	were	based	on	a	combination	of	both,	
which	might	explain	why	our	results	are	somewhat	different	in	com-
parison	with	previous	research.

The	 assessment	 of	 longitudinal	 connectivity	 of	 the	 river	 sys-
tem	 and	 the	 effect	 of	 dams	 and	weirs	 is	 an	 important	 aspect	 for	
restoration	 and	 conservation	 of	 freshwater	 fish	 species	 (Branco,	
Segurado,	Santos,	&	Ferreira,	2014).	Migration	speed	of	the	species	
or	the	presence	of	physical	migration	barriers	was	not	considered	in	
the	current	study.	First	of	all,	several	investments	have	been	made	
during	the	 last	decades	 in	order	 to	 install	bypasses	or	 fish	 ladders	
to	overcome	physical	migration	barriers	which	were	present	in	the	
Zwalm	River	basin.	Currently,	only	a	 few	bottlenecks	remain	pres-
ent	mainly	on	the	tributaries	and	only	one	migration	barrier	 is	still	
present	on	the	main	stem	of	the	River	Zwalm	(for	an	overview	of	the	
barriers	refer	to:	http://vismigratie.vmm.be/vismigratie/).	These	mi-
gration	barriers	have	been	inventoried,	and	plans	have	been	made	to	
remediate	these	in	the	next	5–10	years.	Once	this	handful	of	migra-
tion	barriers	(mainly	present	on	the	tributaries)	is	resolved,	fish	will	
be	able	to	migrate	freely	in	the	entire	Zwalm	River	basin	and	even	
migration	from	the	river	Scheldt	will	be	possible.	Second,	migration	
speed	 was	 not	 considered	 since	 previous	 research	 conducted	 by	
Ovidio,	Baras,	Goffaux,	Birtles,	and	Philippart	(1998)	in	the	southern	
part	 of	Belgium	has	 indicated	 that	 brown	 trout	 can	migrate	up	 to	
5	km	per	night.	Given	the	relatively	limited	size	of	the	Zwalm	River	
basin	(11,650	ha)	and	the	limited	length	of	the	Zwalm	River	(22	km),	

http://vismigratie.vmm.be/vismigratie/
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migration	 was	 not	 considered	 a	 limiting	 factor	 for	 the	 species	 to	
reach	all	suitable	habitats	within	the	River	Zwalm.

4.3 | Suitable habitat for reintroduction and 
recommendations for future management

Based	on	the	ensemble	model	simulations,	we	found	that	mainly	the	
headwaters	and	some	of	the	tributaries	of	the	Zwalm	River	basin	are	
suitable	 for	 reintroduction	of	brown	trout,	whereas	the	main	river	
is	 less	 suitable.	The	major	 limiting	 factor	 for	 the	main	 river	 seems	
to	be	stream	velocity,	which	is	often	too	low.	The	locations	and	by	
extension	 several	 stretches	of	 the	Zwalm	River	 basin	 indicated	 as	
suitable	 are	 in	 agreement	with	expert	 knowledge	and	 information	
retrieved	from	earlier	studies.	The	tributaries	and	upper	reaches	of	
the	Zwalm	River	basin	are	characterized	by	a	good	physical	habitat	
and	a	good	chemical	and	ecological	water	quality	 (Dedecker	et	al.,	
2004;	VMM,	2016).	Earlier	introductions	of	other	rheophilic	species	
seem	to	thrive	well	in	the	headwaters	as	well	(Van	Thuyne,	Samsoen,	
&	Breine,	2005).	Moreover,	these	small	streams	are	abundantly	pop-
ulated	with	amphipods	and	other	macroinvertebrates	as	well	as	prey	
fish	which	could	serve	as	food	for	brown	trout.

In	contrast	to	the	physical	requirements,	which	still	cause	a	lim-
itation	for	brown	trout	to	occur	in	the	Zwalm	River	basin,	the	stan-
dard	chemical	water	quality	conditions	(pH,	conductivity,	dissolved	
oxygen)	were	estimated	not	to	be	a	major	restriction	for	the	species	
to	occur.	Recent	investments	in	wastewater	treatment	installations	
in	combination	with	hydromorphological	restoration	programs	seem	
to	have	a	positive	effect	on	the	suitable	habitat,	not	only	of	brown	
trout,	 but	 also	of	 other	 rheophilic	 species	 such	 as	dace	 and	 chub.	
Indeed,	recent	investigations	have	shown	that	the	reintroduction	of	
both	species	seems	to	be	successful	in	the	Zwalm	River	basin	(Dillen	
&	Vlietinck,	 2008;	Van	den	Neucker	 et	al.,	 2013).	 The	major	 chal-
lenge	remains	reproduction	and	getting	a	sustainable	population,	as	
the	spawning	grounds	are	still	limited.	Therefore,	future	investments	
and	water	management	programs	should	not	only	 focus	on	an	 im-
provement	 in	 the	habitat	 for	 adults	 and	 juveniles,	 but	 also	on	 the	
restoration	of	available	spawning	grounds.

In	conclusion,	habitat	suitability	modeling	can	be	used	as	an	im-
portant	 tool	 to	 support	 the	 reintroduction	of	 species.	Our	 results	
indicate	that	several	locations	within	the	Zwalm	River	basin	are	suit-
able	for	the	reintroduction	of	brown	trout.	Water	temperature	and	
stream	 velocity	 are	 the	most	 important	 variables	 determining	 the	
habitat	suitability	for	brown	trout	in	Flanders.	Future	management	
should	focus	on	the	remaining	migration	barriers	mainly	present	in	
the	tributaries,	the	improvement	in	the	hydromorphology,	and	espe-
cially	the	development	of	suitable	spawning	grounds.
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