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Abstract

Transcriptome-wide association studies (TWAS) have recently gained great attention due to their 

ability to prioritize complex trait-associated genes and promote potential therapeutics development 

for complex human diseases. TWAS integrates genotypic data with expression quantitative trait 

loci (eQTLs) to predict genetically regulated gene expression components and associates 

predictions with a trait of interest. As such, TWAS can prioritize genes whose differential 

expressions contribute to the trait of interest and provide mechanistic explanation of complex 

trait(s). Tissue-specific eQTL information grants TWAS the ability to perform association analysis 

on tissues whose gene expression profiles are otherwise hard to obtain, such as liver and heart. 

However, as eQTLs are tissue context-dependent, whether and how the tissue-specificity of eQTLs 
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influences TWAS gene prioritization has not been fully investigated. In this study, we addressed 

this question by adopting two distinct TWAS methods, PrediXcan and UTMOST, which assume 

single tissue and integrative tissue effects of eQTLs, respectively. Thirty-eight baseline laboratory 

traits in 4,360 antiretroviral treatment-naïve individuals from the AIDS Clinical Trials Group 

(ACTG) studies comprised the input dataset for TWAS. We performed TWAS in a tissue-specific 

manner and obtained a total of 430 significant gene-trait associations (q-value < 0.05) across 

multiple tissues. Single tissue-based analysis by PrediXcan contributed 116 of the 430 associations 

including 64 unique gene-trait pairs in 28 tissues. Integrative tissue-based analysis by UTMOST 

found the other 314 significant associations that include 50 unique gene-trait pairs across all 44 

tissues. Both analyses were able to replicate some associations identified in past variant-based 

genome-wide association studies (GWAS), such as high-density lipoprotein (HDL) and CETP 
(PrediXcan, q-value = 3.2e-16). Both analyses also identified novel associations. Moreover, single 

tissue-based and integrative tissue-based analysis shared 11 of 103 unique gene-trait pairs, for 

example, PSRC1-low-density lipoprotein (PrediXcan’s lowest q-value = 8.5e-06; UTMOST’s 

lowest q-value = 1.8e-05). This study suggests that single tissue-based analysis may have 

performed better at discovering gene-trait associations when combining results from all tissues. 

Integrative tissue-based analysis was better at prioritizing genes in multiple tissues and in trait-

related tissue. Additional exploration is needed to confirm this conclusion. Finally, although single 

tissue-based and integrative tissue-based analysis shared significant novel discoveries, tissue 

context-dependency of eQTLs impacted TWAS gene prioritization. This study provides 

preliminary data to support continued work on tissue context-dependency of eQTL studies and 

TWAS.
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1. Introduction

Improving antiretroviral therapy (ART) efficacy and safety is an ongoing goal for addressing 

the HIV pandemic. According to the Joint United Nations Programme on HIV and AIDS 

(UNAIDS) (http://aidsinfo.unaids.org/), approximately 36.7 million people worldwide were 

living with human immunodeficiency virus (HIV) in 2016. Over the past three decades there 

has been immense progress on HIV care and treatment, and in 2017 there were about 20.9 

million HIV-positive people who had access to ART. The connection of genomics with 

pharmacology has led to the discovery of numerous single nucleotide polymorphisms 

(SNPs) in drug absorption, distribution, metabolism, and elimination (ADME) genes and 

off-target genes. Many SNPs have been related to effects and/or pharmacokinetics of 

antiretroviral drugs1–6. However, most trait-related SNPs lack connections to actual 

functional genes, which suggests the need for alternative analysis approaches.

The emerging field of transcriptome-wide association studies (TWAS) offer a new way to 

directly identify gene-trait associations via integration of genotypic data and expression 

quantitative trait loci (eQTLs). eQTLs are an important class of genetic functional elements, 

which affect transcriptional regulation on target genes. Integration of eQTL information with 
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genotypic data allows TWAS to estimate the extent to which a gene’s expression level is 

regulated by genetic variants and how this correlates with traits of interest8. The Genotype 

Tissue Expression Project (GTEx7) provides the data and the opportunity to identify eQTLs 

and estimate effect sizes for multiple human tissues (44 tissues in GTEx v6p). With GTEx, 

TWAS can explore gene-trait associations on tissues whose gene expression profiles are 

otherwise hard to obtain, such as liver and heart. However, current TWAS focuses primarily 

on eQTLs identified in a tissue-by-tissue manner, while many studies have either 

acknowledged or supported the power of an integrative tissue context in identifying single-

tissue and multi-tissue eQTLs9,10.

In this study, we aimed to address whether and how single tissue and integrative tissue 

context of eQTLs influence TWAS gene prioritization by comparing two distinct TWAS 

methods, PrediXcan11 and Unified Test for MOlecular SignaTures (UTMOST12). PrediXcan 

uses elastic-net regression model and identifies eQTLs in a tissue-by-tissue manner. 

UTMOST adopts group-lasso and search through all tissues at once to spot eQTLs of a 

certain gene. This strategy allows UTMOST to identify single-tissue specific eQTLs similar 

to PrediXcan but increase the chance of detecting multi-tissue eQTLs. Here, 38 baseline (i.e. 

pre-ART) laboratory values and genotypic data of 4,360 ACTG clinical trials participants 

from multiple previous studies13–19 comprised the input for TWAS. Genotyping had been 

previously generated in multiple phases with Illumina assays: 650Y (phase I), 1M Duo 

(phase II and III), or Human Core Exome (phase IV). We performed the two TWAS methods 

separately in a tissue-specific manner (i.e. 44 tissues) (Figure 1). If tissue context-

dependency of eQTLs did not affect TWAS gene prioritization, we expected to observe 

shared gene-trait associations between single tissue-based analysis (PrediXcan) and 

integrative tissue-based analysis (UTMOST). The results partially supported this hypothesis, 

but also suggested varied gene prioritization abilities of single tissue-based and integrative 

tissue-based approaches respectively. The former found more unique gene-trait pairs, while 

the latter tended to prioritize genes expressed in multiple tissues. This study provides 

supportive evidence for tissue context-dependency of eQTLs and its impact on TWAS gene 

prioritization.

2. Methods

2.1. Data and Study Participants

In this study, we used four different genotyping phases of ACTG studies in a combined 

dataset that included samples and data from participants in prospective, randomized ART-

naïve treatment trials13–19. Clinical trial designs and results, and results of a genome-wide 

pleiotropic study results for baseline laboratory values have been described elsewhere13–21.

2.2. Quality Control

2.2.1. Genotypic data—A total of 4,393 individuals were genotyped in four phases. 

Phase I was genotyped using Illumina 650Y array; Phase II and III were genotyped using 

Illumina 1M duo array; Phase IV was genotyped using Illumina HumanCoreExome 

BeadChip.

Li et al. Page 3

Pac Symp Biocomput. Author manuscript; available in PMC 2019 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The computational preparation of genotypic data included pre-imputation quality control 

(QC), imputation, and post-imputation quality control. Pre- and post-imputation quality 

control followed the same guidelines22 and used PLINK1.9023 and R programming 

language. Imputation was performed on ACTG phase I-IV combined genotype data. 

Genotyped variants surviving the preimputation quality control comprised the input datasets 

for imputation, which used IMPUTE224 with 1000 Genomes25 Phase 1 v3 as the reference 

panel. ACTG phase I-IV combined imputed data had 4,941 individuals and 27,438,241 

variants. The following procedures/parameters were used in the post-imputation quality 

control by PLINK1.90: sample inclusion in phase I-IV phenotype collection, biallelic SNP 

check, imputation score (> 0.7), sex check, genotype call rate (> 99%), sample call rate (> 

98%), and minor allele frequency (MAF > 5%), and relatedness check (π > 0.25). 
Subsequent principal component analysis (EIGENSOFT26) projected remaining individuals 

onto the 1000 Genomes Project sample space to examine for population stratification. The 

first three principal components were used as covariates to adjust for population structure in 

the subsequent analysis. The final QC’ed ACTG phase I-IV combined imputed data 

contained 2,185,490 genotyped and imputed biallelic SNPs for 4,360 individuals (Figure 1).

2.2.2. Phenotypic data—The ACTG clinical trials included in this analysis collected 

baseline (i.e., pre-ART) laboratory traits from 5,185 ART-naïve individuals. We only 

retained individuals who have been genotyped and traits that were normally distributed and 

met a criterion of phenotype missing rate < 80%. The final combined phenotype dataset of 

ACTG genotyping phase I-IV retained 38 traits and the same number of individuals as the 

QC’ed imputed dataset (Figure 1).

2.3. Predict Unmeasured Gene Expression Levels

We adopted two TWAS methods, PrediXcan and UTMOST, to predict unmeasured gene 

expression levels in a tissue-specific manner. PrediXcan and UTMOST have estimated SNP 

effect sizes on gene expression levels in 44 tissues, which are available at http://

predictdb.org/ and https://github.com/Joker-Jerome/UTMOST, respectively. The PrediXcan 

and UTMOST scripts were pulled from their GitHub project repositories on April 23rd and 

Jun 6th, 2018, respectively.

PrediXcan and UTMOST followed the same multivariate models. Let N denote the sample 

size and M denote the number of eQTLs in a certain gene. A gene’s expression level can be 

predicted using the multivariate model as follows:

E = Xβ (1)

where E is the N × 1 vector of predicted gene expression levels of the gene, X is the N × M 
matrix of genotypes, and β is the M × 1 vector of eQTLs’ estimated regulatory effects on the 

gene.

Predicted gene expression levels were likely to differ between the two methods as each has a 

different hypothesis of eQTL regulatory mechanisms in terms of tissue context-dependency. 
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To discover trait-related tissues without assumptions, we predicted gene expression levels in 

44 tissues.

2.4. Transcriptome-wide Association Analysis

We tested for gene-trait associations by performing transcriptome-wide association tests on 

predicted gene expression levels and ACTG baseline lab traits using PLATO27,28. All 

baseline labtraits included in this study were continuous and thus were modeled using linear 

regression. Age, sex, and the first three principal components calculated by EIGENSOFT 

were included as covariates in linear models to adjust for sampling biases and underlying 

population structure. PrediXcan and UTMOST have different degrees of diversity in the 

number of eGenes and gene-trait associations among tissues. To avoid biases due to an 

uneven number of associations among tissues, p-values were adjusted using FDR with using 

Benjamini–Hochberg procedure29 in a tissue-specific manner. For this study, we consider 

gene-trait associations significant if they had single tissue-wise q-value < 0.05.

3. Results

We compared the influence of tissue context-dependency of eQTLs on TWAS gene 

prioritization by comparing single tissue-based analysis (PrediXcan) and integrative tissue-

based analysis (UTMOST). We performed TWAS on ACTG phase I-IV combined datasets. 

The data aggregation of ACTG phase I-IV provided a larger sample size to ensure the power 

of identifying gene-trait association. QC procedures left the ACTG phase I-IV combined 

imputed data with 4,360 individuals and 2,185,490 SNPs. There were 38 baseline lab traits 

in the final phenotypic datasets.

Single tissue-based and integrative tissue-based analysis identified a total of 430 significant 

gene-trait associations (103 unique gene-trait pairs regardless of tissue, q-value < 0.05) and 

share 11 unique gene-trait pairs. Single tissue-based analysis identified 116 of the 430 

significant associations (64 unique gene-trait pairs), encompassing 41 genes, 17 traits, and 

28 tissues. Integrative tissue-based analysis identified the remaining 314 significant 

associations (50 unique gene trait pairs), encompassing 38 genes, 20 traits, and all 44 

tissues.

3.1. Tissue Context-dependency Influenced TWAS Gene Prioritization

Gene prioritization results from single tissue-based analysis (PrediXcan) and integrative 

tissue-based analysis (UTMOST) were compared to evaluate the influence of tissue context-

dependency of eQTLs on TWAS. Single and integrative tissue-based analyses shared 11 of 

103 unique gene-trait pairs regardless of tissue (Table 1). Several of these replicated the 

findings of previous studies (Table 2). The lowest p-value by integrative tissue-based 

analysis was for MROH2A-total bilirubin levels20 (UTMOST, q-value = 6.0e-27), which had 

a moderate p-value from single tissue-based analysis (q-value = 0.005). Another replication 

was between PSRC1 and two lipid-related traits, cholesterol and LDL, which have been 

reported in other studies30–33. Although it was SORT1, which neighbors PSRC1, that has 

been functionally related to LDL via mice knockdown experiments34. ALDH5A1 and 

GPLD1 have been associated with the liver function test, alkaline phosphatase (ALP)35. In 
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the cases of PSRC1, ALDH5A1, and GPLD1, integrative tissue-based analysis (UTMOST) 

prioritized the genes in their biological function-related organ, liver, which was not always 

the case for single tissue-based analysis (PrediXcan). Possible novel associations were 

observed between absolute neutrophil count and C1orf20436, ATF6, and VANGL237.

3.2. Single Tissue-based Analysis Found a Greater Number of Unique Gene-trait 
Associations

Single tissue-based analysis using PrediXcan identified 64 unique gene-trait association 

across different tissues (Figure 2). Some associations have been reported previously (Table 

2). PrediXcan associated total bilirubin levels with UGT1A120 (skin, q-value = 7.1e-07) and 

MROH2A20 (adipose, q-value = 0.005), and LDL and cholesterol to CELSR230,38,39 (most 

significant with LDL in brain, q-value = 6.7e-06). HDL was associated with CETP20,32 

(most significant in colon with q-value = 3.2e-17) and NLRC538 (adrenal gland, q-value = 

7.8e-12). Triglyceride was associated with APOA130,39 (brain, q-value = 0.029) and 

APOC330,39 (heart, q-value = 0.016).

Single tissue-based analysis identified novel gene-trait associations, which warrants further 

investigation. One interesting example was the association of ITLN1 with multiple traits, 

including HIV-1 viral load, triglyceride, and total neutrophil count. As ITLN1 was reported 

in a previous Crohn’s disease study40, our result suggested an potential relationship between 

Crohn’s disease and HIV infection41.

3.3. Integrative Tissue-based Analysis Found Multi-tissue Gene-trait Associations

Regardless of tissue, integrative tissue-based analysis using UTMOST identified 50 unique 

gene-trait pairs (Figure 3). Although it prioritized fewer genes, the integrative tissue-based 

analysis was more likely to prioritize multiple tissues where genes are expressed. For 

instance, PSRC1 is highly expressed in almost all tissues7. PSRC1-LDL and cholesterol 

associations were prioritized in at least ten more tissues by integrative tissue-based analysis 

Most importantly, they were found consistently in the liver which is critically involved in 

lipid regulation. There was some evidence for distinct associations identified via integrative 

tissue-based approach (Table 2), such as ADAMTS442 with white blood cell count (artery, q-

value = 0.023), and AMFR43 with fasting HDL (most significant in heart, q-value = 

3.2e-05).

Other prioritized genes suggested novel associations and potential pleiotropy. Most 

prioritized genes have been associated with other traits by GWAS according to GWAS 

Catalog44. Similar to the single tissue-based approach, integrative tissue-based analysis 

prioritized total bilirubin-associated genes from the UGT1A45 gene locus (UGT1A7 and 

UGT1A10) across multiple tissues.

4. Discussions

This study investigated whether and how TWAS gene prioritization was influenced by tissue 

context-dependency of eQTLs by comparing two approaches, single tissue-based TWAS 

(implemented in PrediXcan) and integrative tissue-based TWAS (implemented in 

UTMOST). PrediXcan evaluated eQTLs’ effects in the context of a single tissue, which did 
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not consider potential multi-tissue effects of eQTLs UTMOST estimated eQTLs’ effect in an 

integrative tissue setting and increase the chance of identifying multi-tissue eQTLs. We 

found that both types of analyses could replicate associations discovered by previous studies 

and identify novel ones. While there were a fair number of overlaps, the two types of 

analyses prioritized different sets of genes. Single tissue-based analysis identified more 

unique gene-trait associations. Integrative tissue-based analysis tended to prioritize the same 

associations in multiple tissues and most importantly association were found in tissues 

critically related to traits of interest. Results suggest that tissue context-dependency of 

eQTLs influenced TWAS gene prioritization results.

The comparison raised questions of power and type I error rate of tested TWAS approaches. 

Integrative tissue context has shown an improved power in identifying eQTLs. As such, 

integrative tissue-based analysis might have universally greater power in identifying trait-

associated genes than single tissue-based analysis. However, in this study, single tissue-

based analysis found more validated associations (Table 2). It is hard to tell if integrative 

tissue-based analysis has universally greater power as expected, whereas single tissue-based 

analysis happened to identify more false positives. It is also possible that one type of 

analysis outperformed the other at certain scenarios. A simulation study is necessary to 

discern these possibilities.

Similar to GWAS, prioritized genes might merely be tag genes for causal ones. Both kinds 

of analyses prioritized genes at the chromosome 1p13.3 locus where a lipid-related gene, 

SORT1, is located. Single tissue-based analysis associated multiple lipid-related traits with 

genes that neighbor SORT1, such as SARS, CELSR2, PSRC1, and ALX3, which all are in 

the 1p13.3 locus and the same topologically associating domain (TAD46,47). Besides 

PSRC1, integrative tissue-based analysis repetitively identified SLC6A17. Even though it is 

not adjacent to SORT1, this gene is in the 1p13.3 locus and might serve as a tag gene for 

causal one(s). Hence, for TWAS, prioritized genes might be merely tag genes and fine-

mapping of causal genes may need a larger search boundary than GWAS, such as TADs.

Future investigation or validation experiments may be needed to explain the prioritized 

genes and/or tissues. For example, UGT1A1 glucuronidates bilirubin in the liver48, but 

single tissue-based analysis only identified a UGT1A1-total bilirubin association in skin. 

Further analysis found that there was no single UGT1A1 eQTL identified in liver by either 

PrediXcan or UTMOST trained on GTEx v6p or v7 data. It is likely that identification of 

UGT1A1 eQTLs is limited by tissue sample size (Nliver = 175) or genetic variants may 

regulate UGT1A1 via mechanisms other than transcriptional regulation. Another observation 

of this study was that genes adjacent to UGT1A1 sporadically showed up as significant in 

either single tissue-based or integrative tissue-based analysis, including USP40, UGT1A6, 

UGT1A7, UGT1A10, KCNJ13, and also MROH2A20. These genes span 1Mbp in 

chromosome 2 and locate within the same TAD46,47. The repetitive pattern may suggest a 

specific regulatory activity that targets the whole genetic region of KCNJ13-USP40-
UGT1A-MROH2A.

TWAS can prioritize trait-related genes, which may be important for HIV-positive patients 

regarding genetically informed therapeutic development and drug safety. This study showed 
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that TWAS were able to not only replicate known associations, but also identify novel gene-

trait associations. It also suggested the importance of biological context in eQTL studies, 

and the ensemble of TWAS methods with different transcriptional regulation assumptions 

gave a more comprehensive picture of gene-trait relationships. In the future, we would like 

to perform cross-tissue TWAS analysis12,49, which aggregate gene-trait association 

information across all tissues and even across different consortia to further prioritize the 

trait-related genes and better describe the genetic architecture of complex diseases.
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Figure 1. 
This study investigates the influence of tissue context-dependency of eQTLs on TWAS gene 

prioritization by comparing two distinct TWAS methods, PrediXcan and UTMOST. 

PrediXcan assumes single tissue context of eQTLs, while UTMOST assumes eQTLs to 

possibly have effects in multiple tissues.
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Figure 2. 
Manhattan plot of gene-trait associations identified by PrediXcan. X-axis showed only 

significant traits. Y-axis was the q-value transformed by -log10. For simplicity, the plot only 

shows the lowest p-value of a gene-trait pair, which may appear in multiple tissues.
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Figure 3. 
Manhattan plot of gene-trait associations identified by UTMOST. X-axis showed only 

significant traits. Y-axis was the q-value transformed by -log10. For simplicity, the plot only 

showed the most significant p-value of a gene-trait pair, which may appear in multiple 

tissues.
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Table 1.

Significant gene-trait associations (q-value < 0.05) shared by single and integrative tissue-based analysis. The 

two different analyses shared 11 out of 103 unique significant gene-trait pairs.

Traits Genes Methods #Tissues Major Tissue Types*

Absolute neutrophil count

ATF6 PrediXcan 1 Brain

ATF6 UTMOST 2 Brain, Transformed Fibroblasts

Clorf204 PrediXcan 1 Brain

Clorf204 UTMOST 5 Brain, Ovary, Pituitary

VANGL2 PrediXcan 1 Brain

VANGL2 UTMOST 1 Brain

Alkaline phosphatase

ALDH5A1 PrediXcan 9 Artery, Colon, Liver, Lung, Nerve, Pancreas, Skin, Thyroid, Transformed 
Lymphocytes

ALDH5A1 UTMOST 39

Adipose, Adrenal Gland, Artery, Brain, Breast, Colon, Esophagus, Heart, 
Liver, Lung, Nerve, Ovary, Pancreas, Pituitary, Prostate, Skeletal Muscle, 
Skin, Small Intestine, Spleen, Stomach, Test’s, Thyroid, Transformed 
Lymphocytes, Uterus, Vagina

GPLD1 PrediXcan 2 Artery, Thyroid

GPLD1 UTMOST 24
Adipose, Artery, Brain, Esophagus, Heart, Liver, Lung, Nerve, Pituitary, 
Prostate, Skeletal Muscle, Skin, Small Intestine, Stomach, Test’s, 
Thyroid, Transformed Lymphocytes, Vagina, Whole Blood

Cholesterol

PSRC1 PrediXcan 9 Brain, Esophagus, Lung, Pancreas, Pituitary, Skeletal Muscle, Skin, 
Whole Blood

PSRC1 UTMOST 25
Adipose, Brain, Breast, Colon, Esophagus, Heart, Liver, Lung, Nerve, 
Ovary, Pancreas, Pituitary, Prostate, Skeletal Muscle, Skin, Tests, Uterus, 
Whole Blood

Fasting cholesterol

PSRC1 PrediXcan 9 Brain, Esophagus, Lung, Pancreas, Pituitary, Skeletal Muscle, Skin, 
Whole Blood

PSRC1 UTMOST 22
Adipose, Brain, Breast, Colon, Esophagus, Heart, Liver, Lung, Nerve, 
Ovary, Pituitary, Prostate, Skeletal Muscle, Skin, Tests, Uterus, Whole 
Blood

Fasting LDL

PSRC1 PrediXcan 11 Brain, Esophagus, Lung, Pancreas, Pituitary, Skeletal Muscle, Skin, Tests, 
Thyroid, Whole Blood

PSRC1 UTMOST 27
Adipose, Brain, Breast, Colon, Esophagus, Heart, Liver, Lung, Nerve, 
Ovary, Pancreas, Pituitary, Prostate, Skeletal Muscle, Skin, Tests, 
Thyroid, Uterus, Whole Blood

Hemoglobin

CAMSAP1 PrediXcan 1 Nerve

CAMSAP1 UTMOST 31

Adipose, Artery, Brain, Breast, Colon, Esophagus, Heart, Liver, Lung, 
Nerve, Ovary, Prostate, Skeletal Muscle, Skin, Small Intestne, Spleen, 
Thyroid, Transformed Fibroblasts, Transformed Lymphocytes, Whole 
Blood

LDL

PSRC1 PrediXcan 11 Brain, Esophagus, Lung, Pancreas, Pituitary, Skeletal Muscle, Skin, Tests, 
Thyroid, Whole Blood

PSRC1 UTMOST 27
Adipose, Brain, Breast, Colon, Esophagus, Heart, Liver, Lung, Nerve, 
Ovary, Pancreas, Pituitary, Prostate, Skeletal Muscle, Skin, Tests, 
Thyroid, Uterus, Whole Blood

Total bilirubin
MROH2A PrediXcan 1 Adipose

MROH2A UTMOST 1 Stomach

*
For simplicity, only major tissue types were shown. Skin, heart, esophagus, colon, brain, artery, and adipose have subtypes.
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