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Abstract

Transcriptome-wide association studies (TWAS) have recently gained great attention due to their
ability to prioritize complex trait-associated genes and promote potential therapeutics development
for complex human diseases. TWAS integrates genotypic data with expression quantitative trait
loci (eQTLS) to predict genetically regulated gene expression components and associates
predictions with a trait of interest. As such, TWAS can prioritize genes whose differential
expressions contribute to the trait of interest and provide mechanistic explanation of complex
trait(s). Tissue-specific eQTL information grants TWAS the ability to perform association analysis
on tissues whose gene expression profiles are otherwise hard to obtain, such as liver and heart.
However, as eQTLs are tissue context-dependent, whether and how the tissue-specificity of eQTLs
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influences TWAS gene prioritization has not been fully investigated. In this study, we addressed
this question by adopting two distinct TWAS methods, PrediXcan and UTMOST, which assume
single tissue and integrative tissue effects of eQTLs, respectively. Thirty-eight baseline laboratory
traits in 4,360 antiretroviral treatment-naive individuals from the AIDS Clinical Trials Group
(ACTG) studies comprised the input dataset for TWAS. We performed TWAS in a tissue-specific
manner and obtained a total of 430 significant gene-trait associations (g-value < 0.05) across
multiple tissues. Single tissue-based analysis by PrediXcan contributed 116 of the 430 associations
including 64 unique gene-trait pairs in 28 tissues. Integrative tissue-based analysis by UTMOST
found the other 314 significant associations that include 50 unique gene-trait pairs across all 44
tissues. Both analyses were able to replicate some associations identified in past variant-based
genome-wide association studies (GWAS), such as high-density lipoprotein (HDL) and CETP
(PrediXcan, g-value = 3.2e-16). Both analyses also identified novel associations. Moreover, single
tissue-based and integrative tissue-based analysis shared 11 of 103 unique gene-trait pairs, for
example, PSRCI-low-density lipoprotein (PrediXcan’s lowest g-value = 8.5e-06; UTMOST’s
lowest g-value = 1.8e-05). This study suggests that single tissue-based analysis may have
performed better at discovering gene-trait associations when combining results from all tissues.
Integrative tissue-based analysis was better at prioritizing genes in multiple tissues and in trait-
related tissue. Additional exploration is needed to confirm this conclusion. Finally, although single
tissue-based and integrative tissue-based analysis shared significant novel discoveries, tissue
context-dependency of eQTLs impacted TWAS gene prioritization. This study provides
preliminary data to support continued work on tissue context-dependency of eQTL studies and
TWAS.
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Introduction

Improving antiretroviral therapy (ART) efficacy and safety is an ongoing goal for addressing
the HIV pandemic. According to the Joint United Nations Programme on HIV and AIDS
(UNAIDS) (http://aidsinfo.unaids.org/), approximately 36.7 million people worldwide were
living with human immunodeficiency virus (HIV) in 2016. Over the past three decades there
has been immense progress on HIV care and treatment, and in 2017 there were about 20.9
million HIV-positive people who had access to ART. The connection of genomics with
pharmacology has led to the discovery of numerous single nucleotide polymorphisms
(SNPs) in drug absorption, distribution, metabolism, and elimination (ADME) genes and
off-target genes. Many SNPs have been related to effects and/or pharmacokinetics of
antiretroviral drugs!-6. However, most trait-related SNPs lack connections to actual
functional genes, which suggests the need for alternative analysis approaches.

The emerging field of transcriptome-wide association studies (TWAS) offer a new way to
directly identify gene-trait associations via integration of genotypic data and expression
quantitative trait loci (eQTLs). eQTLs are an important class of genetic functional elements,

which affect transcriptional regulation on target genes. Integration of eQTL information with
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genotypic data allows TWAS to estimate the extent to which a gene’s expression level is
regulated by genetic variants and how this correlates with traits of interest®. The Genotype
Tissue Expression Project (GTEx’) provides the data and the opportunity to identify eQTLs
and estimate effect sizes for multiple human tissues (44 tissues in GTEXx v6p). With GTEX,
TWAS can explore gene-trait associations on tissues whose gene expression profiles are
otherwise hard to obtain, such as liver and heart. However, current TWAS focuses primarily
on eQTLs identified in a tissue-by-tissue manner, while many studies have either
acknowledged or supported the power of an integrative tissue context in identifying single-
tissue and multi-tissue eQTLs%10,

In this study, we aimed to address whether and how single tissue and integrative tissue
context of eQTLs influence TWAS gene prioritization by comparing two distinct TWAS
methods, PrediXcan! and Unified Test for MOlecular SignaTures (UTMOST22). PrediXcan
uses elastic-net regression model and identifies eQTLs in a tissue-by-tissue manner.
UTMOST adopts group-lasso and search through all tissues at once to spot eQTLs of a
certain gene. This strategy allows UTMOST to identify single-tissue specific eQTLs similar
to PrediXcan but increase the chance of detecting multi-tissue eQTLs. Here, 38 baseline (i.e.
pre-ART) laboratory values and genotypic data of 4,360 ACTG clinical trials participants
from multiple previous studies'3-19 comprised the input for TWAS. Genotyping had been
previously generated in multiple phases with Illumina assays: 650Y (phase 1), 1M Duo
(phase Il and 111), or Human Core Exome (phase 1V). We performed the two TWAS methods
separately in a tissue-specific manner (i.e. 44 tissues) (Figure 1). If tissue context-
dependency of eQTLs did not affect TWAS gene prioritization, we expected to observe
shared gene-trait associations between single tissue-based analysis (PrediXcan) and
integrative tissue-based analysis (UTMOST). The results partially supported this hypothesis,
but also suggested varied gene prioritization abilities of single tissue-based and integrative
tissue-based approaches respectively. The former found more unique gene-trait pairs, while
the latter tended to prioritize genes expressed in multiple tissues. This study provides
supportive evidence for tissue context-dependency of eQTLs and its impact on TWAS gene
prioritization.

Methods

Data and Study Participants

In this study, we used four different genotyping phases of ACTG studies in a combined
dataset that included samples and data from participants in prospective, randomized ART-
naive treatment trials3-19. Clinical trial designs and results, and results of a genome-wide
pleiotropic study results for baseline laboratory values have been described elsewhere!3-21,

2.2. Quality Control

2.2.1. Genotypic data—A total of 4,393 individuals were genotyped in four phases.
Phase | was genotyped using Illumina 650Y array; Phase Il and 111 were genotyped using
[llumina 1M duo array; Phase IV was genotyped using lllumina HumanCoreExome
BeadChip.
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The computational preparation of genotypic data included pre-imputation quality control
(QC), imputation, and post-imputation quality control. Pre- and post-imputation quality
control followed the same guidelines?2 and used PLINK1.9023 and R programming
language. Imputation was performed on ACTG phase I-1V combined genotype data.
Genotyped variants surviving the preimputation quality control comprised the input datasets
for imputation, which used IMPUTE224 with 1000 Genomes2® Phase 1 v3 as the reference
panel. ACTG phase I-1V combined imputed data had 4,941 individuals and 27,438,241
variants. The following procedures/parameters were used in the post-imputation quality
control by PLINK1.90: sample inclusion in phase I-1V phenotype collection, biallelic SNP
check, imputation score (> 0.7), sex check, genotype call rate (> 99%), sample call rate (>
98%), and minor allele frequency (MAF > 5%), and relatedness check (z > 0.25).
Subsequent principal component analysis (EIGENSOFT26) projected remaining individuals
onto the 1000 Genomes Project sample space to examine for population stratification. The
first three principal components were used as covariates to adjust for population structure in
the subsequent analysis. The final QC’ed ACTG phase I-1V combined imputed data
contained 2,185,490 genotyped and imputed biallelic SNPs for 4,360 individuals (Figure 1).

2.2.2. Phenotypic data—The ACTG clinical trials included in this analysis collected
baseline (i.e., pre-ART) laboratory traits from 5,185 ART-naive individuals. We only
retained individuals who have been genotyped and traits that were normally distributed and
met a criterion of phenotype missing rate < 80%. The final combined phenotype dataset of
ACTG genotyping phase I-1V retained 38 traits and the same number of individuals as the
QC’ed imputed dataset (Figure 1).

2.3. Predict Unmeasured Gene Expression Levels

We adopted two TWAS methods, PrediXcan and UTMOST, to predict unmeasured gene
expression levels in a tissue-specific manner. PrediXcan and UTMOST have estimated SNP
effect sizes on gene expression levels in 44 tissues, which are available at http://
predictdb.org/ and https://github.com/Joker-Jerome/UTMOST, respectively. The PrediXcan
and UTMOST scripts were pulled from their GitHub project repositories on April 23 and
Jun 6™, 2018, respectively.

PrediXcan and UTMOST followed the same multivariate models. Let A/ denote the sample
size and M denote the number of eQTLs in a certain gene. A gene’s expression level can be
predicted using the multivariate model as follows:

E=Xxp (1)

where E'is the NV x 1 vector of predicted gene expression levels of the gene, X'is the N x M
matrix of genotypes, and gis the M x 1 vector of eQTLs’ estimated regulatory effects on the
gene.

Predicted gene expression levels were likely to differ between the two methods as each has a
different hypothesis of eQTL regulatory mechanisms in terms of tissue context-dependency.
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To discover trait-related tissues without assumptions, we predicted gene expression levels in
44 tissues.

2.4. Transcriptome-wide Association Analysis

We tested for gene-trait associations by performing transcriptome-wide association tests on
predicted gene expression levels and ACTG baseline lab traits using PLATO27:28_ Al
baseline labtraits included in this study were continuous and thus were modeled using linear
regression. Age, sex, and the first three principal components calculated by EIGENSOFT
were included as covariates in linear models to adjust for sampling biases and underlying
population structure. PrediXcan and UTMOST have different degrees of diversity in the
number of eGenes and gene-trait associations among tissues. To avoid biases due to an
uneven number of associations among tissues, p-values were adjusted using FDR with using
Benjamini—Hochberg procedure?? in a tissue-specific manner. For this study, we consider
gene-trait associations significant if they had single tissue-wise g-value < 0.05.

3. Results

We compared the influence of tissue context-dependency of eQTLs on TWAS gene
prioritization by comparing single tissue-based analysis (PrediXcan) and integrative tissue-
based analysis (UTMOST). We performed TWAS on ACTG phase I-1V combined datasets.
The data aggregation of ACTG phase I-1V provided a larger sample size to ensure the power
of identifying gene-trait association. QC procedures left the ACTG phase I-1V combined
imputed data with 4,360 individuals and 2,185,490 SNPs. There were 38 baseline lab traits
in the final phenotypic datasets.

Single tissue-based and integrative tissue-based analysis identified a total of 430 significant
gene-trait associations (103 unique gene-trait pairs regardless of tissue, g-value < 0.05) and
share 11 unique gene-trait pairs. Single tissue-based analysis identified 116 of the 430
significant associations (64 unique gene-trait pairs), encompassing 41 genes, 17 traits, and
28 tissues. Integrative tissue-based analysis identified the remaining 314 significant
associations (50 unique gene trait pairs), encompassing 38 genes, 20 traits, and all 44
tissues.

3.1. Tissue Context-dependency Influenced TWAS Gene Prioritization

Gene prioritization results from single tissue-based analysis (PrediXcan) and integrative
tissue-based analysis (UTMOST) were compared to evaluate the influence of tissue context-
dependency of eQTLs on TWAS. Single and integrative tissue-based analyses shared 11 of
103 unique gene-trait pairs regardless of tissue (Table 1). Several of these replicated the
findings of previous studies (Table 2). The lowest p-value by integrative tissue-based
analysis was for MROHZ2A-total bilirubin levels?® (UTMOST, g-value = 6.0e-27), which had
a moderate p-value from single tissue-based analysis (g-value = 0.005). Another replication
was between PSRCI and two lipid-related traits, cholesterol and LDL, which have been
reported in other studies30-33, Although it was SORT, which neighbors PSRCI, that has
been functionally related to LDL via mice knockdown experiments34. ALDH5A1 and

GPL DI have been associated with the liver function test, alkaline phosphatase (ALP)3. In
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the cases of PSRCI1, ALDH5A1, and GPLDI, integrative tissue-based analysis (UTMOST)
prioritized the genes in their biological function-related organ, liver, which was not always
the case for single tissue-based analysis (PrediXcan). Possible novel associations were
observed between absolute neutrophil count and CZorf2046, ATF6, and VANGLZ'.

3.2. Single Tissue-based Analysis Found a Greater Number of Unique Gene-trait
Associations

3.3.

Single tissue-based analysis using PrediXcan identified 64 unique gene-trait association
across different tissues (Figure 2). Some associations have been reported previously (Table
2). PrediXcan associated total bilirubin levels with UGT1A120 (skin, g-value = 7.1e-07) and
MROHZ2A2 (adipose, g-value = 0.005), and LDL and cholesterol to CELSRZ80:38:39 (most
significant with LDL in brain, g-value = 6.7e-06). HDL was associated with C£7/20:32
(most significant in colon with g-value = 3.2e-17) and NLRC58 (adrenal gland, g-value =
7.8e-12). Triglyceride was associated with APOA 13039 (brain, g-value = 0.029) and
APOC303 (heart, g-value = 0.016).

Single tissue-based analysis identified novel gene-trait associations, which warrants further
investigation. One interesting example was the association of /7LNI with multiple traits,
including HIV-1 viral load, triglyceride, and total neutrophil count. As /7L NI was reported
in a previous Crohn’s disease study*°, our result suggested an potential relationship between
Crohn’s disease and HIV infection?L.

Integrative Tissue-based Analysis Found Multi-tissue Gene-trait Associations

Regardless of tissue, integrative tissue-based analysis using UTMOST identified 50 unique
gene-trait pairs (Figure 3). Although it prioritized fewer genes, the integrative tissue-based
analysis was more likely to prioritize multiple tissues where genes are expressed. For
instance, PSRC1 is highly expressed in almost all tissues’. PSRCI-LDL and cholesterol
associations were prioritized in at least ten more tissues by integrative tissue-based analysis
Most importantly, they were found consistently in the liver which is critically involved in
lipid regulation. There was some evidence for distinct associations identified via integrative
tissue-based approach (Table 2), such as ADAMTS4*2 with white blood cell count (artery, g-
value = 0.023), and AMFR*3 with fasting HDL (most significant in heart, g-value =
3.2e-05).

Other prioritized genes suggested novel associations and potential pleiotropy. Most
prioritized genes have been associated with other traits by GWAS according to GWAS
Catalog**. Similar to the single tissue-based approach, integrative tissue-based analysis
prioritized total bilirubin-associated genes from the UG T1A% gene locus (UGT1A7and
UGT1A10) across multiple tissues.

4. Discussions

This study investigated whether and how TWAS gene prioritization was influenced by tissue
context-dependency of eQTLs by comparing two approaches, single tissue-based TWAS
(implemented in PrediXcan) and integrative tissue-based TWAS (implemented in
UTMOST). PrediXcan evaluated eQTLs’ effects in the context of a single tissue, which did
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not consider potential multi-tissue effects of eQTLs UTMOST estimated eQTLs’ effect in an
integrative tissue setting and increase the chance of identifying multi-tissue eQTLs. We
found that both types of analyses could replicate associations discovered by previous studies
and identify novel ones. While there were a fair number of overlaps, the two types of
analyses prioritized different sets of genes. Single tissue-based analysis identified more
unique gene-trait associations. Integrative tissue-based analysis tended to prioritize the same
associations in multiple tissues and most importantly association were found in tissues
critically related to traits of interest. Results suggest that tissue context-dependency of
eQTLs influenced TWAS gene prioritization results.

The comparison raised questions of power and type | error rate of tested TWAS approaches.
Integrative tissue context has shown an improved power in identifying eQTLs. As such,
integrative tissue-based analysis might have universally greater power in identifying trait-
associated genes than single tissue-based analysis. However, in this study, single tissue-
based analysis found more validated associations (Table 2). It is hard to tell if integrative
tissue-based analysis has universally greater power as expected, whereas single tissue-based
analysis happened to identify more false positives. It is also possible that one type of
analysis outperformed the other at certain scenarios. A simulation study is necessary to
discern these possibilities.

Similar to GWAS, prioritized genes might merely be tag genes for causal ones. Both kinds
of analyses prioritized genes at the chromosome 1p13.3 locus where a lipid-related gene,
SORT1, is located. Single tissue-based analysis associated multiple lipid-related traits with
genes that neighbor SORT1, such as SARS, CELSR2, PSRCI, and ALX3, which all are in
the 1p13.3 locus and the same topologically associating domain (TAD#6:47). Besides
PSRC1, integrative tissue-based analysis repetitively identified SLC6A17. Even though it is
not adjacent to SORT1, this gene is in the 1p13.3 locus and might serve as a tag gene for
causal one(s). Hence, for TWAS, prioritized genes might be merely tag genes and fine-
mapping of causal genes may need a larger search boundary than GWAS, such as TADs.

Future investigation or validation experiments may be needed to explain the prioritized
genes and/or tissues. For example, UG T1A1 glucuronidates bilirubin in the liver48, but
single tissue-based analysis only identified a UG T1A1-total bilirubin association in skin.
Further analysis found that there was no single UGT1A1eQTL identified in liver by either
PrediXcan or UTMOST trained on GTEX v6p or v7 data. It is likely that identification of
UGT1A1eQTLs is limited by tissue sample size (A= 175) or genetic variants may
regulate UGT1A1via mechanisms other than transcriptional regulation. Another observation
of this study was that genes adjacent to UGT71A1 sporadically showed up as significant in
either single tissue-based or integrative tissue-based analysis, including USP40, UGT1A6,
UGT1A7, UGT1A10, KCNJ13, and also MROHZ2AZ°. These genes span 1Mbp in
chromosome 2 and locate within the same TAD#6:47. The repetitive pattern may suggest a
specific regulatory activity that targets the whole genetic region of KCNJ13-USP40-
UGT1A-MROHZA.

TWAS can prioritize trait-related genes, which may be important for HI\-positive patients
regarding genetically informed therapeutic development and drug safety. This study showed
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that TWAS were able to not only replicate known associations, but also identify novel gene-
trait associations. It also suggested the importance of biological context in eQTL studies,
and the ensemble of TWAS methods with different transcriptional regulation assumptions
gave a more comprehensive picture of gene-trait relationships. In the future, we would like
to perform cross-tissue TWAS analysis1249, which aggregate gene-trait association
information across all tissues and even across different consortia to further prioritize the
trait-related genes and better describe the genetic architecture of complex diseases.
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Phase I-IV 5,185 39

Predimputation Quality Control

Sex check

Genotype and sample call rate (> 99%)
Minor alele frequency (> 5%)
Relatedness check

Post-imputation Quality Control

W60, & 06

Filter for bialelic SNPs
Imputation score (> 0.7)

Sex check

Genotype call rate (> 99%)
Sample call rate (> 98%)
Minor allele frequency (> 5%)
Relatedness check (7 < 0.25)
Principal component analysis

Phenotype Quality Control

- Normal distribution

- Inclusion of samplesin genotyping

- Sample missing rate (< 80%, i.e., about 1K
individuals each trait)

Transcriptome-wide Association Analysis
Gene-trait associations
Significance threshold: Tissue-wise g-value <0.05

Predict Gene Expression Levels

2 kinds of eQTLs from PrediXcan and UTMOST,
separately
44 different tissues

Phase I
v

4,360 2,185,4%0

38

l

Subsequent Analysis and Visualization

- Gene priontization

1) Overlapped genes between PrediXcan and
UTMOST
2) Distinctgenes

- Priontized tissues
- Replication

1) Replications between methods
2) Replication with precedent studies

- Visualization

1) Manhattan plots

Figure 1.

Sex Distribution
3,538 males (81.8%)

- 822 females (18.9%)

Self-reported Racefethnicity Distribution
1,814 White, non-Hispanic (41.6%)
1,570 Black, non-Hispanic (36.0%)

- 855 Hispanic (19.6%)

121 varied others (2 9%)

This study investigates the influence of tissue context-dependency of eQTLs on TWAS gene
prioritization by comparing two distinct TWAS methods, PrediXcan and UTMOST.
PrediXcan assumes single tissue context of eQTLs, while UTMOST assumes eQTLs to
possibly have effects in multiple tissues.
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Figure 2.
Manhattan plot of gene-trait associations identified by PrediXcan. X-axis showed only

significant traits. Y-axis was the g-value transformed by -log10. For simplicity, the plot only
shows the lowest p-value of a gene-trait pair, which may appear in multiple tissues.
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Figure 3.

Manhattan plot of gene-trait associations identified by UTMOST. X-axis showed only
significant traits. Y-axis was the g-value transformed by -log10. For simplicity, the plot only
showed the most significant p-value of a gene-trait pair, which may appear in multiple
tissues.
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Significant gene-trait associations (g-value < 0.05) shared by single and integrative tissue-based analysis. The
two different analyses shared 11 out of 103 unique significant gene-trait pairs.

Traits Genes Methods  #Tissues Major TissueTyp%*
ATF6 PrediXcan 1 Brain
ATF6 UTMOST 2 Brain, Transformed Fibroblasts
Clorf204  PrediXcan 1 Brain
Absolute neutrophil count
Clorf204 UTMOST 5 Brain, Ovary, Pituitary
VANGLZ2  PrediXcan 1 Brain
VANGL2  UTMOST 1 Brain
. Artery, Colon, Liver, Lung, Nerve, Pancreas, Skin, Thyroid, Transformed
ALDH5A1  PrediXcan 9 Lymphocytes
Adipose, Adrenal Gland, Artery, Brain, Breast, Colon, Esophagus, Heart,
Liver, Lung, Nerve, Ovary, Pancreas, Pituitary, Prostate, Skeletal Muscle,
) ALDH5AL  UTMOST 39 Skin, Small Intestine, Spleen, Stomach, Test’s, Thyroid, Transformed
Alkaline phosphatase Lymphocytes, Uterus, Vagina
GPLD1 PrediXcan 2 Acrtery, Thyroid
Adipose, Artery, Brain, Esophagus, Heart, Liver, Lung, Nerve, Pituitary,
GPLDI1 UTMOST 24 Prostate, Skeletal Muscle, Skin, Small Intestine, Stomach, Test’s,
Thyroid, Transformed Lymphocytes, Vagina, Whole Blood
. Brain, Esophagus, Lung, Pancreas, Pituitary, Skeletal Muscle, Skin,
PSRCI1 PrediXcan 9 Whole Blood
Cholesterol Adipose, Brain, Breast, Colon, Esophagus, Heart, Liver, Lung, Nerve,
PSRC1 UTMOST 25 Ovary, Pancreas, Pituitary, Prostate, Skeletal Muscle, Skin, Tests, Uterus,
Whole Blood
. Brain, Esophagus, Lung, Pancreas, Pituitary, Skeletal Muscle, Skin,
PSRCI1 PrediXcan 9 Whole Blood
Fasting cholesterol Adipose, Brain, Breast, Colon, Esophagus, Heart, Liver, Lung, Nerve,
PSRC1 UTMOST 22 Ovary, Pituitary, Prostate, Skeletal Muscle, Skin, Tests, Uterus, Whole
Blood
. Brain, Esophagus, Lung, Pancreas, Pituitary, Skeletal Muscle, Skin, Tests,
PSRCI PrediXcan 1 Thyroid, Whole Blood
Fasting LDL Adipose, Brain, Breast, Colon, Esophagus, Heart, Liver, Lung, Nerve,
PSRC1 UTMOST 27 Ovary, Pancreas, Pituitary, Prostate, Skeletal Muscle, Skin, Tests,
Thyroid, Uterus, Whole Blood
CAMSAPI  PrediXcan 1 Nerve
Hemoglobin Adipose, Artery, Brain, Breast, Colon, Esophagus, Heart, Liver, Lung,
Nerve, Ovary, Prostate, Skeletal Muscle, Skin, Small Intestne, Spleen,
CAMSAPL  UTMOST 81 Thyroid, Transformed Fibroblasts, Transformed Lymphocytes, Whole
Blood
. Brain, Esophagus, Lung, Pancreas, Pituitary, Skeletal Muscle, Skin, Tests,
PSRCI  PrediXcan 11 qy6i4 Whole Blood
LDL Adipose, Brain, Breast, Colon, Esophagus, Heart, Liver, Lung, Nerve,
PSRC1 UTMOST 27 Ovary, Pancreas, Pituitary, Prostate, Skeletal Muscle, Skin, Tests,
Thyroid, Uterus, Whole Blood
MROHZA  PrediXcan 1 Adipose
Total bilirubin
MROHZA  UTMOST 1 Stomach

*
For simplicity, only major tissue types were shown. Skin, heart, esophagus, colon, brain, artery, and adipose have subtypes.
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