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Sex differences are evident in the incidence and mortality of diverse cancers. With the development of
personalized approaches in cancer treatment, the impact of sex differences has not been systematically
incorporated into preclinical and clinical cancer research. The molecular mechanisms underlying sex dif-
ferences in cancer have not been elucidated. Here, we developed the first database of Sex Differences in
Cancer (SDC), a web-based public database that integrates resources from multiple databases, including
The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression Project (GTEx), UCSC Xena, Broad Institute
Cancer Cell Line Encyclopedia (CCLE), Genomics of Drug Sensitivity in Cancer (GDSC). SDC contains 27
types of cancers, 6 types of molecular data, more than 10,000 donors, 977 cancer cell lines were used
to analyze sex differences among cancers. It provides five main modules: Survival and phenotype,
Molecular differences, Signatures and pathways, Therapy response, Download. Users can download the
all the visualized results and raw data after analysis. Collectively, SDC is the first integrated database
to analyze sex differences in cancer on the web server, which will strengthen our understanding of the
role of sex in cancers. It is implemented in Shiny-server and freely available for public use at http://
sdc.anticancer.xyz.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Global cancer statistics [1] (https://gco.iarc.fr) and previous
reports [2–5] showed that males have higher incidence, mortality,
and poorer outcomes than females in the case of various types of
cancer. Moreover, the male gender is an independent risk factor
associated with distant metastasis and prognosis [6]. Esophagogas-
tric cancer [7], gastric cancer [8,9], melanoma [10], and lung cancer
[11,12] with sex bias have been focused. However, the molecular
basis for these observed disparities is poorly understood.

While one study has suggested that sex differences in cancer
may arise through the effect of circulating sex hormones [13], it
has also been suggested that sex bias is derived from genetic and
epigenetic differences arising from the influence of the sex chro-
mosomes independent of sex hormones [14]. For example, the X-
linked lysine demethylase 6A and 5C, as well as Y-linked paralogs
lysine demethylase 6C and 5D may be regulators of incidence and
prognosis for sex-specific cancer [10,15,16]. Moreover, the whole-
genome study uncovered sex differences in mutation density,
tumor evolution, and mutation signatures on the noncoding auto-
somal genome [17]. Additionally, sex differences also play a role in
distinct immunity as females have stronger innate and adaptive
immune responses than males, reducing the risk of mortality due
to cancer [18,19]; males are more likely to benefit from immune
checkpoint inhibitors [18,20]. All these findings may be related to
somatic mutation, immune microenvironment, and the immune
system, but they need to be explored further.

Altogether, these studies underlined the prevalence of sex dif-
ferences at a molecular level, in cancer and suggested that these
differences are sex-specific but not lifestyle-dependent. However,
in studies of cancer risk, prognosis, and therapeutic response, sex
is still underexplored as a relevant variable. Additionally, these
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studies on sex effect were limited to individual genes, single
molecular data types, and single cancer lineages, which lack asso-
ciation and are not attributed to signaling pathways. There is also a
lack of exploration of sex differences in common molecular
subtypes.

Therefore, building a public database is vital for collecting omics
data and conducting integrative and in-depth analysis with sex dif-
ferences. Here, we developed the SDC, the first web-based public
database for accessing reproducible comprehensive differences
analysis between the sexes that covers modules including pheno-
typic, molecular, and therapeutic response. These results can be
quickly queried and presented in a customized manner via the
website (http://sdc.anticancer.xyz), to utilize sex insights in the
study of molecular oncology research and cancer therapy.
2. Methods

Most of the analysis is run in R 3.6, and the code is open-

sourced on GitHub (https://github.com/longfei8533/SDC) for refer-
ence and repetition.
2.1. Data source

Biological data are mainly from TCGA, GTEx, CCLE and GDSC.
Part of the data are from the collation and analysis results of UCSC
Xena (http://xena.ucsc.edu/). Cancer incidence and mortality data
were manually downloaded from ‘‘CANCER TODAY” page at The

Global Cancer Observatory (https://gco.iarc.fr). Overall Survival
(OS), Progression-Free Interval (PFI), Disease-Free Interval (DFI),
and Disease-Specific Survival (DSS) were defined and calculated
in previous study [21], and the supplementary data was download
for further analysis. Molecular subtype data were obtained from 26
published papers collected by UCSC Xena. Tumor microenviron-
ment (TME) subtypes data obtained from previous study [22]. Can-
cers with <10 samples in one sex were excluded from analysis.
Fig. 1. The desi
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2.2. Tumor purity

ESTIMATE is a method that uses gene expression profiles of 141
immune genes and 141 stromal genes to infer tumor cellularity
[23]. Tumor purity was added as a covariable to the model for cor-
rection during mRNA, miRNA, and copy number variation (CNV)
analysis.
2.3. Survival analysis and molecular subtypes

Survival analysis was performed with the Log-rank test. Fisher’s
exact test was performed to test the sex bias of different molecular
subtypes.
2.4. mRNA and miRNA

The package DESeq2 [24] provides methods to test the differen-
tial expression of gene between female and male, and gives the P
and log2FoldChange value based on a model using the negative
binomial distribution. The tumor purity was added as a covariable
to the model for correction. log2FoldChange <0 indicates that the
expression of gene is male-biased; log2FoldChange >0 indicates
that the expression of gene is female-biased. Tissue types in the
GTEx database were converted into TCGA codes for easy compar-
ison of sex differences between tumors and normal tissues.

The target genes of differentially expressed miRNA were pre-
dicted by TargetScanHuman [25]. Counts per million (CPM) was
computed and used to normalize mRNA and miRNA data. Then,
the Pearson correlation coefficient was used to analyze the
correlations.
2.5. DNA methylation

The ChAMP package [26] was used for the analysis of Illumina
Methylation beadarray data (TCGA 450 k). Differential methylation
probes, differential methylation regions and differential methyla-
tion were shown individually.
gn of SDC.
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Fig. 2. Home page function. A.Module descriptions and shortcuts are provided on the home page. Estimated age-standardized incidence and mortality rates (World) in 2020
for multiple types of cancers are displayed at the bottom of the page. B. Multiple analysis results can be quickly viewed by selecting one cancer type in the red box on the
‘‘Quick view” panel.
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Fig. 3. Survival and phenotype module. A. Kaplan–Meier survival analysis between sexes. B. Patient clinical characteristics.
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2.6. Somatic mutation and copy number variation

Fisher’s exact test was performed on 2�2 contingency table
generated from female and male cohorts to find differentially
mutated genes. The total mutation burden was defined as the
number of single nucleotide variant (SNV) and INDEL in the whole
genome. Significance was calculated by Wilcox rank-sum test. In
gene level, the Gistic2 copy number was used to estimate copy
number differences between female and male. Further, CNV bur-
dens including broad CNV scores (BCS), focal CNV scores (FCS)
and global CNV scores (GCS), which were computed by CNApp
[27]. Finally, we recalculated copy number segments in the 1 M
interval to obtain the region profile of CNV. Suppose there are N
segments on the 1 M interval, with length L bases and copy num-
ber C.

Averagecopynumber ¼
XN

n¼1
Cn� Lnð Þ=RN

n¼1ðLnÞ
2.7. Tumor microenvironment

We used the IOBR R package [28] to decode tumor microenvi-
ronment (TME) contexture using 7 published methodologies
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CIBERSORT [29], ESTIMATE [23], quanTIseq [30], TIMER [31], IPS
[32], MCPCounter [33], EPIC [34]. These methods are based on
computational inference of gene expression profiles.
2.8. Signatures and pathways

255 published signature gene sets were collected by IOBR,
involving tumor microenvironment, tumor metabolism, m6A, exo-
somes, microsatellite instability, and tertiary lymphoid structure.
We calculated the signature scores for all samples in the TCGA
using three methodologies of ssGSEA, PCA and Z-score.

The PARADIGM algorithm integrates pathway, expression and
copy number data to infer the activation of pathway features
within a superimposed pathway network structure. This dataset
is ssGSEA scores for 1387 constituent pathways, then Z trans-
formed [35].
2.9. Treatment response

Drug sensitivity data in cancer cell lines from the CCLE and
GDSC were integrated, and these cancer cell lines were grouped
by sex. Then, IC50 of the individual drug to male or female were



Fig. 4. Molecular differences module. A. Sex bias of molecular subtypes. B. Differential expressed genes were filtered and shown as a scatter plot. C. Intersection of
differential genes in tumor and normal tissue. D. Correlation between miRNA and target mRNA expression. E. The differences of CNV scores for broad, focal and global CNV
burdens. F. Heatmap of the CNV region profile in all samples with sex annotation.
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compared. Tumor Immune Dysfunction and Exclusion (TIDE) [36]
was used to predict the immunotherapy response from the gene
expression profiles of cancer tissue samples. Conserved pan-
cancer microenvironment subtypes can predict response to
immunotherapy [22]. Molecular profiles of cancer can be clustered
into four distinct microenvironments termed (1) immune-
enriched, fibrotic (IE/F); (2) immune-enriched, non-fibrotic (IE);
(3) fibrotic (F); and (4) immune-depleted (D).
3. Implementation and results

3.1. The database overall design

The web was developed with R and Shiny following a modular
and robust design. The data were preprocessed locally with some
of the results loaded into memory for speed and another part
stored in SQLite database (Fig. 1). SDC uses a series of user-
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friendly interfaces to display results. Because of the Bootstrap
and Shiny dependency, the interfaces are dynamic and interactive
on a variety of devices with different screen sizes, and five main
modules were provided, including (i) Survival and phenotype, (ii)
Molecular differences, (iii) Signatures and pathways, (iv) Therapy
response, (v) Download. All customized resulting images can be
downloaded directly in PNG or PDF format. For ‘‘Download” mod-
ule, all pre-processed data can be downloaded, most of which are
saved as R data, and can be quickly loaded into the R environment
by the R function ‘‘readRDS”. All the raw data used for analysis is
also linked for easy access.
3.2. Web interface and usage

The home page provides a module description and a quick jump
(Fig. 2A). The global multi-cancer morbidity and mortality his-
togram is displayed at the bottom of the page, providing a quick
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and intuitive view of gender differences. The ‘‘Quick View” func-
tion is for the quickly selection of 1 in 27 tumor types for preview
(Fig. 2B).

For ‘‘Survival and phenotype” module, users can select different
age stratifications and different endpoints to study differences in
survival in specific cancers (Fig. 3A). Statistical analysis was per-
formed on clinical characteristics of cancer patients and presented
in the table (Fig. 3B). Findings from Fig. S1-S4 showed that there
was no significant difference in survival between females and
males in lung cancer, while, in esophageal and gastric cancers,
females have a better prognosis than males).

Six data categories of analysis are included in the ‘‘Molecular
differences” module. (i) For molecular subtypes, fisher’s exact test
results revealed sex-biased molecular subtypes (Fig. 4A). (ii) For
mRNA, users can screen differentially expressed mRNAs under
tumor purity correction. By inputting the minimum P value and
fold change, users can further filter the highly reliable differential
genes, and the results can be showed as a scatter plot (Fig. 4B).
Data in mRNA level from normal GTEx tissues were calculated in
the same way, so it is possible to discover which differential
expression of gene are inherent before tumor development and
which are caused after tumor development. Meanwhile, the results
are displayed in the ‘‘Venn” panel (Fig. 4C). The detailed descrip-
Fig. 5. Signatures and Pathways module. A. Analysis of differences in the tumor micr
whether the plot is displayed as a p-value or asterisks. B. Analysis of the signal signature
presentation on the same plot. (ii) is three methods for signature calculation. (iii) is the
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tion of all genes can be jumped to GeneCard (https://www.gene-

cards.org/) with the aid of the hyperlink. (iii) miRNAs are filtered
and presented in the same way. The score for target gene predic-
tion of miRNA is shown in the table in the ‘‘Target” panel, and
the correlation between genes and miRNAs can be further viewed
on the ‘‘Correlation” panel (Fig. 4D). (iv) Differential DNA methyla-
tion in three levels, including CpG island, methylation regions and
methylation blocks, were shown in the scatter plot and table. (v)
Somatic mutation (SNV and INDEL) results that mainly include dif-
ferences in mutation frequency of gene and total tumor mutation
burden. (vi) For CNV, the Gistic2 copy number was used to esti-
mated copy number differences between females and males in
gene level. And, CNV burdens including BCS, FCS and GCS, which
has been reported to be potential biomarkers for prognosis and
immunotherapy [37,38], were calculated with purity correction
(Fig. 4E). Further, we recalculated copy number segments (log2(tu-
mor/normal)) in the 1 M interval to obtain the region profile of
CNV (Fig. 4F).

For ‘‘Signatures and pathways” module, ‘‘Tumor microenviron-
ment”, ‘‘Signatures” and ‘‘Pathways” three functions can be used.
(i) Due to the importance of tumor-infiltrating immune cells in
cancer treatment efficacy and patient prognosis [39], score for
the tumor-infiltrating immune cells was calculated using 7 pub-
oenvironment. (i) is to select one of the seven published methods. (ii) can convert
difference. (i) indicates that tumor-related signatures can be added and removed for
two buttons to display the signature source and genes within the signature.

https://www.genecards.org/
https://www.genecards.org/
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lished methods [23,29–34]. Different analysis was then performed
based on the score and users can choose to display the exact P
value on the box plot or a more intuitive symbol (Fig. 5A). (ii) In
the ‘‘Signatures” panel, 255 tumor-associated signatures scores
were calculated using ssGSEA, PCA and Z-score methods and com-
pared between the sexes. Users can click on the two buttons at the
bottom of the page to find the original article and signature genes
(Fig. 5B). (iii) In the ‘‘Pathways” panel, different analysis was per-
formed on pathway activity scores of 1387 constituent PARADIGM
pathways.

For ‘‘Therapy response” module, ‘‘Chemotherapy response” and
‘‘Immunotherapy response” panels were included. In the ‘‘Che-
motherapy response” panel, users can select one of three databases
and then select a drug or target to explore the sensitivity of tumor
cell lines to the drug. The results were presented as a box plot and
volcano plot (Fig. 6A). In the ‘‘Immunotherapy response” panel,
patients with a TIDE score <0 were defined as positive responders
to immunotherapy (Fig. 6B). Patients with IE and IE/F subtypes are
more likely to benefit from immunotherapy, when using tumor
microenvironment subtypes to predict immunotherapy response.
Fig. 6. Therapy response module. A. Chemotherapy response results. B. Immunotherap
were compared and displayed as box plot and histogram plot, respectively.
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4. Future developments and discussion

As we have found that there were significant phenotypic differ-
ences between the two sexes that were disruptive to causal infer-
ences, more covariates will be added to the model in the future or
pre-treat the population with propensity score matching, so that to
obtain a better and unbiased estimation. Our next plan is to inte-
grate more samples and more types of biological data (e.g.
immunotherapy patients, proteomics and epigenetics data) and
mine relationships between modules (As shown in Fig. 1), the pur-
ple line represents the possible association) to provide more com-
prehensive and accurate insights. In the coming future, users’ data
uploading function and analysis service will be provided to assess
gender bias and generate reports.

Overall, SDC is the first comprehensive and user-friendly web
database to study molecular differences, pathway differences,
and therapeutic response differences between males and females
in cancer. Based on this web database, we aim to integrate more
comprehensive data and provide more evidence to explain the
sex differences in cancer systematically, so that to facilitate antitu-
y response results. The TIDE scores and response status between male and female



Long-Fei Zhao, Jin-Ge Zhang, Feng-Yu Qi et al. Computational and Structural Biotechnology Journal 20 (2022) 1068–1076
mor studies and clinical practices. Fully understanding the mecha-
nisms underlying sexual dimorphism in human cancers will be
benefit to both basic cancer research and translational application
for sex-specific diagnosis, prognosis, and treatment of cancer,
which will contribute to personalized precision medicine.

Data and code availability
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