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Abstract

Motivation: Single-nucleotide variants (SNVs) are the most common variations in the human genome. Recently
developed methods for SNV detection from single-cell DNA sequencing data, such as SCIU and scVILP, leverage the
evolutionary history of the cells to overcome the technical errors associated with single-cell sequencing protocols.
Despite being accurate, these methods are not scalable to the extensive genomic breadth of single-cell whole-gen-
ome (scWGS) and whole-exome sequencing (scWES) data.

Results: Here, we report on a new scalable method, Phylovar, which extends the phylogeny-guided variant calling
approach to sequencing datasets containing millions of loci. Through benchmarking on simulated datasets under
different settings, we show that, Phylovar outperforms SCIU in terms of running time while being more accurate
than Monovar (which is not phylogeny-aware) in terms of SNV detection. Furthermore, we applied Phylovar to two
real biological datasets: an scWES triple-negative breast cancer data consisting of 32 cells and 3375 loci as well as
an scWGS data of neuron cells from a normal human brain containing 16 cells and approximately 2.5 million loci.
For the cancer data, Phylovar detected somatic SNVs with high or moderate functional impact that were also sup-
ported by bulk sequencing dataset and for the neuron dataset, Phylovar identified 5745 SNVs with non-synonymous
effects some of which were associated with neurodegenerative diseases.

Availability and implementation: Phylovar is implemented in Python and is publicly available at https://github.com/
NakhlehLab/Phylovar.

Contact: edrisi@rice.edu or hamim@iitk.ac.in or nakhleh@rice.edu

1 Introduction

With the advent of the first single-cell sequencing (SCS) techniques
(Navin et al., 2011; Tang et al., 2009), the fields of single-cell gen-
omics, transcriptomics, proteomics and epigenetics have witnessed
remarkable growth over the last decade. Single-cell sequencing tech-
nologies have impacted our understanding in different fields of biol-
ogy including developmental biology, immunology, microbiology
and cancer biology (Kashima et al., 2020; Lim et al., 2020; Navin,
2014; Tang et al., 2019; Wang and Navin, 2015). Single-cell DNA
sequencing (scDNAseq), as one of the SCS technologies, provides
insights into the somatic evolutionary process by sequencing the
genomic contents of a complex tissue at a single-cell resolution
(Navin, 2014; Navin et al., 2011). Preparing scDNAseq data
requires a whole-genome amplification (WGA) process to amplify

the DNA material of a single cell to suffice the amount of DNA
needed for sequencing. (Kashima et al., 2020; Zafar et al., 2018).
WGA technologies, such as multiple displacement amplification
(MDA) (Dean et al., 2002; Spits et al., 2006) and multiple annealing
and looping-based amplification cycles (MALBAC) (Zong et al.,
2012) can elevate the noise level in scDNAseq data. The scDNAseq
technical errors include allelic dropout (ADO), false-positive (FP)
errors, false-negative (FN) errors and non-uniform coverage (Navin,
2014; Zafar et al., 2018). ADO refers to cases where only one of the
two alleles in a heterozygous mutation is amplified, resulting in the
loss of the mutated allele. FP artifacts can appear due to uneven
amplification or at the early stages of the amplification when the ori-
ginal nucleotide is substituted randomly. The non-uniform coverage
over different genomic loci may result in missing data due to zero or
insufficient coverage. The scDNAseq-specific technical errors fueled
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the development of tools such as Monovar (Zafar et al., 2016) and
SCcaller (Dong et al., 2017) for detecting single-nucleotide varia-
tions (SNVs) from scDNAseq data. Although Monovar and SCcaller
account for uneven coverage and scDNAseq-specific errors, more re-
cent methods, SCIU (Singer et al., 2018) and scVILP (Edrisi et al.,
2019), showed further improvement in overcoming the scDNAseq-
specific technical errors by simultaneously inferring the cells’ phyl-
ogeny and SNVs. SCIU uses a Markov chain Monte Carlo (MCMC)
algorithm to sample the joint posterior distribution of SNVs and the
phylogenetic tree of the single cells and reports the tree(s) with the
best posterior probability and the corresponding genotypes. scVILP
is formulated as an instance of Mixed Integer Linear Programming
(MILP) and it aims to find maximum likelihood estimation (MLE)
of the observed read counts given the underlying genotype matrix.
Here, the MILP solver is restricted to proposing only the genotype
matrices that satisfy three-gamete condition in order to maximize
the likelihood function (see Estabrook et al., 1976; Fernández-Baca,
2001; Gusfield, 1991, 1997; Meacham, 1983; Semple and Steel,
2003 for more details on work related to inference under the three-
gamete condition).

Although ‘regularizing’ the mutation detection by using a tree as
a guide is a promising direction (Edrisi et al., 2019; Kuipers et al.,
2020; Markowska et al., 2021; Singer et al., 2018), applying SCIU
and scVILP to datasets with large number of loci such as in Evrony
et al. (2015) and Wang et al. (2014) is challenged by either very long
running time or large memory consumption of the methods—the
major issues in SCIU and scVILP, respectively. Indeed, scVILP runs
out of memory on all of the datasets considered in our study here,
except for the smallest ones, which is why we do not report on the
performance of scVILP. To address this challenge, we developed
Phylovar, a likelihood-based method for phylogeny-aware inference
of SNVs from scDNAseq datasets consisting of a large number of
loci. To simplify likelihood calculations for large-scale data, we as-
sume that mutations occur following an infinite-sites assumption
(ISA) (Deshwar et al., 2015; Jahn et al., 2016; Singer et al., 2018).
Using this model, Phylovar finds the tree topology and the place-
ment of mutations on ancestral single cells that maximize the likeli-
hood of the erroneous observed read counts given the genotypes.
Utilizing a vectorized formulation for likelihood calculations,
Phylovar benefits from the vectorized operations in matrix manipu-
lation packages such as NumPy (Harris et al., 2020) to scale up to
many loci. We compared the SNV calling accuracy, memory con-
sumption and running time of Phylovar against those of the existing
methods, Monovar and SCIU, through a simulation study. We
found that Phylovar outperforms SCIU in terms of running time
with the same accuracy, while being more accurate than Monovar.
Furthermore, we applied our method to two biological datasets: a
triple-negative breast cancer (TNBC) dataset (Wang et al., 2014)
consisting of 32 single cells and 3375 candidate loci, as well as the
dataset from Evrony et al. (2015) containing 16 normal human neu-
ron cells and 2 489 545 candidate loci. For the TNBC data,
Phylovar inferred 652 SNVs with ‘high’ or ‘moderate’ functional im-
pact, out of which 550 (84%) were also supported by bulk sequenc-
ing. For the neuron cells, Phylovar identified 5745 SNVs with non-
synonymous effects some of which were related to neurodegenera-
tive diseases. To the best of our knowledge, Phylovar is the first
scDNAseq SNV caller that can utilize the underlying tree structure
even when the dataset contains millions of genomic loci.

2 Materials and methods

The input to Phylovar consists of the reference and variant count
matrices, denoted by R ¼ ðrijÞ 2 N0

N�M and V ¼ ðvijÞ 2 N0
N�M,

where N and M represent the number of single cells and candidate
loci, respectively. Each entry in R and V represents the number of
reference and variant counts, respectively, at cell i and site j. These
count matrices are obtained from an input file in mpileup format.
Here, candidate loci are defined as the genomic loci with a signifi-
cant number of variant reads. This significance is measured by a
statistic test. Note that these loci may not necessarily contain SNVs
since the variant reads might be artifacts of scDNAseq technical

errors. In all experiments reported below, we used SCIU’s likelihood
ratio test described in Singer et al. (2018) to identify candidate loci
for the analyses. If the total read coverage at a cell and a candidate

site is less than k, the corresponding entry is treated as missing data.
We used k¼1 in practice.

2.1 Single-cell genotype error model
Our genotype model considers bi-allelic genotype with 0 and 1 rep-

resenting the absence and presence of a mutation, respectively. We
differentiate true genotypes from those being subject to scDNAseq
errors that propagate from WGA to the sequencing library—called

library genotypes. Let G ¼ ðgijÞ 2 f0;1gN�M be the binary matrix
containing the true genotypes where gij represents the true genotype

at cell i and locus j. Similarly, we denote the library genotype matrix
by W ¼ ðwijÞ 2 f0;1gN�M. We assume library preparation process
introduces FP and FN errors into the data resulting in difference be-

tween true genotypes and their corresponding library genotypes. Let
a and b denote the FP and FN error rates, respectively. Then, the

probability of the library genotype given true genotype and error
rates are given by the following error model adopted from SiFit
(Zafar et al., 2017) and SiCloneFit (Zafar et al., 2019):

Pðwijjgij; a;bÞ ¼

a if wij ¼ 1; and gij ¼ 0

1� a if wij ¼ 0; and gij ¼ 0

b if wij ¼ 0; and gij ¼ 1

1� b if wij ¼ 1; and gij ¼ 1

:

8>>>><
>>>>:

(1)

2.2 Single-cell read count model
For the convenience of notation, let cij ¼ rij þ vij denote the total
read coverage at cell i and locus j. We assume that variant read

counts follow a binomial distribution whose success probability
depends on the value of the library genotype:

Pðrij; vijjwijÞ ¼

cij

vij

 !
l0

vij ð1� l0Þrij if wij ¼ 0

cij

vij

 !
l1

vij ð1� l1Þrij if wij ¼ 1

:

8>>>>><
>>>>>:

(2)

The variables l0 and l1 are the success probabilities associated

with reference and alternate alleles, respectively. In practice, we set
l0 to 0.001, which is at the same order of magnitude for the error

rate in different Illumina sequencing platforms (Stoler and
Nekrutenko, 2021). We used 0.5 for the value of l1, which is the
mean of variant read counts for a heterozygous mutation.

2.3 Tree model
Our tree model consists of two components: a binary tree topology

T ¼ ðV;EÞ—where V denotes the set of nodes, and E is the set of
edges—and a mutation placement for each genomic locus j,
Mj 2 f0; 1g2N�1. The latter is a binary vector of length 2N � 1 con-
taining binary elements for each leaf or internal node in V. We take
Mj½q� ¼ 1 to denote that a mutation occurred at node q during the

evolutionary history of locus j. In our model, we assume mutations
evolve following the ISA. According to this model, at most one elem-

ent inMj is allowed to be 1. This vector requires each node to have
an index from f1; . . . ; 2N � 1g. For simplicity, we map indices
f1; . . . ;Ng to the leaves/single cells and use the same mapping for

the single cells in all tree topologies.

2.4 Log-likelihood function
Assuming independence across sites/loci, the log-likelihood function of
read counts given true genotypes G, error rates ða; bÞ, underlying tree
topology T and mutation placements for all loci (denoted byM) are:
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FðR;VjG;T;M; a;bÞ ¼FðR;VjG; a;bÞ

¼
XN
i¼1

XM
j¼1

log
X

w

Pðrij; vijjwijÞPðwijjgij; a; bÞ
� �

: (3)

Note that the above likelihood is based on G rather than T and
M directly, as G is derived from T andM. Therefore, we can drop
T andM from Equation (3). It can be shown that after marginaliz-
ing out w’s, logPðrij; vijjgij; a;bÞ ¼ log f

P
w Pðrij; vijjwijÞPðwijjgij;

a; bÞg can be simplified as follows:

logPðrij; vijjgij; a;bÞ ¼ log
cij

vij

 !

þð1� gijÞ log fl0
vij ð1� l0Þrij ð1� aÞ þ l1

vij ð1� l1Þrij ag
þgij log fl0

vij ð1� l0Þrij bþ l1
vij ð1� l1Þrij ð1� bÞg:

(4)

Here, the log-likelihood values of the missing data are assumed
to be 0. The MLE solution is obtained as

ðG�;T�;M�; a�;b�Þ ¼ argmax
G;T;M;a;b

fFðR;VjG;T;M; a; bÞg: (5)

2.5 Hill-climbing search algorithm
Phylovar infers the underlying phylogeny of single cells and their
genotypes simultaneously in a hill-climbing fashion. At each step,
the log-likelihood function is evaluated and updated by proposing
one of the underlying parameters including the tree, mutation place-
ments and error rates. We start the search by reconstructing an ini-
tial tree topology. To obtain this tree, first, we create the matrix of
initial genotypes, Gð0Þ, as follows:

g 0ð Þ
ij ¼

1 if logP rij; vijjgij; a 1ð Þ;b 1ð Þ
� ���� gij ¼ 1

a 1ð Þ ¼ 0

b 1ð Þ ¼ 0

>

logP rij; vijjgij; a 1ð Þ;b 1ð Þ
� ���� gij ¼ 0

a 1ð Þ ¼ 0

b 1ð Þ ¼ 0

0 Otherwise

:

8>>>>>>>>>>><
>>>>>>>>>>>:

(6)

Here, ðað1Þ; bð1ÞÞ ¼ ð0;0Þ are the initial estimates of the error
rates. Given Gð0Þ, we calculate the pairwise Hamming distances be-
tween the single cells and build an initial tree topology, Tð1Þ, using
the neighbor-joining algorithm (Saitou and Nei, 1987). Given the
proposed parameters ðTð1Þ; að1Þ; bð1ÞÞ, the mutation placement with
highest log-likelihood for each site j—denoted by M�ð1Þ

j —is deter-
mined (see below for more details) yielding the genotype matrix at
first iteration, Gð1Þ and the first log-likelihood value
FðR;VjGð1Þ;Tð1Þ;M�ð1Þ; að1Þ; bð1ÞÞ. At each iteration t � 2, either
new error rates are estimated (see below for more details) or a new
tree is proposed by performing tree rearrangement techniques
including subtree pruning and re-grafting (SPR), nearest-neighbor
interchange (NNI) and swapping two random leaves. The proposed
parameters are accepted if the new log-likelihood value is greater
than or equal to the log-likelihood in the previous iteration. In case
of stochastic hill-climbing, the acceptance probability of the newly
proposed log-likelihood value is:

min 1;
FðR;VjGðtÞ;TðtÞ;M�ðtÞ; aðtÞ; bðtÞÞ

FðR;VjGðt�1Þ;Tðt�1Þ;M�ðt�1Þ; aðt�1Þ; bðt�1ÞÞ

( )
: (7)

The search procedure terminates when the log-likelihood does
not improve after a user-specified number of iterations or when it
reaches the maximum number of iterations.

2.6 Proposing new error rates
The new error rates at iteration t are calculated using the following
equations from the entries of Gðt�1Þ and Gð0Þ:

aðtÞ ¼
P

i;j½g
ð0Þ
ij ¼ 1 ^ g

ðt�1Þ
ij ¼ 0 ^ cij 6¼ 0�P

i;j½cij 6¼ 0� ; (8)

bðtÞ ¼
P

i;j½g
ð0Þ
ij ¼ 0 ^ g

ðt�1Þ
ij ¼ 1 ^ cij 6¼ 0�P

i;j½cij 6¼ 0� : (9)

Here, the number of 0 entries in Gð0Þ that were ‘corrected’ to 1 in
Gðt�1Þ provides a measure of what a more realistic a would be
through the hill-climbing trajectory. The same rationale applies to
proposing a new value of b. In Equations (8) and (9), aðtÞ and bðtÞ in-
dicate the new values of a and b at iteration t, respectively. Here,
g
ð0Þ
ij and g

ðt�1Þ
ij denote the entries of the initial genotype matrix and

the genotype matrix at iteration t–1, respectively. The term cij 6¼ 0
indicates the entries with non-zero read counts. The symbol ^ repre-
sents the logical AND operator.

2.7 Finding the best mutation placement
Given a topology TðtÞ and a site j, each possible mutation placement
on TðtÞ yields a unique genotype configuration at the level of single
cells. We seek the mutation placement with the highest log-likelihood.
LetMðtÞðvkÞk2f1;...;2N�1g denote the mutation placement when the kth

node is mutated. As a special case, letMðtÞðv2NÞ represent the absence
of mutation. Because the set of all possible mutation placements is
the same for all the sites, we dropped the index j from these two
notations. To summarize the effect of all possible ISA mutation place-
ments on genotype configurations, we define SðtÞ ¼ ðsðtÞki Þ 2
f0;1g2N�N whose kth row, S

ðtÞ
k� , represents the genotype configuration

corresponding to MðtÞðvkÞ. We formally define the mapping from
mutation placements to genotypes, denoted by U, as follows:

U
�
MðtÞðvkÞ

�
¼ S

ðtÞ
k� ¼ ½s

ðtÞ
k1 ; . . . ; s

ðtÞ
kN�; (10)

s
ðtÞ
ki ¼

1 if vi 2 T
ðtÞ
vk

0 if vi 62 T
ðtÞ
vk

or k ¼ 2N
:

(
(11)

where i 2 f1; . . . ;Ng and k 2 f1; . . . ; 2Ng. Here, T
ðtÞ
vk

denotes the
subtree rooted at node vk. Note that the mapping U is one-to-one, so
we can use its inverse to retrieve the genotypes given a mutation
placement. In addition to SðtÞ, we define two other matrices that
store the log-likelihood values from Equation (4), one assuming all
genotypes are 0, called matrix of zero-allele likelihoods, ZðtÞ and the
other assuming all genotypes are 1, called matrix of one-allele likeli-
hoods, OðtÞ. Formally, we define the matrices OðtÞ ¼ ðoðtÞij Þ 2
ð�1; 0�N�M and ZðtÞ ¼ ðfðtÞij Þ 2 ð�1;0�

N�M as follows:

o
ðtÞ
ij ¼ logPðrij; vijjgij; a

ðtÞ; bðtÞÞ
��
gij¼1

; (12)

fðtÞij ¼ logPðrij; vijjgij; a
ðtÞ; bðtÞÞ

��
gij¼0

: (13)

It can be shown that the following matrix multiplication results
in a matrix XðtÞ ¼ ðvðtÞkj Þ 2 ð�1;0�

2N�M whose each element vðtÞkj is
equal to the log-likelihood value ofMðtÞðvkÞ at site j:

XðtÞ ¼ SðtÞOðtÞ þ ðJ2N;N � SðtÞÞZðtÞ: (14)

Here, J2N;N is matrix of all-ones. The best mutation placement at

site j,M�ðtÞ
j , is associated with the highest value in the jth column of

XðtÞ:

M�ðtÞ
j ¼MðtÞðvk� Þ: (15)

The index corresponding to the highest value is denoted by k�:

k� ¼ argmax
k2f1;...;2Ng

fvðtÞkj g: (16)

Using U�1, we can determine the best genotype configuration at
site j which constitutes the jth column of GðtÞ using
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G
ðtÞ
�j ¼ S

ðtÞ
k�� ¼ U�1

�
MðtÞðvk� Þ

�
: (17)

Finally, GðtÞ is the concatenation of best genotypes configura-
tions at all sites:

GðtÞ ¼ ½GðtÞ�1 ; . . . ;G
ðtÞ
�M�: (18)

3 Results and discussion

3.1 Simulation study
We first compared the computational efficiency and SNV calling ac-
curacy of Phylovar, SCIU and Monovar using synthetic datasets
simulated under five scenarios: (i) varying the number of mutations,
(ii) varying the number of cells, (iii) varying the ADO rates, (iv)
copy number effect and (v) violation of ISA. We simulated the data-
sets using the simulator introduced in Singer et al. (2018). In the first
scenario, we investigated how Phylovar performs compared to the
other methods when increasing the number of mutations dramatical-
ly to a large extent.

We simulated datasets containing 16 single cells with 1000, 104

and 105 mutations. For each mutation value, ten datasets were gen-
erated. Phylovar’s accuracy was comparable to that of SCIU in terms

of F1 measure, while both SCIU and Phylovar were more accurate
than Monovar because of accounting for evolutionary history
(Fig. 1a). To measure the running time of each method, we used the
CPU clock time (in seconds and log scale) during its execution.
Figure 1f shows that the running time of each method increased
with the number of mutations. For the largest dataset with 105

mutations, Phylovar was approximately two orders of magnitude
faster than SCIU.

In the second scenario, we sought to answer how the methods’
performances depend on the number of cells. Here, we fixed the num-
ber of mutations at 105 and varied the number of cells,
N 2 f8; 16;32g. For each setting, we generated ten datasets. The F1
accuracy scores of all methods improved as the number of cells
increased (Fig. 1b). Again, Phylovar’s accuracy was comparable to
that of SCIU while it outperformed Monovar. We observed that
increasing the number of single cells improved the accuracy of all
methods more than increasing the number of mutations. As demon-
strated in Figure 1g, similar to the first scenario, the running time of
Phylovar was almost two orders of magnitude less than that of SCIU.

In the third scenario, the ADO rate was varied while cells and
mutations were fixed at 16 and 1000. We selected ADO rates from
the values f0; 0:05;0:1;0:15;0:2;0:25; 0:3; 0:35g, and generated ten
datasets for each ADO value. Figure 1c shows that both SCIU and
Phylovar were more robust to high ADO rates than Monovar due to
the utilization of the underlying single-cell phylogeny.

Since Phylovar can estimate the false-negative error rates
(denoted by b), we measured the correlation between the ADO rates
used for generating the simulated datasets and the estimated b’s. As
demonstrated in Figure 1h, these two values were highly correlated
(the Pearson correlation coefficient was 0.991). It is worth noting
that based on the linear regression line, the estimated b was almost
half of the true ADO, pointing to the difference between the dropout
mechanism in the simulator and our definition of b (see Section 2).
Given an ADO rate l, the simulator chooses l fraction of the muta-
tions. It changes l

2 of them into reference genotype, and l
2 of them

into homozygous mutations; the b in our model indicates the prob-
ability of a mutation becoming reference genotype implying b � l

2,
which we can observe in Figure 1h.

Since Phylovar assumes the read counts are originated from dip-
loid strands, in the fourth scenario, additional wild-type alleles were
introduced to the read counts to imitate the effect of copy number
changes. The simulator randomly selects a fraction of mutated loci
(named copy number rate), and chooses c extra copies for each loci
with probability 1

2c (Singer et al., 2018). We increased the copy num-
ber rate from 0 to 0.5 with step size 0.125. For each value, we gener-
ated ten datasets containing 16 cells and 1000 mutations. Figure 1d
shows that the SNV calling accuracy of the methods decreased as
more mutated loci were subject to copy number changes.

In the fifth scenario, we were interested in observing how viola-
tions of ISA affect the SNV calling accuracy of the methods. Given a
fraction of mutations, the simulator randomly selects half of them to
recur in different branches, and the rest of them to be lost in the same
subtree. We increased the fraction of mutations subject to ISA viola-
tions from 0 to 0.15 with 0.05 step size. For each value we generated
ten datasets with 16 cells and 1000 mutations. Figure 1e shows that
all three methods had a stable performance as the fraction of ISA vio-
lations increased. This observation suggests that even though the phy-
logenies inferred by SCIU and Phylovar might be inaccurate due to
the presence of violations of their evolutionary model, the effect of
such violations on mutation inference is negligible.

3.2 Application to real data
We applied Phylovar on two human scDNAseq datasets. The first
dataset consists of single-cell whole-exome sequencing (scWES)
samples from a triple-negative breast cancer (TNBC) patient (Wang
et al., 2014). Since the population sequencing data from bulk tumor
and matched normal tissue are available for the TNBC dataset, the
number of mutations shared by scWES and bulk data provides us a
metric for measuring the accuracy of our approach. The TNBC
dataset consists of 16 diploid cells, eight hyperdiploid/aneuploid
cells and eight hypodiploid cells (Wang et al., 2014). Given the

Fig. 1. Summary statistics of different benchmarking experiments. (a–e) F1 accuracy

of the methods from simulated data with different number of mutations (a), number

of cells (b), ADO rate (c), copy number rate (d) and fraction of ISA violations (e). (f,

g) Runtime of the methods on simulated data with varying number of mutations (f)

and varying number of cells (g). (h) Linear regression between estimated false-nega-

tive error rates (b’s) and actual ADO rates used for simulated data

i198 M.Edrisi et al.



control normal cells, SCIU’s likelihood ratio test identifies the loci
likely to contain somatic mutations. Applying this statistic test on
the input mpileup file resulted in 3375 candidate loci on which we
applied Phylovar. Phylovar was run with ten parallel hill-climbing
chains, each for 100 000 iterations on a pool of five CPU’s, each
with 48 cores (AMD EPYC 7642) on a node with 192 GB RAM.
The total runtime was 91 min. Phylovar inferred an 18.21% false-
negative error rate and a 1.03% false-positive error rate from TNBC
data. We ran SCIU and Monovar with default parameters; SCIU
and Monovar terminated after 10 h and 144 min, respectively.
Figure 2 shows the three methods’ mutation calls on TNBC data
from the overlapping sites as well as the initial genotype matrix at
the first iteration of our hill-climbing search. We performed hier-
archical clustering with Ward’s minimum variance method imple-
mented in Python’s SciPy package (Virtanen et al., 2020) on the
genotype matrix for better visualization. We observed concordance

between the calls from Phylovar and SCIU while Monovar’s calls
are noisy and resemble Phylovar’s initial genotypes.

To annotate the mutations, we applied snpEff (Cingolani et al.,
2012) on the SNVs detected by Phylovar. Out of 3375 candidate
loci, 652 loci contained SNVs with ‘high’ or ‘moderate’ functional
effects (see https://pcingola.github.io/SnpEff/se_inputoutput/ for
details on the types of variants’ effects and their descriptions). Then,
we ran HaplotypeCaller (GATK version 4.2.0.0) for mutation call-
ing on the bulk tumor and normal samples. Among 652 SNVs in sin-
gle cells, 550 (84%) mutations were found in bulk data (Fig. 3).
Performing this analysis on the results of SCIU yielded the same
results as for Phylovar: 652 loci contained SNVs with high or mod-
erate functional effect, out of which 550 mutations overlapped with
the calls from bulk data. Monovar detected 18 187 high or moderate
non-synonymous mutations in the single-cell data from which
10 981 mutations were found in the bulk data as well which is 60%
of the single-cell calls (Figs. 4 and 5).

The second biological data consists of 16 neuron cells on which
scWGS was performed to study somatic mutations in human brain de-
velopment (Evrony et al., 2015). Applying SCIU’s statistic test on the
input mpileup identified 2 489 545 candidate loci. We ran Phylovar
with five parallel hill-climbing chains, each for 50 000 iterations on 5
CPUs with 192 GB RAM. Phylovar finished the process after 17 h and
45 min. To compare our results with other methods, we ran Monovar
and SCIU with default parameters. Monovar processed the data in

Fig. 2. Clustered heatmaps of mutation calls by different methods performed on the

TNBC dataset. Here, rows and columns represent the genomic loci and the single

cells, respectively. The pixels show mutation calls (dark blue), reference alleles (light

blue) and missing data (pink). The initial genotypes are the initial estimates of geno-

types considering no error rates and no underlying phylogeny at the starting step of

Phylovar’s search algorithm (A color version of this figure appears in the online ver-

sion of this article)

Fig. 3. Clustered heatmap of the mutations detected by Phylovar from TNBC data

and population sequencing data of tumor and matched normal tissues. The pixels

show mutation calls (dark blue), reference alleles (light blue) and missing data

(pink). Columns (cells) are colored according to the ploidy of the cells. The colors of

the rows (genes) indicate whether the SNV was found in bulk data or not. Here,

popT and popN are the tumor and normal population sequencing samples, respect-

ively. Out of 3375 candidate loci, 652 loci contained SNVs with high or moderate

functional effects in the single-cell data among which 550 mutations were found in

bulk data as well, which is 84% of the single-cell calls (A color version of this figure

appears in the online version of this article)
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10 h and 26 min, while SCIU was still running after ten days.
Phylovar’s inferred false-positive and false-negative error rates were
75.22% and 1.17%, respectively. snpEff identified 5745 non-
synonymous SNVs among Phylovar’s mutation calls. Figure 6 shows
hierarchical clustering on the genotypes of Phylovar, Monovar and the
initial genotypes at sites with non-synonymous SNVs. We observed
similarities between Monovar’s calls and the initial genotypes. By com-
paring the panel of Phylovar in Figure 6 with the other panels, one can
see the sparse regions of mutations in panels of Monovar and the initial
genotype matrix that are inferred as reference alleles by Phylovar.

Furthermore, we investigated the genes likely related to neurode-
generative diseases by comparing our findings with the genes
reported in Wei et al. (2019), where somatic mutations were studied
in 1461 control and diseased human brains with different neurode-
generative disorders. Among the genes inferred by Phylovar to har-
bor non-synonymous mutations, 12 genes were reported in Wei
et al. (2019). We observed that the genes MUC16 and MLIP were
frequently mutated in different regions; also, non-synonymous
SNVs were observed within KRT33A and SEMA5B in Wei et al.
(2019) from patients with Creutzfeldt-Jakob and Alzheimer dis-
eases, respectively. The presence of these non-synonymous muta-
tions in both diseased and normal samples implies the high
mutability of these genes even in a healthy individual.

4 Conclusions

The rapid growth of SCS technologies poses computational chal-
lenges due to the increasing number of cells and sites sequenced per
genome (Lähnemann et al., 2020). In this work, we focused on
addressing the computational challenge associated with the breadth
of genomic sites in scDNAseq data. Here, we introduced Phylovar, a
scalable MLE method for phylogeny-guided inference of SNVs from
single-cell DNA sequencing data suitable for scWGS and scWES
data with an extensive number of loci. We introduced a novel vec-
torized formula for likelihood calculation, making Phylovar scalable
to hundreds of thousands, even millions of loci.

We assessed Phylovar’s performance against state-of-the-art vari-
ant callers SCIU (Singer et al., 2018) and Monovar (Zafar et al.,
2016), through simulated benchmarks. Phylovar outperforms SCIU
in terms of running time while being more accurate than Monovar
in different simulation scenarios. We also applied Phylovar to two
real biological datasets. For a TNBC dataset with 32 single cells and
3375 candidate loci, Phylovar identified SNVs with functional im-
pact among which 84% were supported by bulk sequencing data.
Phylovar was also more accurate than Monovar and 6.5x faster
than that of SCIU. For a larger dataset containing 16 normal human
neuron cells and approximately 2.5 million candidate loci, Phylovar
identified 5745 non-synonymous SNVs some of which were related
to neurodegenerative diseases. Interestingly, Phylovar detected
75.22% false-positive, and 1.17% false-negative error rate for this
dataset. The neuron cells data was particularly challenging due to
large number of sites. For this data, SCIU failed to converge
even after ten days of running while Phylovar terminated after less
than 18 h.

Fig. 4. Clustered heatmap of the mutations detected by SCIU from TNBC data and

population sequencing data of tumor and matched normal tissues. The pixels show

mutation calls (dark blue), reference alleles (light blue) and missing data (pink).

Columns (cells) are colored according to the ploidy of the cells. Since SCIU dis-

carded the diploid cells from the final output, only hypodiploid and hyperdiploid

cells are demonstrated here. The colors of the rows (genes) indicate whether the

SNV was found in bulk data or not. Here, popT and popN are the tumor and nor-

mal population sequencing samples, respectively. SCIU detected 652 SNVs with

high or moderate functional effects in the single-cell data among which 550 muta-

tions were found in bulk data as well, which is 84% of the single-cell calls (A color

version of this figure appears in the online version of this article)

Fig. 5. Clustered heatmap of the mutations detected by Monovar from TNBC data

and population sequencing data of tumor and matched normal tissues. The pixels

show mutation calls (dark blue), reference alleles (light blue) and missing data

(pink). Columns (cells) are colored according to the ploidy of the cells. The colors of

the rows (genes) indicate whether the SNV was found in bulk data or not. Here,

popT and popN are the tumor and normal population sequencing samples, respect-

ively. Monovar detected 18 187 high or moderate non-synonymous mutations in

the single-cell data from which 10 981 mutations were found in the bulk data as

well which is 60% of the single-cell calls (A color version of this figure appears in

the online version of this article)
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Phylovar makes it possible to analyze datasets with large number
of loci within reasonable time and memory requirements, thus add-
ing to the growing toolbox for analyzing scDNAseq data. As a direc-
tion for future research, we will explore deviations from the
simplified ISA model and investigate the feasibility of applying more
general finite-sites models (FSM) (Zafar et al., 2017, 2019) to data-
sets with many loci. As scDNAseq technologies advance, the
sequencing cost per cell decreases (Lim et al., 2020; Tang et al.,
2019). Consequently, we expect more scWGS and scWES datasets
to emerge in the future, requiring methods such as Phylovar that can
perform scalable variant calling on datasets with millions of loci.
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