
ORIGINAL ARTICLE

FP-SMA: an adaptive, fluctuant population strategy for slime mould
algorithm

Jassim Alfadhli1 • Ali Jaragh1 • Mohammad Gh. Alfailakawi1 • Imtiaz Ahmad1

Received: 16 August 2021 / Accepted: 30 January 2022 / Published online: 6 March 2022
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
In this paper, an adaptive Fluctuant Population size Slime Mould Algorithm (FP-SMA) is proposed. Unlike the original

SMA where population size is fixed in every epoch, FP-SMA will adaptively change population size in order to effectively

balance exploitation and exploration characteristics of SMA’s different phases. Experimental results on 13 standard and 30

IEEE CEC2014 benchmark functions have shown that FP-SMA can achieve significant reduction in run time while

maintaining good solution quality when compared to the original SMA. Typical saving in terms of function evaluations for

all benchmarks was between 20 and 30% on average with a maximum being as high as 60% in some cases. Therefore, with

its higher computation efficiency, FP-SMA is much more favorable choice as compared to SMA in time stringent

applications.

Keywords Fluctuant population (FP) � Slime mould algorithm (SMA) � Metaheuristic algorithm (MA) � Population
diversity � Population adaptation

1 Introduction

Population-based meta-heuristics have been the dominant

methods to find optimal or good solutions to many complex

optimization problems in reasonable time [22]. The popu-

larity of meta-heuristics has increased considerably due to

their key role in learning and knowledge discovery within

the emerging fields of big data and machine learning.

These meta-heuristics derive their inspiration from mim-

icking intelligent processes arising in nature, and are

commonly classified into two categories: evolutionary

(EA) and swarm intelligence algorithms [13]. The most

popular EA algorithms are genetic (GA) [17] and differ-

ential evolution (DE) [47]. As for the swarm intelligence

category, this includes particle swarm (PSO) [47], cuckoo

search (CS) [58], whale optimization [32], monarch but-

terfly optimization (MBO) [53], moth search (MSA) [52],

and Harris hawks optimization (HHO) [19] among others.

Although the development of meta-heuristics has wit-

nessed tremendous progress in recent years, there is still

much room for improvement as no single algorithm can

solve all problems efficiently as per the ‘‘No Free Lunch’’

theorem [55]. Recently, a new population-based meta-

heuristic called slime mould algorithm (SMA) has been

proposed by Li et al. [27]. SMA is inspired by a unique

slime mould, i.e., physarum polycephalum, which is an

organism that can live freely as a single cell but can also

form communicating aggregates when foraging food

sources. In order to find food, slime mould starts the search

process with a randomly distributed population. Once

having identified food concentration during the random

search, the slime mould will approach and wrap the food

and secrete enzyme to digest it, while retaining certain

exploration capability to search for better food sources. In

order to imitate slime mould’s exploration and exploitation

behaviors, authors in [27] proposed a bio-oscillating policy

that separates the population into two groups according to

their fitness. The first group, called positive group, is the

group of individuals from the population with the best

fitness whereas the other one, labeled as negative group, is

the one consisting of those with the lowest fitness. The

better fitness group will be exploited to find the best

& Mohammad Gh. Alfailakawi

alfailakawi.m@ku.edu.kw

1 Computer Engineering Department, College of Engineering

and Petroleum, Kuwait University, Safat 13060, Kuwait

123

Neural Computing and Applications (2022) 34:11163–11175
https://doi.org/10.1007/s00521-022-07034-6(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-7426-5402
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-022-07034-6&domain=pdf
https://doi.org/10.1007/s00521-022-07034-6

possible solution whereas the lower fitness one will be used

to explore outward regions. In addition, a vibration

parameter based on the sigmoid function is introduced to

simulate food-grabbing behavior of slime mould.

Despite SMA being a recent algorithm, it has demon-

strated excellent performance compared to state-of-the-art

meta-heuristics in many fields. However, one of the key

disadvantages of SMA lies in its relatively long run time

and high computational cost. Being applied successfully in

multiple fields, in this work we investigate the enhance-

ment of the algorithm by augmenting it with a population

size adaptation method that can reduce its prohibitively

long run time. Population size plays a very important role

in both run-time efficiency and optimization effectiveness

of meta-heuristics and thus by balancing exploration and

exploitation characteristics of the SMA algorithm, its per-

formance and computational cost can be improved [27]. In

order to balance exploration and exploitation phases of an

algorithm, population size adaptation schemes can auto-

matically adjust population size according to population

diversity during the search process thus enhancing perfor-

mance and reducing run time. Population size adaptation

has been widely studied in genetic algorithms [5, 25],

differential evolution [40, 50], artificial bee colony opti-

mization [9], swarm intelligence [7, 12, 41] and recently to

sine cosine algorithm [3]. However, to the best of the

author’s knowledge, no such work has been reported for

SMA.

To fill this research gap, we propose herein an adaptive

fluctuant population size SMA algorithm called FP-SMA.

Unlike the original SMA where population size is fixed in

every epoch, FP-SMA will adaptively change population

size to enhance run time characteristics of both exploitation

and exploration phases of the algorithm. Population adap-

tation concept used in the proposed algorithm is a cluster-

based approach borrowed from K-mean clustering algo-

rithm. The threshold used to start the adaptation process is

a scaled sigmoid function that decreases smoothly initially,

then dramatically midway, and again smoothly near the

end of algorithm execution. Once population diversity is

out of the threshold, population size increases or decreases

using a sine wave pattern (for randomization). Therefore,

key contributions of this study can be summarized as the

following:

– Propose an adaptive fluctuant population size slime

mould algorithm (FP-SMA) that automatically adjust

population size during the search process according to

population diversity to effectively balance exploitation

and exploration characteristics of conventional SMA

algorithm.

– FP-SMA performance is analyzed over several bench-

mark functions, including 13 standard and 30 IEEE

CEC2014 benchmark functions.

– Simulation results revealed that FP-SMA can achieve

significant reductions in the number of function eval-

uations as compared to conventional SMA without

impacting solution quality.

The remainder of the paper is organized as follows. Sec-

tion 2 highlights SMA algorithm, literature review, and

population diversity adaptation techniques. Section 3 pro-

vides details of the proposed algorithm. Experimental

results are reported and analyzed in Sect. 4. Finally, con-

clusions and some future directions are presented in

Sect. 5.

2 Background

In this section, we introduce SMA algorithm’s mathemat-

ical models followed by the short literature review of SMA,

and finally brief discussion of population diversity-based

adaptation techniques [56] that motivated this work.

2.1 SMA introduction

In [27], a new stochastic optimizer called slime mould

algorithm (SMA) was proposed. The algorithm models the

morphological changes of slime mould, namely Physarum

polycephalum, when foraging. Slime mould is eukaryote

where its organic matter utilizes a process called Plas-

modium as its main process to seek food. Once a food

source is identified, the slime mould surrounds it and

secrete enzymes to digest it. The foraging process of the

Slime mould is divided into three phases, where the first

process is finding food source, followed by wrapping, and

then food grabble. The mathematical model for the various

processes of the slime mould is described as follows [27]:

X
!ðt þ 1Þ ¼

rand � ðUB� LBÞ þ LB rand\z

Xb
�!ðtÞ þ vb

!� W
!� XA

�!ðtÞ � XB
�!ðtÞ

� �

r\p

vc!� X!ðtÞ r� p

8

>

>

<

>

>

:

ð1Þ

with rand and r are random values 2 [0,1], UB/LB repre-

senting the upper/lower bound of the search space, and

value z is used to balance exploration and exploitation

characteristics. As for X
!

and Xb
�!

, they represent the

locations of current and best fitness individuals at iteration

t, respectively, where best fitness here represents the indi-

vidual with the highest odor concentration. XA
�!

and XB
�!

are

11164 Neural Computing and Applications (2022) 34:11163–11175

123

two randomly selected individuals from the slime mould

population. Parameter vc! is a linearity decreasing value

from 1 to 0 whereas vb
!

is a variable 2 [a,-a] where a is

calculated using [27]:

a ¼ arctanhð�ð t
T
Þ þ 1Þ ð2Þ

where T represents maximum number of iterations.

Parameter W
!

is a vector representing the slime mould

weight and is described mathematically as [27]:

W
!ðSmellIndexðiÞÞ

1þ r � log Fb � SðiÞ
Fb � Fw

þ 1

� �

; condition

1� r � log Fb � SðiÞ
Fb � Fw

þ 1

� �

; otherwise

8

>

>

>

<

>

>

>

:

ð3Þ

SmellIndex ¼ sortðSÞ ð4Þ

where Fb/Fw represents best/worst fitness value at the

current iteration and r being a random number 2 [0,1].

Moreover, S(i) represents the individual’s fitness, condition

indicates the rank of S(i) in the first half of the population

(i.e., the positive group). In Eq. (4), the term SmellIndex

denotes the result of sorting S in an ascending order.

Parameter p in Eq. (1) is calculated using [27]:

p ¼ tanhðjSðiÞ � DFÞjÞ ð5Þ

where DF is the overall global best fitness and S(i) repre-

sents the individual’s fitness.

A flowchart for SMA algorithm is depicted in Fig. 1

where it starts with initializing parameters

D, P, T, LB, UB, z, and a random population Xi
!ðt ¼ 0Þ. In

each iteration, SMA will calculate individuals’ fitness and

find the best one in the current iteration. The next popu-

lation is then updated according to Eq. (1) and conditional

weighting parameter W. This iterative process is repeated

until maximum number of iteration is reached where the

best fitness and the solution are stored as the final result.

In Eq. (1), the exploration capability is guaranteed with

a probability of at least z while exploitation is performed

with a probability of at least 1� p. When rand is less than

z, SMA will take a random walk within the boundaries

defined by LB and UB. However, when another random

number r is larger than p, SMA will perform exploitation

and search in the neighbourhood of the current location.

When r is less than p, SMA will wrap around the current

best position, Xb
�!ðtÞ, with wrapping direction and radius

depending on the current position’s fitness. Such behaviors

can be much more evident when plugging the definition of

W in Eq. (3) back to Eq. (1) when r\p resulting in [27]:

X
!ðt þ 1Þ ¼ Xb

�!ðtÞ þ vb
!

� XA
�!ðtÞ � XB

�!ðtÞ � r � log Fb � SðiÞ
Fb � Fw

þ 1

� �� �

ð6Þ

The SMA algorithm will wrap the food in two directions

depending on the fitness of the current position’s with the

radius depending on the amplitude of vb
!

and population

variance. In Eq. (1), vb
!

and vc! are two tuning parameters

oscillating towards 0 with iterations imitating food-grab-

bing behaviour and hence exploitation around the best food

source.

2.2 Literature review

SMA and its variants were successfully applied to many

problems such as image segmentation [34, 61], breast

cancer detection [29, 36], COVID-19 early detection

[4, 46], parameters estimation of photovoltaic cells

[14, 31, 33], medical data classification [54], feature

selection [23], proportional-integral-derivative (PID) motor

speed controllers [11, 43], power systems [38, 45], bearings

defect identification [51], travelling salesman problem

[30], and machine learning models parameter tuning for

support vector machine [8] and artificial neural network

[63] to name a few.

Start End

Initialize D, P, T ,
LB, UB, z

Randomly ini-
tialize

−−−−−−→
Xi(t = 0)

Calculate F (
−→
Xi)

while
t ≤ T

Update best fit-
ness DF and
its position

−→
Xb

Calculate W
by Eq. (2) t ← t + 1

For each
−→
Xi:

Update p,
− →
Vb,

−
Vc;

Update−−−−−−→
Xi(t + 1) by
Eq. (1)

Yes

No

Fig. 1 SMA flowchart

Neural Computing and Applications (2022) 34:11163–11175 11165

123

However, SMA may suffer from some shortcomings

such as slow convergence rate because of being trapped in

local minima and having an unbalanced exploitation and

exploration phases. Therefore, to further improve SMA

performance, researchers have reported a variety of specific

stochastic operators such as Levy distribution [4, 10],

cosine function for controlling parameters [16, 18], quan-

tum rotation gate [59], opposition-based learning

[35, 45, 54], and chaotic operator [31]. In addition, SMA

has been hybridized with other metaheuristics such as

Harris hawk optimization [60], whale optimization [1],

particle swarm [15], differential evolution [20, 29], and

arithmetic optimization algorithm [62] to efficiently solve

specific optimization problems. Furthermore, variants of

SMA to solve discrete binary [2, 26] and multi-objective

optimization problems [21, 24, 44] have been proposed.

However, none of these works have considered population

size adaptation to enhance the performance of SMA.

2.3 Population adaptation

Population size adaption has become prevalent in many

population-based metaheuristic algorithms (MAs). The

choice of a proper population size can substantially

enhance the efficiency of many meta-heuristic algorithms

including SMA. In a typical linear population size reduc-

tion algorithm, there is a large number of individuals in the

population initially to enhance exploration capability.

During population evolution, population size is decreased

linearly until reaching smallest population size at the end

of algorithm execution in order to allow for proper

exploitation. However, for more complex objective func-

tions, it is also possible to increase population size towards

the end of the search process to avoid premature conver-

gence or stagnation. A common criteria to control popu-

lation size direction is to use population diversity as a

metric (i.e., population distribution). For example, in

[6, 39, 42, 56, 57], the authors proposed to use population

diversity to start and stop population adaption process in

differential evolution. The following is a review of popu-

lation diversity adaptation technique based on the work

presented in [56]. Parameters and variables associated with

this technique are listed in Table 1.<Table ID="

Population diversity is measured by mean of the

Euclidean distances in each feature described as follows:

DIt ¼

ffi

1

Pt

X

Pt

i¼1

X

D

j¼1

ðxi;j � �xjÞ2
v

u

u

t ð7Þ

where value �xj is calculated as:

�xj ¼
1

Pt

X

Pt

i¼1

xi;j ð8Þ

During the evolution process, a relative measure of popu-

lation diversity is calculated using:

RDt ¼
DIt
DIt¼0

ð9Þ

where the lower and upper bound for RDt 2 ½0:9�
cRFES;t; 1:1� cRFES;t� where c is a scaling factor and RFES;t

is the relative number of depleted function evaluations

given by:

RFES;t ¼
current number of function evaluations

number of function evaluation allowed
ð10Þ

When RDt drops below the lower bound (i.e.,

0:9� cRFES;t), Pt will increase by 1 whereas when it

exceeds the upper bound (i.e., 1:1� cRFES;t) it will

decreased by 1. Such a technique results in a linearly

fluctuant population that utilizes population diversity based

on Euclidean distance.

In [48], the authors proposed using a pseudo random-

ization technique to change population size where

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

area to start de-
creasing population
size by Δt

area to start increas-
ing population size
by Δt

area to reset population

t
T

REP
υlow
υhigh

ε

Fig. 2 REP; tlow; thigh and � against t
T

Table 1 Population diversity parameters and variables [56]

xi;j Value of j-th feature in i-th individual at t-th iteration

�xj Center of j-th feature at t-th iteration

Pt Population size at t-th iteration

DIt Population diversity at t-th iteration

RDt Relative population diversity at t-th iteration

RFES;t Relative ratio of the depleted function evaluations

c Scaling factor

11166 Neural Computing and Applications (2022) 34:11163–11175

123

population size Pt in the t-th function evaluation is calcu-

lated using:

Pt ¼ Pmin þ
Mt � D� Pmin

2
� cos

t � p
Mt � D2

� �

þ 1

� �� 	

ð11Þ

where ‘‘½�’’ is a rounding operator, Pmin is minimum pop-

ulation size, D is the dimension of the function to be

optimized, and Mt is a linear reduction parameter defined

as:

Mt ¼
ðM � 1Þ � ðT � tÞ

T
þ 1 ð12Þ

with T being maximum function evaluations and t being the

index of current function evaluation. Parameter M is a

function of initial population size and problem dimension

which is calculated using:

M ¼ Pinit

D
ð13Þ

In this paper, we propose to use population diversity to start

and stop population adaptation similar to Poláková et al.

[39] but cluster the population by applying K-mean algo-

rithm. As pointed out in [39], in the SMA process when

best food sources are gradually grabbed, it is expected that

populations are gradually contracted around food sources

with the best fitness, and hence DIt will gradually decreases

toward 0. By tracking the value of DIt, SMA convergence

rate can be envisioned and population size can be adapted

accordingly. If DIt is high, then the population is too

diverse and population size can be reduced. If DIt is low,

the population is contracted and if that happens during the

initial phase of SMA, more population should be added to

enhance exploration capability. However, if SMA is

approaching the last few iterations, population size should

be reduced to save computation time. If DIt is decreasing

dramatically to a small value during the evolution process,

resetting the population can also be considered to avoid

being stuck at local optimal. The proposed algorithm

herein is based on this concept and its details are described

in the next section.

3 FP-SMA and analysis

In this section, the proposed algorithm, called FP-SMA, is

described in details. Suppose at the t-th epoch, there are

xi; i ¼ 1; :::;Pt individuals in the population. By applying the

K-mean algorithm, each individual xi is associated to a group

center xci resulting in population diversity at iteration t-th as:

DIt ¼
1

Pt

X

Pt

i¼1

ðxi � xciÞ
2 ð14Þ

The initial population diversity, DIinit ¼ DIt¼0, is stored as

a reference to define relative diversity (RDt) during the

evolution process as defined in Eq. (9) with relative

expected population diversity REP calculated as:

REP ¼ 1� c
1þ arctanhðbðx� 0:5ÞÞ

2
where x ¼ t

T
2 ½0; 1�

ð15Þ

where t is current iteration index, T is the total number of

iterations, and b is a scaling factor with a default value of 10.
c 2 ½0; 1� is the fraction of relative population diversity

expected to be consumed during the SMA process and hence

REP can be treated as the expected relative population

diversity at the current iteration. Initially, it is expected that

REP � 1 but then towards the end of the evolution process

becomes REP � 1� c. It is also expected that REP decreases

smoothly when REP � 1, then abruptly halfway through the

process, and then smoothly again until REP � 1� c.
Value REP is used as a reference to trigger population

adaptation. During the optimization, if current relative

population diversity RDt is less than tlow ¼ 0:9� REP or

larger than thigh ¼ 1:1� REP, then population adaptation

will start. Optionally, if REP\� and Pt\Pmin then the pop-

ulation is reset to its initial size. The term Pmin is the required

minimum population size to guarantee minimum amount of

exploration. Typically values for Pmin ¼ Pinit

2
and � ¼ 0:1.

Once population adaptation is started, Dt points are

added/removed to/from the current population with Dt

defined as

Dt ¼ max
Mt � D

2
� sin2

t � p
K

� �

þ 1
� �

� 	

; 1

� �

ð16Þ

The definition of Dt is similar to that of Pt in Eq. (11)

except for parameter K, which is a problem-specific

parameter to control fluctuation period. In the original

definition of Pt, the period of fluctuation is 2�Mt � D2

which may fluctuate too slowly for practical engineering

design problems. Note that if K ¼ 1, then Dt is fixed to be

one and thus is rolling back to the approach proposed in

[48]. Therefore, population size change can be summarized

as:

Ptþ1 ¼

Pinit if RDt\� and Pt\Pmin

Pt � Dt if RDt\� and Pt [Pmin

Pt þ Dt if �\RDt\tlow and Pt\Pinit

Pt � Dt if RDt [thigh and Pt [Pmin

Pt otherwise

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð17Þ

Neural Computing and Applications (2022) 34:11163–11175 11167

123

As depicted in Fig. 2, the solid green line shows the

expected REP as a function of t. When the actual RDt is

moving outside the region covered by dashed blue lines,

population adaptation will change by Dt. Furthermore, if

RDt is always dropping below � when population size is

already at its minimum level (i.e., Pt ¼ Pmin), population

size can be reset.

The FP-SMA algorithm is illustrated in Algorithm 1.

The input to the algorithm is the fitness function to evaluate

F . In lines 2–6, parameters and the population are initial-

ized and population diversity are calculated using Eq. (14)

before starting the iterations. In lines 8–13, the fitness of

each individual in the population will be evaluated and

then sorted accordingly before being divided into two

groups, positive and negative group. Each individual then

will have its position updated according to Eq. (1). Line 14

through 15 are the newly proposed steps where DIt, RDt

and REP are updated accordingly. Finally in line 16, pop-

ulation size for next epoch is updated as defined by the

fluctuation strategy described in Eq. (17).

The time complexity of FP-SMA depends on number of

iterations (T), population size (P), function dimension (D)

and is bounded by the computation performed within the

while loop (lines 7–17). Therefore, based on simple anal-

ysis of the main compute intensive processes executed

during the while loop, one can compute FP-SMA’s time

complexity. For each iteration, computational complexity

depends on fitness evaluation and sorting (line-8) which

can be performed in OðP logPÞ, weight update (line-9),

and position update (lines 11-13) where both can be per-

formed in OðP 	 DÞ. K-means clustering (lines 14–16) for

population size adaptation can be performed in OðP 	 KÞ
for a fixed number of iterations and attributes, where K is

the number of clusters. Therefore, the final time complexity

of FP-SMA is: OðT 	 ððP logPÞ þ ðP 	 DÞ þ ðP 	 KÞÞ
which is comparable with the original SMA. However, in

our case, the average value for P is less due to the adaptive

nature at each epoch as compared to SMA which has fixed

value for all iterations.

4 Experiment results

In this section, we apply FP-SMA on Ackley benchmark

function to validate the relationship between relative pop-

ulation diversity and population size in addition to con-

vergence characteristics. Moreover, the performance of FP-

SMA as compared to original SMA using a set of 13

benchmarks and CEC2014 functions [27, 28, 37] will be

discussed. The performance metrics used to compare

solution quality will be fitness values, whereas for run time,

the number of functional evaluations will be used. All

results have been obtained using Python 3.7 running on

Intel� CoreTM2 Quad CPU Q8400 @ 2.66 GHz with a

8 GB RAM and a 64-bit OS.

4.1 Convergence analysis

In convergence analysis experiment, FP-SMA was applied

to Ackley benchmark function which is widely used as a

multivariate test function for optimization problems [49]. It

is described mathematically by Eq. (18) and plotted in

Fig. 3.

11168 Neural Computing and Applications (2022) 34:11163–11175

123

F ðXÞ ¼ �a exp �b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

D

X

D

i¼1

X2
i

v

u

u

t

0

@

1

A

� exp
1

D

X

D

i¼1

cosðXiÞ
 !

þ aþ expð1Þ

ð18Þ

The Ackley function is characterized by its nearly flat outer

region and a global optimal at the center (X	 ¼ 0) with

many local optimal close by. Recommended variable val-

ues for Ackley benchmark are a ¼ 20; b ¼ 0:2; c ¼ 2p. As
for the parameters used in FP-SMA implementation they

are: D=100, Pinit=200, T=1000, z=0.03, K=100, �=0.1, c=1.
These parameters are used throughout the remainder of this

discussion.

Figure 4a shows population size Pt and relative popu-

lation diversity RDt during FP-SMA execution whereas

Fig. 4b shows best fitness evolution. In the first tens of

epochs, RDt is decreasing dramatically from 1 to below 0.5

with best fitness improved to around 100 indicating con-

vergence toward a local optimal. However, to continue the

exploration process, population size is still fixed at its

initial value of Pinit ¼ 200. During the first 500 epochs,

population size is slightly changing due to RDt fluctuation

to maintain the balance between exploration and

exploitation. After 500 iterations, REP drops considerably

as are seen in Fig. 4a leading to a sharp decrease in pop-

ulation size down to Pmin ¼ 100. Keeping this minimum

population size is sufficient to reach the global minimum at

around the 540th iteration.

Figure 5 shows population distribution only in the first

two dimensions during the optimization process. At the

beginning when t ¼ 0, the population is randomly dis-

tributed between the lower and upper bound; however, as

execution continues, the population is gradually concen-

trated around multiple centers. As a result, population size

can be decreased gradually to save computation without

effecting exploitation characteristics. At t ¼ 750, the

algorithm converges toward two centers indicating that

minimum population size is sufficient for exploitation.

4.2 Benchmarks comparisons

FP-SMA was also evaluated using 13 standard benchmark

function (see Table 5 in appendix) commonly used to

evaluate optimization algorithms and additional 30

benchmarks from CEC2014 [28]. The results are the

average values for 30 independent runs of the algorithms

on each benchmark. Tables 2 and 3 show the best fitness

on both standard and CEC2014 benchmarks, respectively.

In the tables, column fminx specifies the fitness value fol-

lowed by standard deviation (r). Column ! indicates the

fitness of SMA whether it is better, equal or worst than FP-

SMA using symbols ‘‘-’’, ‘‘¼’’ or ‘‘þ,’’ respectively.

Moreover, a comparison between SMA and FP-SMA per-

formance in terms of function evaluations are represented

in column dð%Þ which represents the percentile decrease in

the number of function evaluations calculated using:

−5
0

5 −5

0
5

10

F(X)

Fig. 3 Ackley function with a ¼ 20; b ¼ 0:2; c ¼ 2p;D ¼ 2

0 100 200 300 400 500 600 700 800 9001,000

100

120

140

160

180

200

iteration t

P
t

Pt

RDt

0

0.5

1

1.5

R
D

t

Population size vs. diversity

0 100 200 300 400 500 600 700 800 9001,000

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100
101

iteration t

F (
X

b
)

F(Xb)

Best fitness evolution(a) (b)

Fig. 4 FP-SMA Performance on Ackley benchmark

Neural Computing and Applications (2022) 34:11163–11175 11169

123

(a) (b)

(c) (d)

Fig. 5 Population distribution

Table 2 Results for standard

benchmark
Fn. fmin SMA FP-SMA ! d (%)

fmin r fmin r

f0 0.0 0.000000 (0.000000) 0.000000 (0.000000) = #28.09
f1 0.0 0.000000 (0.000000) 0.000000 (0.000000) = #28.96
f2 0.0 0.000000 (0.000000) 0.000000 (0.000000) = #25.99
f3 0.0 0.000000 (0.000000) 0.000000 (0.000000) = #29.90
f4 0.0 0.000000 (0.000000) 0.000000 (0.000000) = #30.77
f5 0.0 0.001636 (0.000320) 0.009851 (0.006180) - #29.05
f6 0.0 0.000071 (0.000054) 0.000123 (0.000091) - #28.67
f7 �419 	 n �26553:12 (1029.06) �23658:74 (1394.06) - #22.35
f8 0.0 0.000000 (0.000000) 0.000000 (0.000000) = #29.19
f9 0.0 0.000000 (0.000000) 0.000000 (0.000000) = #28.54
f10 0.0 0.000000 (0.000000) 0.000000 (0.000000) = #30.29
f11 0.0 �0:270612 (0.0081) �0:261275 (0.0082) - #33.33
f12 0.0 0.365256 (0.346215) 0.727546 (0.361334) - #26.21
Average (d) 28.56%

11170 Neural Computing and Applications (2022) 34:11163–11175

123

Tables 2 and 3 compares that attained best fitness for SMA

and FP-SMA algorithms on standard and CEC2014

benchmarks, respectively. The tables show that FP-SMA

was able to reduce the number of function evaluation for

standard benchmark on average by approximately 28% and

CEC2014 ones by 24%. In 8 out of 13 standard bench-

marks and more than half of CEC2014 benchmarks, FP-

SMA was able to achieve equivalent or better fitness than

the original SMA. FP-SMA was able to achieve the same

fitness in 5 CEC2014 benchmarks while having worst fit-

ness in 10 benchmarks with an average fitness loss of about

9% which is much less than the 26% fitness improvement

found in the other benchmarks. As a matter of fact, if f8 and

f19 are excluded from fitness results, then overall loss in

Table 3 Results for CEC2014

benchmarks
Fn. SMA FP-SMA ! d (%)

fmin r fmin r

1 101779108.2 (23005654.76) 72392092.94 (15456620.21) þ #15.02
2 54068.22766 (32827.35102) 33888.22483 (10398.97004) þ #23.73
3 15771.81289 (1937.027374) 12969.05761 (3055.875967) þ #26.22
4 765.8050354 (38.33549) 743.462391 (28.69199231) þ #24.93
5 521.3523084 (0.025410748) 521.3536462 (0.02636567) - #28.74
6 689.7700054 (4.495182553) 702.4456421 (8.778099803) - #11.34
7 701.2252342 (0.019830644) 701.3457094 (0.085363385) - #6.02
8 1591.485312 (81.15187989) 1850.510688 (119.2295506) - #23.46
9 900.1435128 (0.042795493) 900.1265529 (0.038929931) ? #20.75
10 15683.92405 (1005.930421) 16346.75008 (943.8132163) - #26.48
11 17194.68012 (1069.398267) 16451.43246 (840.0234629) ? #24.11
12 1201.439864 (0.198065608) 1201.509781 (0.318894703) - #14.43
13 1300.862725 (0.040562908) 1300.87667 (0.06223831) - #21.81
14 1400.783038 (0.284020258) 1400.761513 (0.272489399) ? #25
15 1577.920191 (10.31230952) 1580.754892 (10.6801292) - #17.37
16 1644.25172 (0.278229155) 1643.969788 (0.532866376) ? #28.38
17 9512024.724 (2280058.593) 7026197.112 (2059096.534) ? #25.34
18 430718.1946 (91400.58899) 304522.4289 (40505.38438) ? #22.8
19 2188.738236 (258.0159205) 3676.819488 (2689.284593) - #25.58
20 1.89872E?14 (1.9095Eþ11) 1.9012E?14 (5.48002E?11) - #32.78
21 7740706.982 (1910878.222) 4949377.984 (1919460.462) ? #23.36
22 9340.247418 (1287.694449) 7587.324668 (691.5903953) ? #26.18
23 2567.439243 (3.558234589) 2563.896174 (4.562597725) ? #12.27
24 2600.5 (0) 2600.5 (0) = #31.33
25 2700 (0) 2700 (0) = #12.89
26 2800 (0) 2800 (0) = #64.3
27 2900.003182 (3.45898E-12) 2900.003182 (3.45898E-12) = #29.81
28 3000.003182 (3.45898E-12) 3000.003182 (3.45898E-12) = #27.49
29 109322190.1 (89077824.93) 1632038.666 (1338227.485) ? #23.93
30 38576257.21 (22524047.63) 4019890.212 (1611603.934) ? #25.52
Average (d) 24.05%

d ¼ #function evaluations(SMA)�#function evaluations(FP - SMA)

#function evulations (SMA)

Neural Computing and Applications (2022) 34:11163–11175 11171

123

fitness will become negligible (i.e., 0.8%) for the bench-

marks with worst fitness.

To get a sense of run time enhancement as compared to

simply the reduction in number of function evaluations,

Table 4 shows run-time characteristics for both SMA and

FP-SMA algorithms on standard benchmarks where the

values are given in seconds. Column d gives percentile

reduction in run-time when using FP-SMA as compared to

SMA. It is apparent that on average, FP-SMA provide a

reduction of 25% in run-time. The same characteristics are

observed for CEC2014 benchmarks (i.e., 22% reduction in

run-time) but not shown to keep the discussion concise.

Surprisingly, FP-SMA was able to save 64.3% of

computational cost associated with f26 as compared to

original SMA. By plotting population size (Pt) and relative

diversity (RDt) in Fig. 6a and best fitness in Fig. 6b, it can

be observed that the relative diversity has dramatically

decreased after about 100 epochs, indicating algorithm

stagnation. Population size fluctuation can no longer help

the algorithm escape its stagnation and after 250 epochs,

the relative diversity RDt drops to zero and population size

is set to its minimum value. This results in a considerable

reduction in the number of function evaluations as depicted

in Table 3. Since the algorithm was able to identify this

condition, it is possible to utilize such an approach to

trigger early algorithm termination resulting in further

reduction in function evaluation. Note that in these tables,

we only presented the saving in the number of function

evaluation without changing the terminating condition (i.e.,

maximum number of iteration). A possible further

enhancement to the proposed algorithm is to consider this

case and terminate the algorithm to boost reduction in

overall execution time.

In summary, the following observations can be made

from the experimental results:

– Population size adaptation based on population diver-

sity played an important role in both run-time efficiency

and optimization effectiveness of FP-SMA as compared

with SMA.

Table 4 Standard benchmarks run-time comparison

Benchmark TSMAðsÞ TFP�SMAðsÞ dð%Þ

0 1.61 1.16 27.9

1 2.54 2.09 17.7

2 108.73 74.69 31.3

3 2.65 2.17 18.1

4 49.83 36.68 26.4

5 1.83 1.3 28.9

6 21.05 14.46 31.3

7 73.52 57.92 21.2

8 60.19 48.73 19.0

9 5.73 3.83 33.1

10 59.86 45.08 24.7

11 122.84 100.51 18.2

12 108.49 80.69 25.6

Average #24.9

(a) (b)

Fig. 6 FP-SMA Performance on f26 benchmark

11172 Neural Computing and Applications (2022) 34:11163–11175

123

– Experimental results on 13 standard and 30 CEC2014

benchmark functions in Tables 2 and 3 have revealed

that FP-SMA can achieve 20–30% savings in function

evaluations on average while maintaining good solution

quality when compared to SMA.

– As depicted in Table 4, the FP-SMA showed a 25%

reduction in run-time on standard benchmarks on

average when compared to SMA and thus demonstrat-

ing its balanced exploration and exploitation

capabilities.

5 Conclusion

This paper proposed an acceleration strategy for SMA

algorithm named FP-SMA that adaptively change popula-

tion size during algorithm execution. A cluster-based

population diversity from K-mean is used as an indicator to

change population size to balance exploration and

exploitation phases of the algorithm. Thresholds for pop-

ulation diversity that trigger population size change are

dynamically fine-tuned to appropriate levels during

different stages of the algorithm. Once population diversity

exceeds the threshold, population size is modified using

sine wave function pattern. Simulation results on 13 stan-

dard and 30 IEEE CEC2014 benchmark functions have

revealed that FP-SMA algorithm can achieve approxi-

mately 20% reduction in computation cost while main-

taining good solution quality. The performance gain can be

attributed to the flexibility offered by FP-SMA to switch

between exploration and exploitation phases and the

adaptable population size. The proposed algorithm can be

found on Github using the link https://github.com/

e6la3banoh/FP-SMA. As future work, we would like to

study the parallelization of FP-SMA and its extension for

multiple-objective SMA [21, 24, 44].

Appendix A: Standard benchmarks

See Appendix Table 5.

Table 5 Definitions of standard benchmarks

Function Range

f1ðxÞ ¼
Pn

i¼1 x
2
i

½�100; 100�
f2ðxÞ ¼

Pn
i¼1 jxij þ

Qn
i¼1 jxij ½�10; 10�

f3ðxÞ ¼
Pn

i¼1ð
Pi

j¼1 xjÞ
2 ½�100; 100�

f4ðxÞ ¼ maxi:1
 i
 n jxij ½�100; 100�
f5ðxÞ ¼

Pn�1
i¼1 ½100ðxiþ1 � x2i Þ

2 þ ðxi � 1Þ2� ½�30; 30�

f6ðxÞ ¼
Pn

i¼1½xi þ 0:5�2 ½�100; 100�

f7ðxÞ ¼
Pn

i¼1 ix
4
i þ Urandom½0; 1� ½�128; 128�

f8ðxÞ ¼
Pn

i¼1 �xi sin
ffiffiffiffiffiffi

jxij
p ½�500; 500�

f9ðxÞ ¼
Pn

i¼1½x2i � 10 cosð2pxiÞ þ 10� ½�5:12; 5:12�

f10ðxÞ ¼ �20expð�0:2ð1n
Pn

i¼1 x
2
i Þ

0:5Þ � expð1n
Pn

i¼1 cosð2pxiÞÞ þ 20þ e ½�32; 32�

f11ðxÞ ¼ 1
4000

Pn
i¼1 x

2
i �

Qn
i¼1 cosð xiffiip Þ þ 1 ½�600; 600�

f12ðxÞ ¼ p
n ½10 sinðpy1Þ þ

Pn�1
i¼1 ðyi � 1Þ2½1þ 10 sin2ðpyiþ1Þ� þ ðyn � 1Þ2� þ

Pn
i¼1 uðxi; 10; 100; 4Þ ½�50; 50�

where

yi ¼ 1þ xi þ 1

4

and

uðxi; a; k;mÞ ¼
kðxi � aÞm xi [a

0 � a\xi\a
kð�xi � aÞm xi\a

8

<

:

f13ðxÞ ¼ 0:1½sin2ð3pxiÞ þ
Pn�1

i¼1 ðxi � 1Þ2½1þ sin2ð3pxi þ 1Þ� þ ðxn � 1Þ2½1þ sin2ð2pxnÞ��
Pn

i¼1 uðxi; 5; 100; 4Þ ½�50; 50�

Neural Computing and Applications (2022) 34:11163–11175 11173

123

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Abdel-Basset M, Chang V, Mohamed R (2020) Hsma_woa: a

hybrid novel slime mould algorithm with whale optimization

algorithm for tackling the image segmentation problem of chest

x-ray images. Appl Soft Comput 95:106642. https://doi.org/10.

1016/j.asoc.2020.106642

2. Abdel-Basset M, Mohamed R, Chakrabortty RK, Ryan MJ,

Mirjalili S (2021) An efficient binary slime mould algorithm

integrated with a novel attacking-feeding strategy for feature

selection. Comput Ind Eng 153:107078

3. Al-Faisal HR, Ahmad I, Salman AA, Alfailakawi MG (2021)

Adaptation of population size in sine cosine algorithm. IEEE

Access 9:25258–25277. https://doi.org/10.1109/ACCESS.2021.

3056520

4. Anter AM, Oliva D, Thakare A, Zhang Z (2021) Afcm-lsma: new

intelligent model based on lévy slime mould algorithm and

adaptive fuzzy c-means for identification of covid-19 infection

from chest x-ray images. Adv Eng Inform 49:101317

5. Arabas J, Michalewicz Z, Mulawka J (1994) Gavaps-a genetic

algorithm with varying population size. In: Proceedings of the 1st

IEEE conference on evolutionary computation. IEEE world

congress on computational intelligence. IEEE, pp 73–78

6. Brest J, Greiner S, Boškovič B, Mernik M, Žumer V (2006) Self-

adapting control parameters in differential evolution: a compar-

ative study on numerical benchmark problems. IEEE Trans Evol

Comput 10:646–657

7. Chen D, Zhao C (2009) Particle swarm optimization with adap-

tive population size and its application. Appl Soft Comput

9(1):39–48

8. Chen Z, Liu W (2020) An efficient parameter adaptive support

vector regression using k-means clustering and chaotic slime

mould algorithm. IEEE Access 8:156851–156862

9. Cui L, Li G, Zhu Z, Lin Q, Wen Z, Lu N, Wong KC, Chen J

(2017) A novel artificial bee colony algorithm with an adaptive

population size for numerical function optimization. Inf Sci

414:53–67

10. Cui Z, Hou X, Zhou H, Lian W, Wu J (2020) Modified slime

mould algorithm via levy flight. In: 2020 13th international

congress on image and signal processing, biomedical engineering

and informatics (CISP-BMEI). IEEE, pp 1109–1113 (2020)

11. İzci D ES (2021) Comparative performance analysis of slime

mould algorithm for efficient design of proportional–integral–

derivative controller. Electrica 21:151–159

12. Dhal KG, Das A, Sahoo S, Das R, Das S (2019) Measuring the

curse of population size over swarm intelligence based algo-

rithms. Evol Syst 12:1–48

13. Dokeroglu T, Sevinc E, Kucukyilmaz T, Cosar A (2019) A sur-

vey on new generation metaheuristic algorithms. Comput Ind Eng

137:106040

14. El-Fergany AA (2021) Parameters identification of pv model

using improved slime mould optimizer and lambert w-function.

Energy Rep 7:875–887

15. Gao Z, Zhao J, Li S (2020) The hybridized slime mould and

particle swarm optimization algorithms. In: 2020 IEEE 3rd

international conference on automation, electronics and electrical

engineering (AUTEEE). IEEE, pp 304–308 (2020)

16. Gao ZM, Zhao J, Li SR (2020) The improved slime mould

algorithm with cosine controlling parameters. J Phys: Confer Ser

1631:012083. https://doi.org/10.1088/1742-6596/1631/1/012083

17. Goldberg DE, Holland JH (1988) Genetic algorithms and

machine learning. Mach Learn 3:95–99

18. Hassan MH, Kamel S, Abualigah L, Eid A (2021) Development

and application of slime mould algorithm for optimal economic

emission dispatch. Expert Syst Appl 182:115205

19. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H

(2019) Harris hawks optimization: algorithm and applications.

Fut Gener Comput Syst 97:849–872. https://doi.org/10.1016/j.

future.2019.02.028

20. Houssein EH, Mahdy MA, Blondin MJ, Shebl D, Mohamed WM

(2021) Hybrid slime mould algorithm with adaptive guided dif-

ferential evolution algorithm for combinatorial and global opti-

mization problems. Expert Syst Appl 174:114689

21. Houssein EH, Mahdy MA, Shebl D, Manzoor A, Sarkar R,

Mohamed WM (2022) An efficient slime mould algorithm for

solving multi-objective optimization problems. Expert Syst Appl

187:115870

22. Hussain K, Salleh MNM, Cheng S, Shi Y (2019) Metaheuristic

research: a comprehensive survey. Artif Intell Rev

52(4):2191–2233

23. Ibrahim RA, Yousri D, Abd Elaziz M, Alshathri S, Attiya I

(2021) Fractional calculus-based slime mould algorithm for fea-

ture selection using rough set. IEEE Access 9:131625–131636

24. Khunkitti S, Siritaratiwat A, Premrudeepreechacharn S (2021)

Multi-objective optimal power flow problems based on slime

mould algorithm. Sustainability 13(13):7448

25. Koumousis VK, Katsaras CP (2006) A saw-tooth genetic algo-

rithm combining the effects of variable population size and

reinitialization to enhance performance. IEEE Trans Evol Com-

put 10(1):19–28

26. Li L, Pan TS, Sun XX, Chu SC, Pan JS (2021) A novel binary

slime mould algorithm with au strategy for cognitive radio

spectrum allocation. Int J Comput Intell Syst 14(1):1–18

27. Li S, Chen H, Wang M, Mirjalili AAHS (2020) Slime mould

algorithm: a new method forstochastic optimization. Futur Gener

Comput Syst. https://doi.org/10.1016/j.future.2020.03.055

28. Liang JJ, Qu BY, Suganthan PN (2013) Problem definitions and

evaluation criteria for the CEC 2014 special session and com-

petition on single objective real-parameter numerical optimiza-

tion, vol 635. Technical report Zhengzhou, China

29. Liu L, Zhao D, Yu F, Heidari AA, Ru J, Chen H, Mafarja M,

Turabieh H, Pan Z (2021) Performance optimization of differ-

ential evolution with slime mould algorithm for multilevel breast

cancer image segmentation. Comput Biol Med 138:104910

30. Liu M, Li Y, Huo Q, Li A, Zhu M, Qu N, Chen L, Xia M (2020)

A two-way parallel slime mold algorithm by flow and distance

for the travelling salesman problem. Appl Sci 10(18):6180

31. Liu Y, Heidari AA, Ye X, Liang G, Chen H, He C (2021)

Boosting slime mould algorithm for parameter identification of

photovoltaic models. Energy 234:121164

32. Mirjalili S, Lewis A (2016) The whale optimization algorithm.

Adv Eng Softw 95:51–67. https://www.sciencedirect.com/sci

ence/article/pii/S0965997816300163

33. Mostafa M, Rezk H, Aly M, Ahmed EM (2020) A new strategy

based on slime mould algorithm to extract the optimal model

parameters of solar pv panel. Sustain Energy Technol Assess

42:100849

34. Naik MK, Panda R, Abraham A (2020) Normalized square dif-

ference based multilevel thresholding technique for multispectral

images using leader slime mould algorithm. J King Saud Univer-

Comput Inf Sci. https://doi.org/10.1016/j.jksuci.2020.10.030

35. Naik MK, Panda R, Abraham A (2021) Adaptive opposition

slime mould algorithm. Soft Comput 25(22):14297–14313

11174 Neural Computing and Applications (2022) 34:11163–11175

123

https://doi.org/10.1016/j.asoc.2020.106642
https://doi.org/10.1016/j.asoc.2020.106642
https://doi.org/10.1109/ACCESS.2021.3056520
https://doi.org/10.1109/ACCESS.2021.3056520
https://doi.org/10.1088/1742-6596/1631/1/012083
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.1016/j.future.2020.03.055
https://www.sciencedirect.com/science/article/pii/S0965997816300163
https://www.sciencedirect.com/science/article/pii/S0965997816300163
https://doi.org/10.1016/j.jksuci.2020.10.030

36. Naik MK, Panda R, Abraham A (2021) An entropy minimization

based multilevel colour thresholding technique for analysis of

breast thermograms using equilibrium slime mould algorithm.

Appl Soft Comput 113:107955

37. Nguyen T (2020) A framework of optimization functions using

numpy (opfunu) for optimization problems (2020). https://doi.

org/10.5281/zenodo.3620960

38. Nguyen TT, Wang HJ, Dao TK, Pan JS, Liu JH, Weng S (2020)

An improved slime mold algorithm and its application for opti-

mal operation of cascade hydropower stations. IEEE Access

8:226754–226772

39. Poláková R, Tvrdı́k J, Bujok P (2019) Differential evolution with

adaptive mechanism of population size according to current

population diversity. Swarm Evolut Comput 50:100519

40. Piotrowski A (2017) Review of differential evolution population

size. Swarm Evol Comput 32:1–24

41. Piotrowski AP, Napiorkowski JJ, Piotrowska AE (2020) Popu-

lation size in particle swarm optimization. Swarm Evol Comput

58:100718

42. Polakova R, Tvrdik J, Bujok P (2014) Controlled restart in dif-

ferential evolution applied to CEC2014 benchmark functions. In:

IEEE congress on evolutionary computation, pp 2230–2236

43. Precup RE, David RC, Roman RC, Petriu EM, Szedlak-Stinean

AI (2021) Slime mould algorithm-based tuning of cost-effective

fuzzy controllers for servo systems. Int J Comput Intell Syst

14(1):1042–1052

44. Premkumar M, Jangir P, Sowmya R, Alhelou HH, Heidari AA,

Chen H (2021) Mosma: multi-objective slime mould algorithm

based on elitist non-dominated sorting. IEEE Access

9:3229–3248

45. Rizk-Allah RM, Hassanien AE, Song D (2021) Chaos-opposi-

tion-enhanced slime mould algorithm for minimizing the cost of

energy for the wind turbines on high-altitude sites. ISA Trans

121:191–205

46. Shi B, Ye H, Zheng J, Zhu Y, Heidari AA, Zheng L, Chen H,

Wang L, Wu P (2021) Early recognition and discrimination of

covid-19 severity using slime mould support vector machine for

medical decision-making. IEEE Access 9:121996–122015

47. Storn R, Price K (1997) Differential evolution - a simple and

efficient heuristic for global optimization over continuous spaces.

J Glob Optim 11:341–359

48. Sun G, Xu G, Gao R, Liu J (2019) A fluctuant population strategy

for differential evolution. Evolut Intell. https://doi.org/10.1007/

s12065-019-00287-6

49. Back T (1996) Evolutionary algorithms in theory and practice:

evolution strategies, evolutionary programming, genetic algo-

rithms. Oxford University Press on Demand

50. Teo J (2006) Exploring dynamic self-adaptive populations in

differential evolution. Softw Comput. 10:673–686

51. Vashishtha G, Chauhan S, Singh M, Kumar R (2021) Bearing

defect identification by swarm decomposition considering per-

mutation entropy measure and opposition-based slime mould

algorithm. Measurement 178:109389

52. Wang GG (2018) Moth search algorithm: a bio-inspired meta-

heuristic algorithm for global optimization problems. Memet

Comput. https://doi.org/10.1007/s12293-016-0212-3

53. Wang GG, Deb S, Cui Z (2015) Monarch butterfly optimization.

Neural Comput Appl. https://doi.org/10.1007/s00521-015-1923-y

54. Wazery YM, Saber E, Houssein EH, Ali AA, Amer E (2021) An

efficient slime mould algorithm combined with k-nearest neigh-

bor for medical classification tasks. IEEE Access

9:113666–113682

55. Wolpert DH, Macready WG (1997) No free lunch theorems for

optimization. IEEE Trans Evol Comput 1(1):67–82

56. Yang M, Cai Z, Li C, Guan J (2013) An improved adaptive

differential evolution algorithm with population adaptation. In:

GECCO ’13 proceedings of the 15th annual conference on

genetic and evolutionary computation, pp 145–152

57. Yang M, Li C, Cai Z, Guan J (2014) Differential evolution with

auto-enhanced population diversity. IEEE Trans Cybern

45:302–315

58. Yang XS, Deb S (2014) Cuckoo search: recent advances and

applications. Neural Comput Appl 24(1):169–174

59. Yu C, Heidari AA, Xue X, Zhang L, Chen H, Chen W (2021)

Boosting quantum rotation gate embedded slime mould algo-

rithm. Expert Syst Appl 181:115082

60. Zhao J, Gao ZM (2020) The hybridized Harris hawk optimization

and slime mould algorithm. In: Journal of physics: conference

series, vol 1682. IOP Publishing, pp 012029

61. Zhao S, Wang P, Heidari AA, Chen H, Turabieh H, Mafarja M,

Li C (2021) Multilevel threshold image segmentation with dif-

fusion association slime mould algorithm and Renyi’s entropy for

chronic obstructive pulmonary disease. Comput Biol Med

134:104427

62. Zheng R, Jia H, Abualigah L, Liu Q, Wang S (2021) Deep

ensemble of slime mold algorithm and arithmetic optimization

algorithm for global optimization. Processes 9(10):1774

63. Zubaidi SL, Abdulkareem IH, Hashim KS, Al-Bugharbee H,

Ridha HM, Gharghan SK, Al-Qaim FF, Muradov M, Kot P, Al-

Khaddar R (2020) Hybridised artificial neural network model

with slime mould algorithm: a novel methodology for prediction

of urban stochastic water demand. Water 12(10):2692

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2022) 34:11163–11175 11175

123

https://doi.org/10.5281/zenodo.3620960
https://doi.org/10.5281/zenodo.3620960
https://doi.org/10.1007/s12065-019-00287-6
https://doi.org/10.1007/s12065-019-00287-6
https://doi.org/10.1007/s12293-016-0212-3
https://doi.org/10.1007/s00521-015-1923-y

	FP-SMA: an adaptive, fluctuant population strategy for slime mould algorithm
	Abstract
	Introduction
	Background
	SMA introduction
	Literature review
	Population adaptation

	FP-SMA and analysis
	Experiment results
	Convergence analysis
	Benchmarks comparisons

	Conclusion
	Appendix A: Standard benchmarks
	References

