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The past ten years have seen an explosion of information concerning host restriction factors that inhibit the replication of HIV-1
and other retroviruses. Among these factors is TRIM5, an innate immune signaling molecule that recognizes the capsid lattice as
soon as the retrovirion core is released into the cytoplasm of otherwise susceptible target cells. Recognition of the capsid lattice has
several consequences that include multimerization of TRIM5 into a complementary lattice, premature uncoating of the virion core,
and activation of TRIM5 E3 ubiquitin ligase activity. Unattached, K63-linked ubiquitin chains are generated that activate the TAK1
kinase complex and downstream inflammatory mediators. Polymorphisms in the capsid recognition domain of TRIM5 explain
the observed species-specific differences among orthologues and the relatively weak anti-HIV-1 activity of human TRIM5. Better
understanding of the complex interaction between TRIM5 and the retrovirus capsid lattice may someday lead to exploitation of
this interaction for the development of potent HIV-1 inhibitors.

1. Introduction

HIV-1 was identified only two years after the first report
of AIDS in 1981 [1]. The HIV-1 genome was cloned and
sequenced, ORFs were identified, and functions of the gene
products pinpointed. At a time when few antivirals were in
clinical use, HIV-1 proteins were isolated, their activities were
described, their structures were determined, and inhibitors
were identified [2–5]. The first anti-HIV-1 drug, AZT, was
approved for patients in 1987, and effective combinations
of anti-HIV-1 drugs were in the clinic by the mid-1990s.
Thanks to these anti-HIV-1 drugs, the number of AIDS
cases plummeted in countries like the United States. HIV-
1 infection became an outpatient disease. Yet, despite the
impact of basic science on disease in individuals with HIV-
1 infection, the AIDS pandemic has not gone away.

2. Ongoing Pandemic and the Need for
More Basic Research

Failure to control the AIDS pandemic may be attributable to
a number of factors, including the need for improvement in
drugs and more ready access to those drugs that already exist.

Aside from one extraordinary case of a person who under-
went bone marrow transplantation with cells from a CCR5-
defective donor [6], there has been no documented cure of
HIV-1 infection. Aside from a small effect in one vaccination
trial [7], there is no evidence for prevention of HIV-1 infec-
tion in people by a vaccine. Without prospects for curative
drugs or a preventive vaccine, the cost of HIV-1 infection to
individuals and to society will remain high. In New York City
there are currently ∼110,000 people living with HIV-1 and
∼1,600 HIV-related deaths annually (NYC Dept of Health).
The toll of AIDS is much greater in medically underserved
regions of the world, despite improved distribution of anti-
HIV-1 drugs in these places. According to the UNAIDS
report concluding in 2010 (http://www.unaids.org/en/),
34 million people were living with HIV infection, and in that
year alone there were 2.7 million new infections.

3. Host Factors and HIV-1 Infectivity

Much remains to be learned about the function of each
of the HIV-1 gene products and the optimization of drugs
that inhibit their function. In recent years the focus of
much HIV-1 molecular biology research has shifted to host
factors that regulate HIV-1 infection. Initially these studies
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involved searches for host factors that physically interact with
individual viral proteins. The cellular proteins cyclophilin A
and LEDGF, for example, were found to interact with HIV-
1 capsid (CA) and HIV-1 integrase (IN), respectively, [8, 9].
Both of these protein-protein interactions have been studied
extensively and have offered novel approaches to HIV-1 inhi-
bition and potential new anti-HIV-1 drug candidates [9–12].

Functional screens have also yielded information con-
cerning host factors that regulate infection by HIV-1 and
other retroviruses [13–16]. More recently, several groups
have reported human genome-wide RNAi screens to identify
factors that regulate HIV-1 infectivity [17–21]. Among host
factors identified in these screens are host proteins such as
TNPO3 that play critical roles in the poorly understood early
events of HIV-1 infection that culminate in establishment of
the provirus [15, 22–25]. Ultimately, information springing
from the study of any one of these host factors has the
potential to be exploited towards the development of drugs
that disrupt HIV-1 in people.

4. Restriction Factors

Over the past 10 years, in addition to the identification
of host factors that promote HIV-1 infectivity, several host
factors have been discovered that block HIV-1 infection [26].
Comparative analysis of the genes encoding these proteins,
which have been called restriction factors, indicates that
some of them have evolved in response to challenge with
pathogenic retroviruses [27, 28]. Study of these factors has
offered a wealth of information concerning requirements for
HIV-1 replication, novel ways that HIV-1 might be targeted
therapeutically, potential paths to cure HIV-1 infection, and
ways in which innate immune detection of HIV-1 might be
amplified to improve vaccination protocols.

5. Fv1 and Capsid-Specific Restriction

When HIV-1 and other retroviruses undergo membrane
fusion with susceptible target cells, the virion core is released
into the target cell cytoplasm. The core of the virion consists
of a capsid-protein lattice, within which there are two copies
of the viral genome, along with the reverse transcriptase and
IN proteins. An extraordinary series of experiments spanning
several decades demonstrated that the retroviral CA protein
lattice is the viral determinant of sensitivity to a murine-
specific restriction factor called Fv1 [29, 30]. Curiously, Fv1
encodes a retroviral Gag polyprotein [29]. The mechanism of
Fv1 restriction is still unknown, but these studies established
the concept of retrovirus CA-specific restriction and inspired
the search for similar factors targeting HIV-1 CA.

6. Cyclophilin A and Capsid-Specific Restriction

Cyclophilin A was the first HIV-1 CA-specific host factor
that was identified [9, 31]. Though cyclophilin A is not a
restriction factor itself, it controls the accessibility of CA to
other host factors that inhibit reverse transcription and other
processes essential to the early steps of the infection cycle

[32]. One apparent effect of these host factors is to influence
these early steps via effects on stability of the HIV-1 virion
core [15, 32–36]. The identity of these cyclophilin-regulated
host factors is unknown. Additional screens have identified
CPSF6 as a conditional regulator of HIV-1 infection, that acts
in a capsid-specific manner [15, 37]. CPSF6 is a possible can-
didate for one such cyclophilin A-regulated restriction factor.

Cyclophilin A cDNAs have retrotransposed many times
in evolution, in several cases creating new genes that regulate
HIV-1 infectivity in a capsid-specific manner. The first of
the cyclophilin A-targeted restriction factors to be identified
was the TRIM5-cyclophilin A fusion protein found in
South American owl monkeys [38]. A similar, though
independently derived, TRIM5-cyclophilin A fusion gene
that acts as a capsid-specific restriction factor was created in
Asian macaques [39–42]. Nup358/RanBP2, a nuclear pore
protein that possesses a cyclophilin A domain also plays a
role in HIV-1 infectivity [15, 17, 19, 43].

7. The Discovery of TRIM5 as an HIV-1
CA-Specific Restriction Factor

Early studies with HIV-1 showed that infection of cells from
nonhuman primates is too inefficient to establish spreading
infection [44–48]. It was then shown that dominant-acting
inhibitors were present in these species, and that the viral
capsid was the main determinant for sensitivity [49–51].
In 2004, two groups independently identified TRIM5
orthologues as being responsible for these species-specific,
capsid-specific blocks [38, 52]. The owl monkey orthologue
(known as TRIM5-Cyp) targets HIV-1 capsid via its carboxy-
terminal cyclophilin A domain [38, 53], and the rhesus
macaque orthologue (the alpha isoform) targets HIV-1 cap-
sid via its carboxy-terminal PRY-SPRY domain [52]. Human
TRIM5alpha potently restricts EIAV and N-tropic MLV,
but it only weakly inhibits HIV-1 lab strains. Differences
in specificity between human and macaque TRIM5alpha
map to a small block of residues in the PRY-SPRY domain
[28, 32, 54, 55]. Though standard HIV-1 lab strains are only
weakly inhibited by human TRIM5alpha, some primary
HIV-1 isolates are much more sensitive [56, 57].

8. The Problem of CA Recognition

One of the biggest ongoing challenges for researchers
studying TRIM5 is to understand the structural basis for CA
recognition. TRIM5 is a multimer, and CA recognition does
not occur via a simple protein-protein interaction. Rather,
TRIM5 recognizes a complex surface involving the CA lattice
[58, 59]. In fact, TRIM5 spontaneously forms a hexameric
protein lattice, and this propensity to form a lattice is greatly
stimulated in the presence of the CA lattice [60] (Figure 1).
This explains why a simple binding assay has not been
developed. Extensive efforts have been made by several
groups to develop soluble subdomains of the CA lattice
that might be used in binding studies [61, 62]. The soluble
hexamer unit, for example, seems not to bind to TRIM5
[63, 64]. In contrast, promising results have been obtained
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Figure 1: Schematic diagram showing current models of TRIM5-
mediated restriction. Free TRIM5 probably exists as a dimer in
the target cell cytoplasm. Upon interaction with the capsid of a
restriction-sensitive retrovirus, the propensity of TRIM5 to form a
complementary hexameric lattice is stimulated. This increases its
intrinsic E3 ubiquitin ligase activity. If avidity for the retrovirus
capsid is sufficient, the virion core prematurely uncoats and
reverse transcription is blocked. Depending upon the proximity of
particular cellular E2 enzymes, TRIM5 will either autoubiquitinate
and traffic towards proteasomes, or it will activate the TAK1 kinase
and downstream signaling molecules.

with a CA trimer [64]. A requirement for additional host
factors such as SUMO-1 may complicate the situation with
CA recognition even further [65].

9. TRIM5 and E3 Ubiquitin Ligase Activity

At latest count, the human TRIM family comprises ∼100
genes [66]. Like other members of this large family, TRIM5
possesses an N-terminal RING domain, a B-box domain, and
a coiled-coil domain. The B box and coiled-coil domains
promote multimerization of TRIM5 required for restriction
activity [67, 68]. The TRIM5 RING domain confers E3
ubiquitin ligase activity, and, in cooperation with certain E2
enzymes, TRIM5 is autocatalytic, covalently attaching ubiq-
uitin to itself [69]. Mutations on the putative E2-interacting
face which disrupt this autocatalytic activity block restriction
activity [70]. Ubiquitination of TRIM5 contributes to the
short half-life of this protein [71], and challenge of cells
with viruses bearing restriction-sensitive capsids promotes
the proteasome-dependent degradation of TRIM5 [72].
Though TRIM5-stimulated ubiquitination of viral proteins
has not been detected, TRIM5 may contribute to the
restriction mechanism by recruiting viral components to the
proteasome for degradation (Figure 1). TRIM5 interacts
biochemically with the proteasome component PSMC2 and
colocalizes with proteasomes in infected cells [73]. TRIM5

also associates with the proteasomal adaptor protein p62 [74]
though p62 seems to stabilize TRIM5 protein levels.

In certain experimental conditions, restriction activity
has been reported in the absence of the RING domain or
in the absence of ubiquitination. There are several possible
explanations for these discrepancies. One possibility is that,
when avidity for a particular CA is great enough, TRIM5
binding to the CA is sufficient to disassemble the virion
core prior to reverse transcription [59] (Figure 1). Another
possible explanation stems from the fact that TRIM5 blocks
multiple steps in the restriction pathway [75]. Disruption
of the RING domain rescues the TRIM5-mediated block
to reverse transcription and premature uncoating but not
subsequent blocks in the infection cycle that lead up to
integration [76, 77].

10. TRIM5, TAK1, and Inflammation

In combination with the heterodimeric E2, UBC13/UEV1A,
TRIM5 catalyzes the synthesis of unattached, K63-linked
ubiquitin chains that multimerize and activate the TAK1
kinase complex [63]. These K63-linked ubiquitin chains are
not generated by TRIM5 when other E2 enzymes are sub-
stituted for UBC13/UEV1A. Disruption of TAK1 or of
UBC13/UEV1A prevents restriction activity. Taken together,
these observations suggest that the activated TAK1 com-
plex contributes to TRIM5-mediated restriction activity
via phosphorylation of a critical cofactor (Figure 1). The
identity of this putative cofactor is not known, and direct
phosphorylation of CA by TAK1 has not been detected.

Coming at it from another direction, the synthesis of
K63-linked ubiquitin chains that activate TAK1 is stimu-
lated by TRIM5 interaction with a restricted capsid lattice
[63]. TAK1 activation leads to NFκB and AP-1 signaling
which activate inflammatory cytokine transcription. In other
words, TRIM5 functions as a pattern recognition receptor
specific for the retrovirus capsid lattice. The consequence of
TRIM5-mediated signaling for HIV-1-associated inflamma-
tion and pathology is only now being considered.

11. Future Directions of TRIM5 Research

If a robust assay was developed for TRIM5 interaction with
the retrovirus capsid lattice, it would inform attempts to
influence HIV-1 CA recognition by TRIM5, and perhaps to
develop HIV-1 inhibitors that increase the avidity of this
specific interaction. If the avidity of human TRIM5 for the
HIV-1 capsid lattice could be increased experimentally, the
resulting increase in capsid-stimulated signaling might also
be exploited as an adjuvant for anti-HIV-1 immunization.

Recent publicity concerning the apparent cure from
HIV-1 infection of a leukemia patient in Berlin with
transplantation of cells from a CCR5-mutant donor [6, 78]
has generated excitement concerning prospects for curing
HIV-1 infection. This case has also renewed interest in
basic research concerning gene therapy against HIV-1 and
the regulation of HIV-1 latency in people who are already
infected with HIV-1. Concerning gene therapy, the most
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promising approaches at this point involve either disruption
of CCR5 [79] or transduction of hematopoietic stem cells
with potent HIV-1 restriction factors such as engineered,
human TRIM5-cyclophilin A fusion proteins [80].
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