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Effect of education on functional 
network edge efficiency 
in Alzheimer’s disease
Yeshin Kim1,18, Sung‑Woo Kim2,18, Sang Won Seo3,4,5,6, Hyemin Jang3,6, Ko Woon Kim7, 
Soo Hyun Cho8, Si Eun Kim9, Seung Joo Kim10, Jin San Lee11, Sung Tae Kim12, Duk L. Na3,4,6,13, 
Joon‑Kyung Seong14,15,16* & Hee Jin Kim3,4,6,17*

We investigated the effect of education on the edge efficiency in resting state functional networks 
(RSFNs) in amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease dementia (ADD). We 
collected the data of 57 early aMCI, 141 late aMCI, 173 mild ADD, and 39 moderate‑to‑severe ADD 
patients. We used years of education as a proxy for cognitive reserve. We measured edge efficiency 
for each edge in RSFNs, and performed simple slope analyses to discover their associations with 
education level among the four groups. In the late aMCI, a sub‑network that had hub nodes in the 
right middle frontal gyrus and the right posterior cingulate gyrus, showed a positive association 
between RSFN edge efficiency and education (threshold = 2.5, p = 0.0478). There was no negative 
effect of education on the RSFN edge efficiency. In the early aMCI, mild ADD, and moderate‑to‑severe 
ADD, there were no sub‑networks showing positive or negative correlation between education and 
RSFN edge efficiency. There was a positive effect of higher education on RSFN edge efficiency in the 
late aMCI, but not in the early aMCI or ADD. This indicates that in late aMCI, those who have higher 
education level have greater ability to resist collapsed functional network.

In the course of Alzheimer’s disease (AD), accumulation of amyloid beta (Aβ) begins 10–15 years before cogni-
tive symptoms appear. Then tau accumulates, followed by synaptic dysfunction and neuronal death. This series 
of processes lead to cognitive impairment and  dementia1. However, the degree of cognitive impairment is influ-
enced by individuals’ cognitive  reserve2. Various pathologic and imaging studies suggested that individuals with 
higher cognitive reserve (CR) can maintain cognitive function despite having a damaged brain. In AD dementia 
(ADD), patients with higher CR were reported to be associated with higher Aβ, lower glucose  metabolism3–6 and 
more severe cortical  atrophy7–9. This may imply that patients with higher CR cope better with certain pathologic 
burdens and maintain their cognition.
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Functional magnetic resonance imaging (MRI) has been used in many studies to elucidate the neural mecha-
nism underlying CR. Previous studies reported that RSFN was positively associated with CR in particular areas 
such as the fronto-parietal control network and default mode  network10–13.

However, the effect of CR may differ according to disease severity in the course of AD. In preclinical AD, high 
CR might not be necessary to maintain cognitive function, while in the MCI stage, CR may play an important 
role in maintaining cognitive  function11,13. Furthermore, in ADD, the effect of CR might be diminished since 
the brain is severely damaged.

In this study, we hypothesized that individuals with higher CR cope better with collapsed RSFN edges because 
they might have reinforced RSFN edge efficiency. In addition, we hypothesized that the effect of CR on reinforced 
RSFN edge efficiency would differ according to disease severity. In the aMCI stage, when the brain is slightly 
damaged, individuals with high CR may maximize their ability to reinforce RSFN edge efficiency. However, in 
ADD, higher CR may not be as useful because reinforcement of RSFN edge efficiency is limited in the moderately 
damaged brain. Therefore, we investigated the effect of CR on RSFN edge efficiency in each cognitive level: early 
aMCI, late aMCI, mild ADD, and moderate-to-severe ADD.

Results
Demographics. Characteristics of participants are described in Table 1. The mean age of participants did 
not differ significantly between the four groups. Years of education was higher in the late aMCI group (11.2 ± 4.8) 
than in the mild ADD group (8.9 ± 5.6). Cognitive function of all domain was worst in patients with moderate-
to-severe ADD followed by mild ADD and aMCI. Patients with late aMCI showed worse cognitive function in 
memory and MMSE score compared to early aMCI patients. The proportion of multiple domain aMCI (50.9% 
in early aMCI and 61.7% in late aMCI group) was not significantly different between the early and the late aMCI 
groups.

Differences of gray matter volume in Alzheimer’s disease spectrum. We analyzed gray matter 
volume of late aMCI, mild AD, and moderate to severe AD in comparison to early aMCI group (Supplementary 
Table 1). There was no difference of gray matter volume between early and late aMCI group. However, in mild 
and moderate-to-severe AD groups, most of the regions showed decreased volume in comparison to early aMCI 
group.

Effect of education on RSFN edge efficiency in Alzheimer’s disease spectrum. Figure 1 shows 
the identified sub-networks whose edges had positive correlations between years of education and RSFN edge 
efficiency in late aMCI (threshold = 2.5, p = 0.0478). The hub nodes that were positively correlated with education 
were the orbital part of the right middle frontal gyrus and the right posterior cingulate gyrus (Fig. 1A, denoted 
by red circles). Sub-networks were distributed across the frontal, parietal, and temporal lobes. Detailed informa-
tion regarding these sub-networks is described in Fig. 1B. There were no sub-networks that showed a negative 
correlation between education and RSFN edge efficiency. Further analysis showed that education had positive 
correlation with mean RSFN edge efficiency of the sub-network in the late aMCI group (β = 33.9, p < 0.001) 
(Fig. 1C).

In the early aMCI, mild ADD, and moderate-to-severe ADD groups, there were no sub-networks that showed 
positive or negative correlations between education and RSFN edge efficiency.

Table 1.  Demographic and clinical characteristics of the study population. aMCI amnestic mild cognitive 
impairment, ADD Alzheimer’s disease dementia, MMSE Mini-Mental State Examination. a 1, Early aMCI; 2, 
Late aMCI; 3, Mild ADD; 4, Moderate-to-severe ADD. b Continuous variables are expressed as mean ± standard 
deviation. c Dichotomous variables are expressed as number (relative frequency).

Early aMCI 
(n = 57)

Late aMCI 
(n = 141)

Mild ADD 
(n = 173)

Moderate-to-
Severe ADD 
(n = 39) p-value

Comparison by 
 groupa

Age,  yearsb 69.6 ± 7.9 70.6 ± 8.9 71.2 ± 9.1 72.5 ± 9.6 0.426

Sex,  femalec 32 (56.1) 82 (58.2) 115 (66.5) 30 (76.9) 0.081

Education,  yearsb 10.4 ± 6.4 11.2 ± 4.8 8.9 ± 5.6 8.6 ± 5.7 0.001 2 > 3

Disease duration, 
 yearsb 2.2 ± 1.9 2.3 ± 1.9 3.6 ± 2.1 6.2 ± 3.2 < 0.001 1, 2 < 3 < 4

Neuropsychological test

Language  functionb 41.4 ± 1.1 40.6 ± 0.8 31.2 ± 11.5 23.5 ± 12.7 < 0.001 1, 2 > 3 > 4

Visuospatial 
 functionb 29.3 ± 0.9 29.3 ± 0.6 22.5 ± 10.1 13.5 ± 12.5 < 0.001 1, 2 > 3 > 4

Memory  functionb 41.7 ± 1.1 35.5 ± 0.7 27.7 ± 6.4 22.2 ± 5.2 < 0.001 1 > 2 > 3 > 4

Frontal  functionb 42.3 ± 2.7 38.0 ± 1.4 28.5 ± 18.6 22.1 ± 26.5 < 0.001 1, 2 > 3, 4

MMSEb 26.9 ± 2.7 25.7 ± 2.8 20.4 ± 4.2 13.7 ± 5.2 < 0.001 1 > 2 > 3 > 4
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Discussion
In this study, we investigated the effect of education on the RSFN edge efficiency in patients with aMCI and ADD. 
Higher educational level was positively associated with the RSFN edge efficiency in the late aMCI stage. We did 
not observe negative effects of education on the RSFN edge efficiency. In early aMCI, mild ADD, and moderate-
to-severe ADD, however, there were no significant sub-networks showing positive or negative correlations with 
education. The hubs of sub-networks that were positively correlated with education in the late aMCI group were 
the right middle frontal gyrus and the right posterior cingulate gyrus. Thus, we suggest that in late aMCI stage, 
those who have higher education level could have greater ability to resist collapsed functional network.

First, we found that the effect of education on the RSFN edge efficiency differed based on cognitive stage. The 
effect of education on the RSFN edge efficiency was significant only in the late aMCI group, but not in the early 
aMCI, mild ADD, or moderate-to-severe ADD group. This finding is consistent with previous studies showing 
that the difference in local topological properties of functional connectivity according to CR was significant only 
in MCI, but not in  ADD13. According to previous studies, patients in the early and late stages of MCI showed 
different clinical characteristics, including dementia conversion rate and brain  networks14–16. Furthermore, the 
effects of education on the progression of aMCI in the early and late stages were  different17. However, there is a 
lack of previous studies on whether the relationship between CR and topological properties of functional con-
nectivity differ in early and late MCI stage. Looking at our results for the early and late aMCI stages, it can be 
suggested that the effect of CR on the RSFN edge efficiency appears when the pathologic burden reaches a certain 
level, not in the very early stage, but in the late aMCI stage. Having higher RSFN edge efficiency in patients with 
higher CR means they could resist collapsed edges better than those patients with lower CR. Even though there 
will be network disruption as AD progresses, the ability to resist a collapsed network via increased RSFN edge 

Figure 1.  (A) In the late aMCI group, a sub-network showed a positive correlation between years of education 
and RSFN edge efficiency. The red circles represent the hub regions, which are located in the orbital part of 
the right middle frontal gyrus (MFGorb), and the right posterior cingulate gyrus (PCC). (B) Connectogram 
showing the sub-network. The thickness and colors represents the t-statistics computed from simple slope 
analyses. Hub regions are presented in red color. (C) Correlation between education and mean RSFN edge 
efficiency of the sub-network in the late aMCI group. aMCI amnestic mild cognitive impairment.
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efficiency is assumed to be beneficial with respect to maintaining cognitive function. However, after the late 
aMCI stage, when network disruption is more severe, it overwhelms the effect of CR to resist collapsed networks.

Second, we found that high CR was associated with the RSFN edge efficiency in specific regions: the right 
middle frontal gyrus and right posterior cingulate gyrus. The functional network has been investigated as neural 
substrate of CR in many studies. Although the laterality differed among the studies, the fronto-parietal network 
was reported to be related to high CR, which was also confirmed in our  study13,18–20. One study reported that 
bilateral fronto-parietal networks were associated with  CR13 while Franzmeier et al. reported that the left frontal 
network could be the neural substrate of  CR18–20. The fronto-parietal network is known to be involved in various 
tasks through its regulation of cognitive control  abilities21,22. It is described as a flexible hub for cognitive control 
which can change connectivity associated with other networks and can adapt task  demands22,23. A previous study 
reported that the fronto-parietal network has inter-individual  variability24. This supports our hypothesis that high 
CR could affect the edge efficiency of specific hubs, especially flexible hubs in the fronto-parietal network. This 
may allow patients to resist the collapse of the RSFN edges in the early stage of the AD process (aMCI stages).

Our study has some limitations. First, patients were diagnosed based on clinical criteria and we did not 
confirm amyloid or tau biomarkers. Second, we used years of education as a proxy for CR, but this cannot cap-
ture occupational, social, or leisure experiences. However, even though there is ongoing controversy about the 
appropriate proxy for CR, years of education is a widely-used  proxy25,26. Third, there were fewer participants in 
the early aMCI and moderate-to-severe ADD groups which might have led to non-significant findings in these 
groups. Fourth, we did not analyze the effect of education on RSFN edge efficiency in subjects with normal 
cognition, which needs to be explored in further studies. Nevertheless, our study provided additional evidence 
that beneficial effects of CR are observed in late aMCI stage patients.

In conclusion, we showed that a higher education level was associated with a stronger impact on the RSFN 
edge efficiency in the fronto-parietal network. The fronto-parietal network might be an important network 
allowing patients to cope with cognitive decline in the late aMCI stage.

Methods
Subjects. We collected data from 245 aMCI and 301 AD patients who underwent rsfMRI from January 2008 
to December 2010 at Samsung Medical Center.

Patients with aMCI met Petersen’s  criteria27 with the following modifications: (1) subjective memory com-
plaint by the patient or his/her caregiver, (2) normal activities of daily living (ADL) as judged by both an interview 
with a clinician and the standardized ADL scale as previously  described28, and (3) objective verbal or visual 
memory impairment below − 1.0 standard deviations (SD) of age- and education matched norms on neuropsy-
chological  tests29. Among them, patients were classified into early aMCI when their delayed recall scores for 
either visual or verbal memory tests were between − 1.5 to − 1.0 SD and none were below − 1.5 SD of the norms. 
Patients were classified into late aMCI when their delayed recall scores for either visual or verbal memory tests 
were below − 1.5 SD of the  norms17. ADD was diagnosed when patients met diagnostic criteria for probable ADD 
according to the National Institute of Neurological and Communicative Disorders and Stroke and the AD and 
Related Disorders  Association30. Mild ADD was defined as Clinical Dementia Rating (CDR) scale of 0.5 or 1, 
and moderate-to-severe ADD was defined as CDR ≥ 2. We excluded 30 patients with severe white matter hyper-
intensities (WMH), defined as deep WMH ≥ 25 mm and periventricular WMH ≥ 10 mm. We also excluded 23 
patients with history of traumatic brain injury, cortical stroke, seizure, brain surgery, and current systemic medi-
cal disease that could affect cognition and 83 patients whose RSFN analysis was unavailable due to head motion.

We finally analyzed 57 early aMCI, 141 late aMCI, 173 mild ADD, and 39 moderate-to-severe ADD patients.
This study was approved by the Institutional Review Board of Samsung Medical Center and the methods 

were carried out in accordance with the relevant guidelines and regulations. This manuscript does not contain 
information or image that can lead to identification of a study participant. The requirement for participant’s 
informed consent was waived by the Institutional Review Board of Samsung Medical Center since we used 
retrospective de-identified data.

Neuropsychological tests. All subjects underwent detailed clinical interviews, neurologic examinations, 
and detailed neuropsychological tests. We determined patients’ cognitive status according to the results of a 
standardized neuropsychological battery called the Seoul Neuropsychological Screening  Battery29,31,32. We used 
composite scores as  followings29,33. The language function was derived from the Boston naming test (range 
0–60). The visuospatial function was derived from the Rey Complex Figure Test (0–36). The memory score was 
calculated by summing the following memory scores: verbal memory tests (Seoul Verbal Learning Test immedi-
ate recall, delayed recall, and recognition score) and visual memory tests (Rey Complex Figure Test immediate 
recall, delayed recall, and recognition score; 0–144). The frontal-executive score was calculated by summing 
scores of the category word generation test, phonemic word generation test, and Stroop color reading test (0–55). 
Global cognitive function was assessed using the MMSE.

Image acquisition. Both structural and functional images were acquired at Samsung Medical Center using 
a Philips 3.0-T Intera Achieva MRI scanner (Philips Medical Systems, Best, the Netherlands) as previously 
 described34.

Image preprocessing. The rsfMRI data were preprocessed using FEAT (FMRI Expert Analysis Tool) in 
FSL 5.0 (FMIRB’s Software Library)35. The first three volumes were discarded to allow for stabilization of MR 
signals. We then conducted the following preprocessing procedures: motion correction using MCFLIRT, slice-
timing correction using sinc interpolation with a Hanning windowing kernel, removal of non-brain regions 
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using BET and grand-mean scaling for removing intersession variance in the global signal. For the motion cor-
rection process, gross head motion was defined as relative mean displacement > 0.55  mm36,37, and 83 subjects (22 
aMCI and 61 AD) with gross head motion were initially excluded from this experiment. In addition, the non-
neural fluctuations including white matter (WM) and cerebrospinal fluid (CSF)  signals38,39, and the 24 motion 
parameters derived by head motion  correction40 were regressed out. The WM and CSF signals were extracted 
from the partial volume map by thresholding 0.9 using FSL-FAST.

The volumetric regions of interest (ROIs) were defined according to the Automated Anatomical Labeling 
(AAL) brain  atlas41, which include 40 cerebral cortical regions and five subcortical regions for each hemisphere. 
For transformations between the atlas image and structural images, and between structural and functional 
images, non-linear registration and boundary-based registration were performed, respectively. For every subject, 
blood-oxygenation-level-dependent (BOLD) signals over all voxels in each region were averaged, resulting in 
90 regional mean BOLD signals.

T1-weighted MR images were preprocessed using FreeSurfer v5.1.042 to obtain intracranial volume (ICV), 
and gray matter volumes for the 90 regions.

Resting‑state functional network construction. RSFNs were constructed by measuring pair-wise 
similarity between two regional BOLD signals using wavelet  correlation43–48. The wavelet analysis is more advan-
tageous for dealing with rsfMRI which has a long memory in time or a 1/f  power spectrum in the frequency 
domain rather than with correlation or coherence  analysis48–50. Specifically, we first performed wavelet transfor-
mation on 90 time-series using maximum overlap discrete wavelet transform (MODWT) with a fourth-order 
Daubechiese wavelet filter (db8) and a reflection boundary condition. We chose this wavelet filter because it was 
found to provide good decorrelation of wavelet detail  coefficients45,51, although the type of wavelet filter has been 
found to have little influence on fMRI data  analysis44. In addition, we chose the reflection boundary condition 
because it is appropriate to time-series that have a small number of time points (in our case, 97 time points)45,46. 
According to previous studies that showed low frequency signals were more associated with the AD 
 continuum52,53, we extracted scale 4 wavelet coefficients (approximately 0.01–0.02 Hz) out of the first four wave-
let scales using the Wavelet Toolbox in Matlab  R2016a54,55. We then calculated wavelet correlation coefficients on 

all possible 
(

90
2

)

= 4005 pairs of 90 regional mean BOLD  signals43,56 using the WMTSA Wavelet Toolkit in 

 Matlab55.
We constructed RSFNs with only positive coefficients since anti-correlations are hard to quantify and interpret 

in terms of network topological  measures57.

Edge efficiency. Efficiency in brain network science is a measure of how efficiently information is 
 exchanged58, and efficiency can be defined either globally or locally. Local efficiency quantifies the transforma-
tion of information in a part of the network. The local efficiency at the node-level, for example, indicates the 
efficiency between two  nodes57,58. Similarly, we can define the local efficiency at the edge-level that represents 
the efficiency in exchange of information through a network edge, which can be quantified to the extent that 
information flows through a neighborhood system when an edge is removed. Specifically, we computed the local 
efficiency at the edge 

(

i, j
)

 of RSFNs, or an edge efficiency ( Eloc,ij) , as follows:

where tij denotes the sum of geometric means of three sides of triangles that included an edge 
(

i, j
)

 , di and dj are 
degrees of nodes incident to the edge (Fig. 2A)59–61. The triangles in the nominator quantify other paths that 
replace the removed edge. Thus, the edge efficiency can be interpreted as an edge’s characteristic ability to resist 
collapse and make the entire network function as before.

Statistical analysis. Demographic and clinical characteristics of the study population are presented as 
continuous or categorical variables. To test difference between groups, we used one-way analysis of variance 
(ANOVA) for continuous variables or the Chi-square test followed by the Bonferroni method. To test differ-
ences of cognitive function between the groups, analysis of covariance (ANCOVA) was used, controlling for 
age and education followed by the Bonferroni method. Statistical analyses were performed with STATA version 
14 (StataCorp LP, College Station, TX, USA). Two-tailed p-values less than 0.05 were considered statistically 
significant.

To test difference in gray matter volume of each group, we used two-sample (Student’s or Welch’s) t-test 
between early aMCI and late aMCI, between early aMCI and mild AD, and between early aMCI and moderate-
to-severe AD, respectively. For multiple comparison correction, we performed false discovery rate (FDR) pro-
cedure over 90  regions62.

To discover whether associations exist between CR and Eloc,ij in the four groups for each edge 
(

i, j
)

 , we per-
formed simple slope analyses with a multiple linear regression  equation63 We used the years of education as a 
proxy for CR. For each edge, we formulated a linear regression equation with Eloc,ij as a dependent variable, the 
year of education and group as independent variables. One-way interactions between the groups and the years 
of education were added to the equation. Age, sex, and ICV were also added to the equation as covariates. Simple 
slope coefficients were transformed to t-statistics.

For statistical significance tests and multiple comparison correction, we performed cluster-based statistics 
(CBS) analysis with simple slope coefficients (Fig. 2B). The CBS analysis tests statistical hypotheses at the level 

Eloc,ij =
tij

min
(

di − 1, dj − 1
) ,
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of sub-networks, not of edges, and identifies significant sub-networks as connected  components47,64. For each 
group, the p values of sub-networks with supra-threshold edges were estimated from the empirical null distribu-
tion for N statistics of sub-networks generated based on a permutation  procedure65,66. For the statistics, we used 
the maximum values of the sum of t-statistics among all connected components for each permutation, denoted 
as intmax . In this study, we set N and the significance level to 10,000, and 0.05, respectively. We repeated these 
procedures with different thresholds that ranged from − 3.5 to − 1.5 and 1.5 to 3.5 in units of 0.1, and chose one 
with the highest absolute value among those that produced significant results.

Finally, we identified hub regions from the sub-networks with the nodes whose modified z scores of nodal 
degrees were larger than two standard deviations, so that they signified the regions of most influence in the 
sub-networks.

Received: 9 March 2021; Accepted: 29 July 2021
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