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ABSTRACT

The developmental potential of cells, termed pluripo-
tency, is highly dynamic and progresses through a
continuum of naive, formative and primed states.
Pluripotency progression of mouse embryonic stem
cells (ESCs) from naive to formative and primed state
is governed by transcription factors (TFs) and their
target genes. Genomic techniques have uncovered
a multitude of TF binding sites in ESCs, yet a major
challenge lies in identifying target genes from func-
tional binding sites and reconstructing dynamic tran-
scriptional networks underlying pluripotency pro-
gression. Here, we integrated time-resolved ‘trans-
omic’ datasets together with TF binding profiles and
chromatin conformation data to identify target genes
of a panel of TFs. Our analyses revealed that naive
TF target genes are more likely to be TFs themselves
than those of formative TFs, suggesting denser hi-
erarchies among naive TFs. We also discovered that
formative TF target genes are marked by permissive
epigenomic signatures in the naive state, indicating
that they are poised for expression prior to the initia-

tion of pluripotency transition to the formative state.
Finally, our reconstructed transcriptional networks
pinpointed the precise timing from naive to forma-
tive pluripotency progression and enabled the spa-
tiotemporal mapping of differentiating ESCs to their
in vivo counterparts in developing embryos.

INTRODUCTION

Pluripotency describes the potential of cells to differenti-
ate into derivatives of all three embryonic germ layers: en-
doderm, mesoderm and ectoderm. It is an intrinsic and
highly dynamic cellular property bookended by naive and
primed states (1) and underpins the stemness of cells (2).
Between the naive and primed states, a maturation phase
of pluripotency termed as the formative state is character-
ized by rewired transcriptional networks and signaling ap-
paratus but remains relatively homogeneous and unspeci-
fied (3). Importantly, the formative state is thought to rep-
resent an executive phase wherein cells undergo remodelling
of transcriptional, epigenetic, signalling and metabolic net-
work to acquire multilineage competence and responsive-
ness to specification cues (4). This raises the possibility that
the exit from the naive state and the progression to the for-
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mative state are mandatory en route steps towards the speci-
fication of primary germ layers during mammalian develop-
ment (4,5). Embryo-derived stem cells exist in the spectrum
of naive to primed pluripotent states, which may be mir-
rored by embryonic cells in vivo. In particular, naive mouse
embryonic stem cells (ESCs) derived from the inner cell-
mass of pre-implantation mouse blastocysts (E3.75–E4.75)
are considered to capture the naive pluripotent state, and
epiblast-like cells (EpiLCs) induced from ESCs are con-
sidered to represent the formative phase of pluripotency
and are the in vitro counterparts of post-implantation epi-
blasts (E5.5–E6.5) (6). In ESCs, this transition between cell
states is tightly controlled by core ESC transcription fac-
tors (TFs), which bind to cis-regulatory elements located
within promoters and distal enhancers of their target genes
to regulate the activity of transcriptional networks control-
ling pluripotency (7,8). However, the target genes that make
up the transcriptional networks and their dynamic rewiring
as ESCs progress from naive to formative pluripotent states
remain poorly characterised.

The advance of chromatin immunoprecipitation followed
by ultrafast sequencing (ChIP-seq) techniques has enabled
genome-wide profiling of TF binding sites (TFBSs) in a
multitude of cell types including ESCs (9,10). These TF
chromatin binding profiles have provided a means of iden-
tifying candidate genes regulated by TFs in a cell type-
specific manner (11,12). TFBSs can generally be categorized
as promoter-proximal sites that are located close to an an-
notated transcription start site (TSS) or distal sites with no
nearby TSSs (13,14). One simple approach to identify TF
target genes is to assign the gene with the nearest TSS (in
terms of nucleotide distance) to each TFBS identified in a
ChIP-seq experiment (15). While this approach may work
for promoter-proximal sites, it becomes much less reliable
for distal sites because the assignment of genes with the
nearest TSS to distal sites ignores tertiary chromatin struc-
tures such as enhancer-promoter interactions (16–18), and
can thereby result in a large number of false positive identi-
fications (19).

Recent knowledge gleaned from genome-wide RNA
Polymerase II (Pol2) chromatin interaction analysis with
paired-end-tag (Pol2-ChIA-PET) assays (20) and chromo-
some conformation capture assays such as Hi-C (21) has
enabled the quantification of long-range three-dimensional
chromatin interactions in ESCs. The information collated
from linking distal TFBSs to TSSs that have Pol2-ChIA-
PET and/or Hi-C supported interactions has enabled a
more accurate identification of genes that are potentially
regulated by distal sites. Several previous studies have uti-
lized Pol2-ChIA-PET data to validate long-range regu-
latory interactions predicted by machine learning-based
models in multiple cell-types (22–24). Despite these ad-
vances, current approaches are still unable to discriminate
functionally relevant TFBSs and precisely identify their
proximal and distal target genes out of all putative can-
didates, as physical contact does not always imply func-
tional regulation by TFs (25). Therefore, to reconstruct dy-
namic transcriptional networks underpinning the pluripo-
tency progression, a key challenge is to distinguish function-
ally relevant TFBSs and target genes that are regulated in
ESCs during their differentiation.

Using an established system to induce naive mouse ESCs
to post-implantation EpiLCs (6,26), we recently profiled the
temporal dynamics of trans-omic layers (27) as pluripo-
tency progresses from naive to formative state (4). Here,
we first extended a statistical learning framework based on
our adaptive sampling and ensemble model (AdaEnsemble)
(28,29) to predict a list of high-confidence proximal and dis-
tal target genes regulated by ESC TFs controlling the tran-
sition from naive to formative state by using the trans-omic
data. Using the AdaEnsemble-identified TF target genes,
we show that TFs associated with the naive state are more
likely to regulate genes that are TFs themselves compared
to TFs associated with formative state, suggesting denser
TF hierarchies for signal propagation in naive pluripotency.
Further analysis revealed that genes regulated by forma-
tive TFs are marked by permissive epigenomic signatures
in naive ESCs suggesting that they are poised for expression
prior to pluripotency transition. Finally, we reconstructed
the transcriptional networks that underpin distinct pluripo-
tent states of stem cells in vitro and mapped their counter-
parts in vivo in mouse epiblasts using the spatiotemporally
resolved transcriptomics data we generated recently (30).
Together, the dynamic rewiring of these transcriptional net-
works sheds light on the timing of pluripotency transition,
providing new insights into the transcriptional regulation of
naive and formative TF target genes.

MATERIALS AND METHODS

Trans-omic data pre-processing

RNA-seq, ChIP-seq, and MS-based proteomics data were
processed as previously described (27). Briefly, sequence
reads from RNA-seq experiments were aligned to the mouse
reference genome (mm9 assembly) using STAR (31) ver-
sion 2.5.2a, allowing up to three mismatches and acquir-
ing unique reads only. Gene expression across eight time
points of the differentiation were quantified using HTSeq
(32) version 0.6.1 against Ensembl mouse gene annotation.
Sequence reads from ChIP-seq experiments were aligned to
mm9 using Bowtie (33) version 0.12.8 allowing at most two
mismatches and accepting only reads mapped to unique ge-
nomic regions. Histone modifications and Pol2 ChIP-seq
signals were quantified for each gene by computing reads
per kilobase million (RPKM) of 1Kb region centred around
the transcription start site of each gene, and this is repeated
for each of the eight time points. For MS-based proteomics
data, raw MS files were processed using MaxQuant (34) ver-
sion 1.5.3.29 against mouse UniProt database with a FDR
set at 0.01 for both peptide identification and protein infer-
ence. Proteins were quantified using LFQ intensity (log2) at
each of the nine profiled time points.

Differentially regulated TFs

Analysis of variance (ANOVA) tests were performed on
time-course RNA-seq and MS-based proteomic data to
identify differentially regulated genes on mRNA and pro-
tein levels, respectively. Benjamini-Hochberg correction
that controls for FDR was applied to account for mul-
tiple testing. Subsequently, for each gene, an integrated
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−log10(p) of mRNA and protein was derived as:

min (−log10 (pG) ,−log10 (pP))

where pG and pP are adjusted p-values from ANOVA anal-
ysis of mRNA and protein for each gene, respectively. Sim-
ilarly, an integrated log2 fold change of mRNA and protein
was calculated for each gene as:

min
(

max
(∣∣∣∣log2

(
Gi

G1

)∣∣∣∣
)

, max
(∣∣∣∣log2

(
Pj

P1

)∣∣∣∣
))

sign (.)

where Gi (i = 1 . . . 8) and Pj ( j = 1 . . . 9) are expression lev-
els of mRNA and protein at a time point. The sign(.) func-
tion determine the sign of the selected fold change. Genes
with a smaller than 0.05 integrated P-value and a >1 inte-
grated log2 fold change, as well as being annotated as a TF
in public databases (35,36) were noted as differentially reg-
ulated TFs during the pluripotency progression. Those that
have been profiled previously using ChIP-seq in ESCs (i.e.
Sox2, Nanog, Esrrb, Klf4, Nr5a2, Otx2 and c-Myc) were
selected for analysis.

TFBS identification and classification

Sequence reads of Sox2, Nanog, Esrrb, Klf4, Nr5a2, Otx2
and c-Myc ChIP-seq experiments, generated from ESCs,
were processed uniformly by aligning to the mouse refer-
ence genome (mm9) using Bowtie (33) version 0.12.8 allow-
ing at most two mismatches of read mapping to only unique
genomic positions. Aligned reads were processed using SIS-
SRs (37) using default settings for genome-wide TFBS iden-
tification. For each TF, SISSRs identified binding sites were
subsequently classified as proximal binding sites if the mid-
point of a binding site is within 1 kb from a Refseq anno-
tated transcription start site or distal binding sites other-
wise.

Chromatin interaction and putative TF target genes

Chromatin interaction between distal TF binding sites and
promoters were determined based on published Pol2-ChIA-
PET (20) dataset in ESCs. A TFBS was considered to inter-
act with a promoter if the 1 kb region centred around the
mid-point of the binding site and the 1 kb region centred
around a transcription start site (gene promoter) has been
observed to interact with Pol2-ChIA-PET interaction data.
Genes that are involved in chromatin interaction with the
distal binding sites of a TF were considered as putative dis-
tal target genes of that TF. Together with proximal target
genes (i.e. genes with promoters that are bound by the same
TF within 1kb), they were denoted as putative target genes
of the TF under consideration.

Application of AdaEnsemble for TF target prediction

AdaEnsemble utilises ESC Pol2-ChIA-PET data together
with each TF ChIP-seq profile data from ESCs to create
a ‘noisy’ initial class label vector and iteratively optimises
this class label vector by evaluating their likelihood with
the dynamics of trans-omic data under the assumption that
target genes of the same TF would have certain transcrip-
tomic, proteomic and epigenomic profiles that distinguish

them from non-target genes. The final prediction result is a
matrix of genes with predicted confidence of being targets of
a set of core TFs during the ESC to EpiLC transition from
which the transcriptional networks could be reconstructed
and dynamics resolved.

For each TF, all its putative target genes were treated
as positive instances and a set of randomly selected genes
that are not included in the positive set are used as nega-
tive instances. The size of the negative set is maintained as
the same as the positive set to keep the class distribution
balanced. AdaEnsemble is an extension of AdaSampling
for positive-unlabelled learning as described previously (29)
with a modified version of kNN classifier specifically de-
signed in this study to evenly weight the contribution of the
transcriptome, proteome and epigenome data. In particular,
the modified kNN utilises a weighted Euclidean distance to
quantify the dissimilarity d(.) of two genes x and y as fol-
lows:

d(x, y) =
√√√√ M∑

i=1

wi (xi − yi )
2

where M is the number of features and wi is the weight as-
sociated with the i th feature (

∑M
i=1 wi = 1).

Predictability assessment for epigenomic data

Significantly more features can be extracted from tempo-
ral epigenomic data (6 marks times 8 time points = 48 fea-
tures) compared to the transcriptome (eight features) and
proteome (nine features). To account for this, we performed
an initial training of AdaEnsemble using only transcrip-
tome and proteome data (z-scores standardised across time)
and a subsequent augmented training where the ‘intermedi-
ate’ predictions from the initial training were used to assess
the predictability of each epigenomic feature. This is quan-
tified by calculating an AUC value for each histone mark
and Pol2 at each of the eight profiled time points with re-
spect to the intermediate predictions. The final predictions
for each TF were made by combining the transcriptomic,
proteomic, and AUC-weighted epigenomic data by using
the above modified kNN classifier.

Estimation of false positive predictions

To estimate the percentage of false positive predictions
in AdaEnsemble, for each TF, the trained AdaEnsemble
model was used to classify a set of randomly selected genes
that were not included in the putative target gene list. Note
that the size of these randomly selected gene sets matches
the size of the putative target gene sets. Also, these randomly
selected gene sets were for model testing and were different
from those used as negative instances in the model training
process. By treating the randomly selected genes as negative
(i.e. non-target genes), we next estimated the false positive
rate (FPR) as the number of positive predictions from the
random set divided by the number of all genes in the ran-
dom set.



Nucleic Acids Research, 2020, Vol. 48, No. 4 1831

Dynamic network reconstruction and analysis

AdaEnsemble-identified TF target genes that are them-
selves TFs were included for visualizing the transition of
transcriptional networks from naive to formative pluripo-
tency using igraph R package with a layout calculated by us-
ing Kamada–Kawai force-directed algorithm (38). The tem-
poral mRNA expression of a gene x was first standardized
across time points using z-score transformation:

zx
i = Gx

i − Ḡx

σ̂ x

where for each gene Gx
i (i = 1 . . . 8) is the expression level

of mRNA at a time point i , and Ḡx and σ̂ x are the average
expression and variance across time points. After the stan-
dardization, the expression between a pair of genes λi (x, y)
on the mRNA level at a time point of i (i = 1 . . . 8) was
calculated as the average of their standardised temporal
mRNA expression values at each time point:

λi (x, y) = zx
i + zy

i

2
To quantify overall expression change, the pairwise ex-

pression calculated above was averaged for all target genes
of either naive or formative TFs. For calculating the rel-
ative change, the overall expression change calculated for
the naive TFs was subtracted by that of the formative TFs
at each time point. For visualizing dynamic changes in the
transcriptional networks, the pairwise expression λi (x, y)
was scaled to 0 and 1.

Quantification of transcriptional regulation

For each TF, to quantify the transcriptional regulation of
its target genes that are themselves TFs, we first identified
the maximum and the minimum log2 fold changes at any of
all time points and calculated the difference between these
two values for all target genes. For a target gene x, this value
(denoted as Dx) is calculated as below:

Dx = max
(

log2

(
Gx

i

Gx
0

))
− min

(
log2

(Gx
j

Gx
0

))

where Gx
i (i = 1 . . . 8) and Gx

j ( j = 1 . . . 8) are the expres-
sion levels of mRNA at a time point. Next, we took the
summation of the difference in the log2 fold changes for tar-
get genes that are themselves TFs (denoted as x ∈ TF) and
divided this by the summation for all target genes.

Ratio =
∑

x∈TF Dx∑
x Dx

The above ratio from this calculation is interpreted as the
contribution of target genes that are themselves TFs to the
total transcriptional regulation.

Pathway enrichment analysis

Pathway enrichment analysis, in terms of over-
representation of genes from a pathway, was performed
using Limma R package (39) against the gene ontology
(GO) terms from GO database (40). P-values were adjusted
using the Benjamini and Hochberg.

Spatiotemporal mapping of differentiating ESCs

To determine the in vivo counterparts of ESCs during
pluripotency transition, we mapped cells from each time
point to E5.5–E7.5 epiblasts of mouse embryos based on
the TF target genes identified in this study. Briefly, Geo-seq
samples of embryos were used for mapping (41) and the area
under the recovery curve across the ranking of genes was
calculated for each Geo-seq sample and ESCs from each
time point using the AUCell R package (v1.2.4) (42). The
area under the recovery curve was then used as the activ-
ity score which measures the enrichment of in vitro ESCs at
each time point and in vivo spatial epiblasts.

Finally, the corn plots of differentiating ESCs at each
time point were generated based on the enrichment on each
Geo-seq sample. The corn plots illustrate gene expression
or gene-set enrichment activity on the respective embryonic
positions. Spatial coordinates in the 2D plot are as follows:
the proximal–distal location in descending numerical order
(1 = most distal site) and in the transverse plane of the germ
layers: epiblast/ectoderm, anterior (A), posterior (P) con-
taining the primitive streak, right (R)––anterior (R1) and
posterior (R2), left (L)––anterior (L1) and posterior (L2).

RESULTS

Selection of dynamically regulated TFs during pluripotency
progression

The expression level of TFs is a key determinant of the ex-
pression of their downstream target genes (Figure 1A) and
thus the transcriptional networks they orchestrate (36,43).
To precisely pinpoint the timing of transcriptional network
transitions during pluripotency progression, we selected a
panel of TFs that are dynamically regulated during this
process. First, we assessed the mRNA expression and pro-
tein abundance of a list of known TFs compiled from mul-
tiple sources (35,36) in our trans-omic data (27) profiling
the ESC to EpiLC transition (Figure 1B and C). We then
defined the significance threshold as an absolute log2 fold
change equal to or greater than 1 (i.e. 2-fold increased or
decreased) at one or more time points and a p-value from
an FDR corrected ANOVA-test of less than or equal to
0.05 from the integrated transcriptome and proteome data
(see more details in ‘Materials and Methods’ section). This
threshold captures both the magnitude of change as well
as reproducibility within biological replicates across the
time points to ensure that selected TFs are significantly al-
tered during the ESC to EpiLC transition. Using this ap-
proach, we found 110 TFs that are dynamically regulated
during the differentiation process (Figure 1C; Supplemen-
tary Table S1). Lastly, we filtered the dynamically regu-
lated TFs, selecting a panel of seven that have been pro-
filed in a compendium of ChIP-seq datasets in ESCs (14).
The seven selected TFs are known to promote ESC self-
renewal or differentiation through previous genetic and/or
functional studies (Figure 1C). Five out of this seven are
down-regulated during the pluripotency transition, Sox2
(44), Nanog (45,46), Esrrb (47), Klf4 (48), and Nr5a2 (49)
and two are up-regulated, Otx2 (26) and c-Myc (50).

After calling the binding sites for each of these TFs from
their respective ChIP-seq datasets using SISSRs (37), we
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Figure 1. Identification of dynamically regulated TFs in pluripotency progression. (A) Schematics of TF expression and their binding at promoter-proximal
(P1, P2 and P3) and distal (D1, D2 and D3) sites during pluripotency progression from naive to formative states. Dash lines (red) represent interactions
between distal TF binding sites and their target genes. (B) Schematic summary of the time-course trans-omic dataset utilised in this study for reconstructing
and characterising the transcriptional networks in pluripotency progression from naive ESCs to EpiLCs that represent formative state. (C) Volcano plot
of genes profiled on both transcriptome and proteome levels in the trans-omic dataset (27). TFs that are dynamically regulated (DR) during the ESC to
EpiLC transition are highlighted in blue and within these DR TFs, those that have been profiled previously using ChIP-seq in ESCs are highlighted in
red. (D) Pie charts showing the distribution of promoter-proximal target genes (TSS ± 1 kb) and putative distal target genes (TSS > 1 kb) with chromatin
loops (Pol2-ChIA-PET) for each TF according to its ChIP-seq profile in ESCs.

categorized them as promoter-proximal (binds within 1 kb
of a TSS) and distal binding sites (binds 1 kb away from
TSSs) either without or with chromatin loop support (in-
teracts with one or more TSSs through chromatin looping,
as supported by the Pol2-ChIA-PET data) (Supplementary
Figure S1A). We next identified putative proximal and distal
target genes for each TF (see ‘Materials and Methods’ sec-
tion) (Figure 1D). Assessing the relative ratio of putative
proximal versus distal target genes for each TF, we found
that while c-Myc and Otx2 have more putative proximal tar-
get genes (72% and 57%, respectively), other TFs have rela-
tively more putative distal target genes (57–78%).

Prediction of TF target genes during pluripotency progression
using AdaEnsemble

Identification of genes that are regulated by master TFs
is an essential step for reconstructing transcriptional net-
works during the pluripotency progression. Here, we inte-
grated time-resolved trans-omic data with publicly available
Pol2-ChIA-PET (20) and ChIP-seq datasets from ESCs,
and formulated the task of identifying TF target genes as
learning with the presence of class label noise from all pu-
tative proximal and distal target genes. We extended our
AdaEnsemble model (28,29) for TF target gene predic-
tion (Supplementary Figure S1B). To achieve highly time-
sensitive and context-specific predictions, we processed the
trans-omic dataset into time-resolved gene features from

the transcriptome, proteome and epigenome that can be
utilized by AdaEnsemble (see more details in ‘Materials
and Methods’ section). Because the expression level of a
TF is a key determinant of the expression of its down-
stream target genes, we hypothesized that target genes of the
same TF would have certain transcriptomic, proteomic and
epigenomic profiles that distinguish them from non-target
genes. The mRNA expression and protein abundance of
the seven TFs (Figure 2A and Supplementary Figure S2A)
show that, consistent with Figure 1C, Sox2, Nanog, Esrrb,
Klf4 and Nr5a2 are dramatically down-regulated, whereas
Otx2 and c-Myc are significantly up-regulated across the
72 h time-course. Figure 2A summarizes the standardized
mRNA and protein expression profiles of both the putative
proximal and distal target genes of Sox2 and c-Myc sup-
ported by chromatin loop (top panel) and those identified
by AdaEnsemble (bottom panel). We found that genes iden-
tified by AdaEnsemble (P > 0.9) exhibit a much greater dy-
namics on both mRNA and protein levels during ESC dif-
ferentiation. Notably, we found that the temporal patterns
of the AdaEnsemble-identified target genes clearly resem-
ble the temporal changes in mRNA expression and protein
abundance of Sox2 and c-Myc (Figure 2A). Similar results
are observed for Nanog, Esrrb, Klf4, Nr5a2 and Otx2 (Sup-
plementary Figure S2A and B), and the full list of predic-
tion scores for all putative target genes of the seven TFs are
reported in Supplementary Table S2.
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Figure 2. Prediction and validation of TF target genes in transition from naive to formative pluripotency using AdaEnsemble and trans-omic data. (A)
Time-course showing the log2 fold change (compared to time = 0) in expression for mRNA (green) and protein (blue) for Sox2 and c-Myc. Bars represent
standard deviation among biological replicates (n = 2 for mRNA and n = 4 for protein). Pearson’s correlation coefficient for concordance between protein
and mRNA are shown. (B) Time-course expression profiles of putative target genes (i.e. putative candidates) supported by chromatin loops from Pol2-ChIA-
PET (top) and AdaEnsemble predicted target genes (bottom) for Sox2 and c-Myc, respectively. Profiles are divided into those from promoter-proximal
and distal target genes, and then further divided into those from mRNA and protein levels. (C, D) Cumulative distribution showing degree of correlation
(Pearson’s) between time-course expression profiles of each TF with its putative target genes (green and black) and those predicted by AdaEnsemble (red
and yellow), on mRNA (C, red) and protein (D, yellow) levels. P-values were computed using Wilcoxon Mann-Whitney U test (two-sided). (E) Log2 fold
change in mRNA after Sox2, Nr5a2, Nanog, Klf4, Esrrb knockdown, or Otx2 knockout in ESCs compared to WT ESCs. Wilcoxon Mann–Whitney U
test (one-sided) are performed on AdaEnsemble-identified target genes (iv) versus all quantified genes (i), proximal and distal target genes by nearest TSS
assignment of all TF binding sites identified in ChIP-seq data (ii), and putative target genes by chromatin loop support (Pol2-ChIA-PET) (iii), respectively,
and the largest p-value is displayed as an upper bound for all pairwise comparisons for each TF. (F) Similar to (E) but in c-Myc overexpressed ESCs
compared to WT ESCs.
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We next partitioned the TFBSs for each TF into those
that have high probability of target gene prediction (P >
0.9; herein referred to as high-TFBSs) and those with low
probability of prediction (P < 0.5; herein referred to as
low-TFBSs). For Sox2, Nanog, Esrrb, Nr5a2 and Klf4, we
combined their TFBSs and refer to the combined sets as
high-TFBSs and low-TFBSs of naive TFs. We found that
high-TFBSs are enriched for more H3K27ac mark and have
less H3K27me3 mark compared to low-TFBSs (Supple-
mentary Figure S2C), suggesting that high-TFBSs corre-
spond to active genomic regions and low-TFBSs to less ac-
tive regions. Finally, we quantified the goodness of fit of
the expression profiles of the putative target genes and the
AdaEnsemble-identified target genes to those of their re-
spective TFs. Compared to putative target genes, we found
that the AdaEnsemble-identified target genes generally have
a significantly higher correlation with their respective TFs
both at the mRNA (Figure 2C) and protein (Figure 2D) lev-
els. Overall, our findings from the AdaEnsemble prediction
suggest that the temporal behaviour of the high-confidence
target genes are similar to the expression profiles of their re-
spective TFs during the pluripotency transition, in line with
the role of TFs in regulating the expression of their target
genes.

Expression of AdaEnsemble-identified target gene sets upon
perturbation of their respective TFs

To validate the AdaEnsemble predictions for each TF, we
evaluated the AdaEnsemble model by using genes that are
not included as putative candidates in the model training
process. This allowed us to estimate the false positive rate
(FPR) because any positive predictions from these genes
are likely to be false positive predictions (see ‘Materials
and Methods’ section). Using this approach, we estimated
FPR of the AdaEnsemble prediction for each of the seven
TFs (Supplementary Figure S3A). We found that the pre-
diction threshold (i.e. the probability w.r.t. positive) of the
AdaEnsemble is negatively correlated with the FPR. More-
over, estimation at an FPR of 0.1 corresponded closely to
the AdaEnsemble prediction probability of 0.9.

To cross-validate the AdaEnsemble predictions with in-
dependent data sources, we quantified the log2 fold change
of each target gene using previously published gene ex-
pression data (see ‘Materials and Methods’) of the tran-
scriptome of wide-type (WT) ESCs and those with knock-
out, knockdown, or overexpression of Sox2, Nanog, Esrrb,
Klf4, Nr5a2, Otx2 or c-Myc. Compared to putative tar-
gets (i.e. all proximal genes and distal genes supported by
Pol2-ChIA-PET), gene sets identified by AdaEnsemble are
significantly more down- or up-regulated (Wilcoxon rank
sum test, P < 0.05) after the knockdown/knockout (Figure
2E) or overexpression (Figure 2F), respectively, of the cor-
responding TFs. In comparison, gene sets selected by us-
ing the nearest TSS assignment (Supplementary Table S3)
do not show significant expression changes after TF abla-
tion or overexpression (Figure 2E and F). Interestingly, we
found that the AdaEnsemble prediction largely maintained
the ratio of proximal and distal target genes throughout the
probability thresholds (Supplementary Figure S3B and Fig-

ure 1D), suggesting that our model is not biased towards
selecting either proximal or distal targets.

Predictability of histone marks and Pol2 ChIP-seq for TF
target genes

While the temporal changes of the transcriptome and pro-
teome are critical for capturing the dynamic modality of
the regulation of TF target genes, the utility of individual
histone modifications and Pol2 in TF target prediction re-
mains to be determined. To this end, we implemented an
‘initial training’ phase to create intermediate positive and
negative predictions with only the transcriptomic and pro-
teomic data. These predictions were subsequently utilized
to assess predictability of each histone mark and Pol2 ChIP-
seq occupancies at the TSS of each gene at each time point
(see ‘Materials and Methods’ section). Using this proce-
dure implemented in AdaEnsemble (Supplementary Figure
S1B), we determined the overall predictive power of each hi-
stone mark and Pol2 ChIP-seq data (Figure 3A) and their
predictive power with respect to each TF (Supplementary
Figure S4A). While these data suggest that not all epige-
nomic features are equally predictive of TF target genes,
we found that Pol2 and H3K27ac are the most predictive
marks, in general, consistent with the understanding that
these two marks are enriched at active promoters and en-
hancers (51,52). In contrast, we found that H3K4me1 is
more predictive for target genes of naive pluripotency TFs
(Sox2, Nanog, Esrrb, Nr5a2 and Klf4; together referred
hereon as naive TFs), whereas H3K4me3 is more predic-
tive for target genes of formative pluripotency TFs (Otx2
and c-Myc; together referred hereon as formative TFs) (Fig-
ure 3B). This supports a distal enhancer binding preference
of naive TFs, and in comparison, a relatively stronger pro-
moter binding preference of formative TFs. The relative pre-
dictability of histone marks and Pol2 were similar in naive
TFs (r = 0.9 ± 0.08) but it differed significantly from for-
mative TFs (r = 0.75 ± 0.16, Wilcoxon rank sum test P =
0.019) (Supplementary Figure S4B).

Because H3K4me1 at 6 h and H3K4me3 at 48 h showed
the most divergent predictabilities in terms of their discrim-
inative power for naive and primed TF target genes, we
next computed the average ChIP-seq signal of these two
marks at the promoters of genes (i) identified by AdaEnsem-
ble, (ii) supported by putative chromatin loops and (iii) as-
signed by nearest TSS approach (Figure 3C). We found that
the AdaEnsemble-identified target genes of naive TFs have
higher H3K4me1 signal than those defined using the two
other methods and, in contrast, those predicted for primed
TFs have higher H3K4me3 signal than their counterparts.

Characterisation of transcriptional networks governed by
naive and formative TFs

Using the AdaEnsemble-identified TF target genes, we next
quantified the degree of overlap in transcriptional networks
regulated by the seven TFs using the Jaccard index (Figure
4A). Consistent with the clustering of epigenomic features
(Figure 3B), transcriptional networks controlled by multi-
ple TFs are segregated into the naive module (i.e. Nanog,
Sox2, Esrrb, Nr5a2 and Klf4) and the formative module (c-
Myc and Otx2) (Figure 4A). Within the naive module, 197



Nucleic Acids Research, 2020, Vol. 48, No. 4 1835

Figure 3. Evaluation of predictability of histone marks and Pol2 ChIP-seq on TF target genes. (A) Overall predictive power (in terms of area under the
ROC curve [AUC]) of histone marks and Pol2 ChIP-seq data, averaged across all seven TFs, when assessed against the intermediate predictions from
the initial training phase of AdaEnsemble. (B) Bi-clustered heatmap showing relationship among histone modifications and Pol2 ChIP-seq in terms of
predictiveness (scaled AUC) in TF target genes. The dashed box highlights H3K4me1 and H3K4me3 marks for their contrast between naive pluripotency
TFs (Sox2, Nanog, Esrrb, Nr5a2, Klf4) and formative pluripotency TFs (Otx2 and c-Myc). (C) Levels of H3K4me1 (6 h) and H3K4me3 (48 h) signal at
the promoters of the target genes of naive and primed pluripotency TFs.

of the 824 (∼24%) target genes are regulated by two or more
naive TFs (Supplementary Figure S5A). For the formative
module, 539 target genes are shared between Otx2 and c-
Myc, and account for ∼65% and ∼35% of all formative TF
target genes, respectively (Figure 4B). We next assessed the
number of naive TFs that regulate a putative target gene (i.e.
all proximal target genes and distal target genes supported
by chromatin loop) on the basis of AdaEnsemble predic-
tion (Figure 5B). Our results showed that approximately
the same number of genes are regulated by multiple naive
TFs (38.4%) compared to those that are regulated by a sin-
gle naive TF (40.8%). Interestingly, genes regulated by more
than one naive TF tend to have more active chromatin fea-
tures, such as high H3K4me1/3, H3K27ac and Pol2 occu-
pancy and low H3K27me3 and H3K9me2 marks (Supple-
mentary Figure S5C). Therefore, genes bound by multiple
naive TFs may have enhanced expression (53).

For the target genes that are uniquely regulated by the
naive TFs, Otx2 or c-Myc (Figure 4B), analysis of the gene
ontology (GO) representation showed that naive-specific
target genes are enriched for pathways such as negative reg-
ulation of FGF signalling and WNT receptor signalling

(Figure 4C), in agreement with the known association of
these signalling pathways in naive pluripotency (1). Tar-
get genes specifically regulated by c-Myc show strong en-
richment for GO terms associated with RNA processing
(54,55), which are known to be associated with the mainte-
nance of pluripotency and differentiation potential of ESCs
(56). Finally, we found target genes specifically regulated
by Otx2 are associated with DNA-strand break repair and
replication initiation (Figure 4C).

Interestingly, we found that, compared to the formative
module, the naive module in general has a higher pro-
portion of transcriptional regulation contributed by tar-
get genes that are themselves TFs (Figure 4D). Further in-
vestigation shows that, the transcriptional regulation con-
tributed by target genes that are themselves TFs is positively
correlated with their percentage in the total target genes
(Figure 4E). Moreover, we found that for a given TF the ra-
tio of distal versus proximal binding sites are positively cor-
related with the percentage of its target genes that are them-
selves TFs (Supplementary Figure S5D). These results sug-
gest that denser TF hierarchies may exist for signal propaga-
tion in naive pluripotency wherein naive TFs rely on mul-
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Figure 4. Characterisation of TF target genes and transcriptional networks in naive and formative pluripotency. (A) Heatmap showing proportion (as
quantified by Jaccard index) of genes regulated by pairs of TFs. (B) Venn diagram showing a three-way overlap of target genes of naive TFs (union),
Otx2 and c-Myc. (C) Over-representation of gene ontology (GO) of target genes unique to naive TFs (naive-specific), Otx2 (Otx2-specific) and c-Myc
(c-Myc-specific). (D) Contribution of target genes that are themselves TFs toward the total transcriptional regulation. (E) Correlation between (D) and
the percentage of target genes that are themselves TFs (y-axis) for each of the seven TFs.

tiple layers of transcriptional regulation, whilst Otx2 and
c-Myc may regulate genes that have more explicit biologi-
cal functions that are specifically associated with the ESC
to EpiLC transition.

Poised formative transcriptional networks in naive pluripo-
tency

Epigenomic remodelling is critical for pluripotency progres-
sion (57). To delineate the rewiring of the epigenomic land-
scape during pluripotency transition, we analysed histone
marks of naive and formative modules across the profiled
time points. We found that, from 24 hours onwards, target
genes specific to the naive module showed a gradual gain
in H3K27me3 (a histone mark associated with the Poly-
comb repressive complex 2 (58)) at their promoters, an indi-
cator of a transcriptionally repressive state, suggesting the
repression of genes in the naive module (Figure 5A). The
increase in H3K9me2 level, a marker of heterochromatin,
demonstrated a similar specificity towards the naive mod-
ule (Supplementary Figure S6A). The gradual deposition
of the repressive marks is in line with the global transcrip-
tional down-regulation of the target genes in the naive mod-
ule (Figure 5A). By contrast, despite the apparent tran-
scriptional activation of the target genes in the formative

module (Figure 5B), we found that the H3K27me3 and
H3K9me2 remains largely unchanged at these gene promot-
ers throughout the ESC to EpiLC transition (Figure 5A and
Supplementary Figure S6A). Likewise, we observed min-
imal increase in H3K27ac and H3K4me3 marks (indica-
tors of active transcription) at the promoters of the forma-
tive target genes, whilst decreasing trends were observed for
genes associated with the naive state (Figure 5A and Sup-
plementary Figure S6B), consistent with the dissolution of
the naive transcriptional networks with the induction of dif-
ferentiation. The difference in variabilities may reflect the
difference in the number of target genes for each TF. To
further characterise the end-point of the differentiation, we
also assessed the chromatin accessibility of the binding sites
of c-Myc, Otx2, and the combined naive TFs using ATAC-
seq generated from both initial (ESCs) and final (EpiLCs)
time points (59). We found that while chromatin accessibil-
ity at naive TF binding sites reduced from the initial to the
final time point, the binding sites occupied by c-Myc and
Otx2 at the initial time point is open and remains open to a
similar degree at the final time point (Figure 5C). Together,
these results suggest that genes associated with the forma-
tive state are epigenetically poised for transcription in naive
pluripotency and a limiting factor for activation of the for-
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Figure 5. Formative target genes in naive pluripotency. (A) Boxplot for comparing H3K27me3 and H3K27ac signal at the promoter of AdaEnsemble-
identified TF target genes of naive and formative TFs during pluripotency progression. (B) Time-course of average log2 fold change (relative to 0 min)
in mRNA expression for the target genes of naive and formative TFs. Shaded areas represent standard deviation among target genes. (C) Chromatin
accessibility (ATAC-seq) of c-Myc, Otx2, and naive TF binding sites in ESCs and EpiLCs. (D) Schematic illustration of the poised chromatin associated
with formative target genes in naive pluripotency.

mative transcriptional networks may be the expression level
of formative TFs (Figure 5D).

Precise timing in transcriptional network rewiring during
pluripotency progression

To reveal the dynamics of core transcriptional networks
during the transition between the two pluripotent states, we
filtered the AdaEnsemble-identified target genes for those
that have a prediction confidence >0.95 and are themselves
TFs (Figure 6A). As expected, the target genes are largely
clustered into two modules with respect to their expres-
sion patterns across the timepoints (Supplementary Fig-
ure S7A). We subsequently reconstructed the dynamics of
the time-resolved networks by taking the mean of the ex-
pression of each TF–gene pair in the networks (Figure 6B
and Supplementary Table S4). We observe that, during the
early time points after induction of differentiation, tran-
scriptional regulation mediated by the naive module dom-
inates the transcriptional networks. The collective expres-
sion of the naive module decreased concurrently with the
increasing expression of the formative module, which be-
came the dominant transcriptional networks at later time
points (Supplementary Figure S7B).

To elucidate the precise timing from the reconstructed
transcriptional networks, we summarised all pairwise gene
expressions to reveal a progressively diminishing influence
of the naive TFs across the 72 h of differentiation. The

hierarchical clustering of pairwise correlation of the eight
time-points across all TFs in the reconstructed transcrip-
tional networks shows a transition point between 12 and
24 h after the initiation of differentiation (Supplementary
Figure S7C), suggesting that the transition between naive
and formative states may occur between these two time-
points. Indeed, the relative changes of all pairwise expres-
sions illustrate the same picture (Figure 6C), where the
collective transcriptional network of the formative module
overtakes that of the naive module, thereby dominating the
transcriptional landscape at later stages of differentiation.
We next spatiotemporally mapped differentiating ESCs at
each time point to data from mouse epiblasts from E5.5 to
E7.5 (41,60) (Supplementary Figure S7D) using our recon-
structed transcriptional networks (see ‘Materials and Meth-
ods’ section). Specifically, E5.5 to E6.0 cells of the epiblasts
are proposed to represent the formative state. In agreement
with the timing of emergence of formative pluripotency
(Figure 6C), we found the epiblast cell population at E5.5
and E6.0, corresponding to the formative state (4), closely
resembles differentiating ESCs at 24 h and onwards but not
prior (Figure 6D). We subsequently compared our tran-
scriptional networks of differentiating ESCs at each time
point to the E5.5 epiblasts that were profiled using single-
cell RNA-seq (61). We found that following the transition to
formative dominated stages, the transcriptional networks of
the formative module peaked at 48 hours of differentiation
and subsided afterwards (Figure 6E), suggesting that the in



1838 Nucleic Acids Research, 2020, Vol. 48, No. 4

Figure 6. Dynamic rewiring of transcriptional networks from naive to formative pluripotency. (A) TF networks prior to differentiation (naive pluripotent
state). AdaEnsemble-identified TF target genes (prediction probability > 0.95) that are themselves TFs are included in the network reconstruction. Edges
measure mean expression of each TF–gene pair. (B) Dynamic change of TF networks during the transition from naive to formative pluripotent states. Edge
colour across times reflects the change of expression of each TF–gene pair in the transcriptional networks. (C) Relative change in all pairwise expressions
from naive to formative states (see ‘Materials and Methods’ section for details). (D) Mapping the differentiating ESCs to the equivalent epiblast cell
populations by the activity of reconstructed transcriptional networks at different time points. Colour of the corn plots denotes enrichment from low (green)
to high (red). (E) Correlation between the expression of transcription networks from single cells of the E5.5 epiblast and the ESC to EpiLC transcriptional
networks at different time points.

vivo establishment of formative state in about 48 hours post-
induction, consistent with the spatiotemporal mapping re-
sults (Figure 6D). Together, these data reveal that the time-
line of the rewiring of transcriptional networks during the
progression from naive to formative pluripotency is tightly
controlled during early embryogenesis.

DISCUSSION

The pluripotency progression of ESCs is controlled by the
expression of specific transcriptional networks. Yet our abil-
ity to reconstruct these dynamic transcriptional networks
underpinning the pluripotency exit is hampered by chal-

lenges in discriminating functionally relevant TFBSs and
their proximal and distal target genes. Importantly, the
rewiring of long-range interactions has been found to be a
hallmark in pluripotent state transition in ESCs (62). There-
fore, it becomes especially important within the context of
the ESC to EpiLC transition to accurately define proximal
and distal target genes in order to obtain an accurate depic-
tion of the underlying transcriptional networks and their
dynamics.

An array of computational methods exists for identify-
ing TF target genes. These include correlation and machine
learning-based approaches that associate expression of can-
didate genes with DNase I hypersensitivity signals (63),
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chromatin features (23), and histone marks (11–12,22,64)
across multiple cell types (24,65–66), for predicting target
genes of proximal and distal TFBSs. Nevertheless, these
methods rely on (epi-)genomic features measured across
multiple cell types and therefore cannot reveal specific
dynamic changes in transcriptional networks during the
transition from one cell type to another (24,67). The ad-
vent of genome-wide ChIA-PET (68,69) and Hi-C assays
(21,70) has enabled the quantification of long-range three-
dimensional chromatin interactions. While several recent
studies have utilised this structural information as a ‘gold
standard’ to validate predicted target genes of distal TF-
BSs (22–24,71), few methods have utilized chromatin ter-
tiary structure information for the purposes of TF target
prediction. Due to the limitation in resolution of and the
biological noise from chromatin interaction analysis (a few
thousand bps) (72–74) and ChIP-seq techniques (75), not all
genes bound in adjacency based on ChIP-seq profile or in
distance supported by chromatin interaction are truly regu-
lated by that TF. Moreover, having a physical contact does
not always imply a functional regulation of a potential tar-
get gene by a TFBS (25).

Here, we incorporated chromatin conformation infor-
mation and developed an AdaEnsemble model that learns
from dynamic trans-omic data, while taking into account
experimental and biological data uncertainties. Although
epigenomic features such as various histone modification
marks have previously been utilized for TF target predic-
tion, few studies have looked at the predictiveness of in-
dividual histone marks for target genes of specific TFs.
By using the initial training procedure implemented in
AdaEnsemble (Supplementary Figure S1B), we found that
not all histone marks and Pol2 ChIP-seq are equally predic-
tive at each time point (Figure 3 and Supplementary Fig-
ure S4). To account for the difference in predictiveness of
each epigenomic mark and Pol2, we subsequently incorpo-
rated this information as feature weights in a weighted k-
nearest neighbour (kNN) classifier in the augmented learn-
ing phase for predicting the final TF target genes. Using
public functional datasets, we demonstrated the robust-
ness of our approach by showing that the expression of
many predicted target genes is significantly altered with
knockdown/knockout or overexpression of their respective
TFs (Figure 2E). While these functional datasets provide
additional evidence for predicted TF target genes, they may
not be useful for precise validation of all target genes be-
cause of secondary effects such as compensation by other
TFs as well as the difficulty in determining the optimal
time for transcriptome profiling following TF knockdown,
knockout, or overexpression. Therefore, rather than to com-
prehensively identify the target genes for each TF, we fo-
cused on characterizing the properties of naive and forma-
tive transcriptional networks from the high-confidence TF
target genes.

Our analyses of the AdaEnsemble-identified TF target
genes suggest that naive pluripotency is enriched with path-
ways such as negative regulation of FGF signalling and
Wnt signalling. Consistent with previous studies showing
that miRNA depletion and blockade of Dgcr8-dependent
miRNA biogenesis is critical to silencing self-renewal
(76,77), we found that one of the major functional outputs

of the formative transcriptional network is ncRNA pro-
cessing (Figure 4C). Indeed, we observed that key media-
tors of RNA processing, including Isy1, Dgcr8 and Drosha,
are among the high-confidence targets of c-Myc (Supple-
mentary Table S2) and have been demonstrated to be im-
portant for pluripotency exit in ESCs (77–79). Although
recent studies have demonstrated an important role for
Otx2 for pluripotency transition from naive to formative
state (80,81), the target genes of Otx2 have not fully iden-
tified and explored. Here, we found that targets of Otx2
are enriched for DNA repair and replication initiation. To-
gether, the functional output of the formative transcrip-
tional networks, geared towards DNA replication, post-
transcriptional RNA processing and translational initiation
(Figure 4C), may herald cell lineage commitment.

Recent studies propose formative cells to be executors of
pluripotency, serving as mandatory intermediates en route
to multi-lineage specification (4,82). Our analysis suggests
that the pivotal transformation, wherein the formative tran-
scriptional networks override the naive transcriptional net-
works, occurs at 12–24 h of differentiation induction (Fig-
ure 6C). Furthermore, our results showing the proximity
of transcriptome between differentiating ESCs and the epi-
blast have allowed us to pinpoint the developmental equiv-
alence of the EpiLCs and the early post-implantation epi-
blast (E5.5 and E6.0) (Figure 6D), which are reputed to
be at the formative phase of the transition of pluripotency
state (3,6). It is hypothesised that the dominant transcrip-
tional networks at the formative pluripotent state will be
driven by the combinatorial activity of TFs including Otx2,
Sox3 and Oct6, which are also neuroectoderm lineage spec-
ifiers (4). Results of our study showed that the Otx2/c-Myc-
driven transcriptional networks, which also feature the in-
teraction of Sox2 and Pou5f1, peaked by 48 hours of in
vitro differentiation. Our findings have therefore provided
the first glimpse of the dynamic architecture of the forma-
tive pluripotency networks.

DATA AVAILABILITY

AdaEnsemble is implemented in the AdaSampling R pack-
age and is publicly available from [https://CRAN.R-project.
org/package=AdaSampling]. DyTN, a shiny application
summarising the reconstructed transcriptional networks
and visualising their dynamics during the pluripotency
progression, can be explored at (http://shiny.maths.usyd.
edu.au/DyTN/). Mouse ESC to EpiLC time-course RNA-
seq, ChIP-seq, and MS-proteomics data were downloaded
from Gene Expression Omnibus (GEO) with accession
number GSE117896 and PRIDE with accession number
PXD010621 (27). Mouse ESC TF ChIP-seq data were
downloaded from GEO with accession number GSE44288
for Nanog and Sox2 (83); GSE11431 for Esrrb, Klf4 and
Myc (50); GSE19019 for Nr5a2 (49) and GSE56138 for
Otx2 (26). Mouse ESC Pol2-ChIA-PET data were down-
loaded from GEO with accession number GSE44067 (20).
Mouse ESC Microarray data were downloaded from GEO
with accession number GSE4679 for Sox2 KD and Esrrb
KD (84); GSE26520 for Nanog KD and Nr5a2 KD (85);
GSE9775 for Klf2,4,5 KD (86); GSE56138 for Otx2 KD
(26) and GSE60344 for Myc overexpression (87). Mouse

https://CRAN.R-project.org/package=AdaSampling
http://shiny.maths.usyd.edu.au/DyTN/
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ESC and EpiLC ATAC-seq data were downloaded from
GEO with accession number GSE93147 (59). Mouse em-
bryo spatial epiblast RNA-seq data were downloaded from
GSE120963 (30) and mouse embryo epiblast single-cell
RNA-seq data from GSE100597 (61).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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