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Abstract

Purpose

To determine the mechanisms of speech intelligibility impairment due to neurologic impair-

ments, intelligibility decline was modeled as a function of co-occurring changes in the articu-

latory, resonatory, phonatory, and respiratory subsystems.

Method

Sixty-six individuals diagnosed with amyotrophic lateral sclerosis (ALS) were studied longi-

tudinally. The disease-related changes in articulatory, resonatory, phonatory, and respira-

tory subsystems were quantified using multiple instrumental measures, which were

subjected to a principal component analysis and mixed effects models to derive a set of

speech subsystem predictors. A stepwise approach was used to select the best set of sub-

system predictors to model the overall decline in intelligibility.

Results

Intelligibility was modeled as a function of five predictors that corresponded to velocities of

lip and jaw movements (articulatory), number of syllable repetitions in the alternating motion

rate task (articulatory), nasal airflow (resonatory), maximum fundamental frequency (phona-

tory), and speech pauses (respiratory). The model accounted for 95.6% of the variance in

intelligibility, among which the articulatory predictors showed the most substantial indepen-

dent contribution (57.7%).
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Conclusion

Articulatory impairments characterized by reduced velocities of lip and jaw movements and

resonatory impairments characterized by increased nasal airflow served as the subsystem

predictors of the longitudinal decline of speech intelligibility in ALS. Declines in maximum

performance tasks such as the alternating motion rate preceded declines in intelligibility,

thus serving as early predictors of bulbar dysfunction. Following the rapid decline in speech

intelligibility, a precipitous decline in maximum performance tasks subsequently occurred.

Introduction
Speech is produced through the coordinated actions of the articulatory, resonatory, phonatory,
and respiratory subsystems. Impairments in one or more of these speech subsystems can com-
promise speech intelligibility [1,2]. Modeling of the separate and combined impact of subsys-
tem impairments on speech intelligibility has been a significant empirical challenge, but is
important for improving speech motor assessments and identifying speech treatment targets
[3,4].

Despite the need for exploring the impact of subsystem impairments on speech intelligibil-
ity, only a few studies have attempted modeling the effect of multiple subsystems on speech
decline [5,6]. These studies used auditory-perceptual features of different speech dimensions
(i.e., voice quality, articulation, nasality, and prosody) [5] or acoustic measures indicative of
the integrity of subsystem function (e.g., F2 slope, vowel space, fundamental frequency [F0],
and nasal resonance) [6] as predictors of speech intelligibility, which accounted for over 80% of
the variance in speech intelligibility across various dysarthric populations.

Models of dysarthric speech such as the one developed by De Bodt et al. [5] based on audi-
tory-perceptual scales are important for understanding the perceptually salient features that
drive intelligibility decline and for developing listener-based strategies to enhance intelligibility
[7,8]. Models based on auditory-perceptual ratings, however, are challenged by listener biases
making it difficult to determine how affected was driven by differences among listeners per-
forming the perceptual assessments rather than differences among the speech profiles of the
speakers [9]. In contrast, models on the basis of acoustic features, such as the one developed by
Lee et al. [6], are based on quantifiable markers of speech performance. Acoustic parameters,
however, do not unambiguously represent the status of individual speech subsystems. An
improved subsystem-based intelligibility model may, therefore, require the inclusion of physio-
logic-based indices of speech subsystem performance where possible.

A robust intelligibility model also requires a sufficient sample of participants who exhibit
varying degrees of impairment across different subsystems. The population with dysarthria
due to amyotrophic lateral sclerosis (ALS)–a motor neuron disease–meets this criteria because
the disease often differentially impairs the articulatory, resonatory, phonatory, and respiratory
speech subsystems, and the overall speech performance declines progressively over time
[1,2,10,11,12,13].

Over the past few decades, instrumentation-based measures have been used to characterize
the decline across speech subsystems due to ALS [3,11,12,14,15,16,17,18]. These studies were
mostly based on single speech subsystems and have identified a set of candidate measures that
showed sensitivity for detecting early changes in speech subsystem performance [2,3,19]. For
example, Yunusova et al. [20] reported associations between the decline in speech intelligibility
and changes in the extent, speed, and duration of lip and jaw motions. Although these findings
suggested contributions of individual subsystems to speech intelligibility decline, measures of a
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single subsystem are unlikely to sufficiently account for the variance in the longitudinal decline
of speech intelligibility in ALS [11,12]. Therefore, the primary goal of this study was to deter-
mine the collective and individual contributions of speech subsystem impairments to the longi-
tudinal decline of speech intelligibility in persons with a range of severities of ALS.

To achieve this goal, we employed a robust statistical modeling approach to overcome sev-
eral prior barriers to developing an explanatory model of intelligibility decline. First, although
the variables that best capture speech subsystem decline are unknown, most prior studies have
been based on a priori assumptions about the salient physiologic variables that drive speech
intelligibility decline. In this study, we screened a large number of subsystem variables using a
data-driven approach, which produced an optimized set of speech subsystem variables for pre-
dicting speech intelligibility decline. The second limitation of prior studies lies in the assump-
tion of a linear association between intelligibility decline and subsystem involvement. Research
on the longitudinal decline of speech intelligibility in ALS has uniformly demonstrated that the
rate of intelligibility decline is not consistent during disease progression [3,19]. Specifically, the
longitudinal decline of intelligibility can be described as approximately bi-phasic: (1) during
the early phase, intelligibility remains relatively high and declines at a slow rate, and (2) during
the late phase, intelligibility declines rapidly as the disease progresses, resulting in the eventual
loss of speech communication within a relatively short time span [3,19]. To model the bi-pha-
sic trajectory of intelligibility decline, a more sophisticated nonlinear model is required. In this
study, we compared linear models with bi-phasic nonlinear models to determine the best-fit-
ting model of intelligibility. In addition, unlike previous studies that used regression analyses,
we used mixed effects models to account for the heterogeneity among different individuals.
This modeling approach provides a robust means to model the group pattern of speech intelli-
gibility decline while taken into account the variability across individuals.

Using the data-driven and statistical modeling approaches, this study addressed two aims:
(1) to identify subsystem variables related to speech intelligibility impairment in patients with
ALS, and (2) to determine the relative contribution of the subsystems to the overall speech
intelligibility decline over the course of the disease.

Materials and Methods

Participants
The study was approved by the Ethics Research Boards at the Sunnybrook Research Institute
in Toronto, University of Nebraska–Lincoln, and the MGH Institute of Health Professions.
Sixty six participants (37 males and 29 females) aged from 39 to 79 years old (M = 57 years,
SD = 10 years) took part in this study. All participants were diagnosed with possible, probable
or definite ALS by a neurologist (Authors 5&6), who recruited them into the study. All conse-
cutive patients were invited to participate and everyone who was able and willing to participate
in a longitudinal study was recruited and consented in a written form. Participants were
excluded if they were unable to speak English fluently, read at the grade 5 level, reported hear-
ing impairment, or reported significant visual impairment preventing them from being able to
read. We also excluded those who showed signs of cognitive impairment as measured by the
Montreal Cognitive Assessment (MoCA; cut of score<26; [21]). None of the patients were on
medications known to affect speech production [22].

The characteristics of the participants were summarized in S1 Table. Among all partici-
pants, 15 reported bulbar onset, 41 spinal onset, 6 mixed bulbar and spinal onsets, and 4 had
an unknown onset site. Disease duration varied among participants. At the first session of the
study, patients were on average 12 months post diagnosis (SD = 18 months). The severity of
ALS and its bulbar presentation also varied among participants, as assessed by the ALS
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Functional Rating Scale–Revised (ALSFRS-R). The ALSFRS-R score (0~48) was obtained from
12 survey questions that assess the degree of functional impairment with the score of each
question ranging from 4 –least impaired to 0 –most impaired. The ALSFRS-R scores of the 66
participants in this study ranged between 29 and 48 at the first session, with a mean of 38 and
SD of 5. The bulbar subscore, estimated based on the first 3 questions of the scale, assessed the
bulbar function with a maximum score of 12 and ranged between 4 and 12, with a mean of 10
and SD of 2 in our sample.

All participants were recorded longitudinally over multiple sessions; the duration between
the first and last sessions ranged from 42 days to 1798 days (M = 455 days, SD = 365 days).
Patients were scheduled for follow-up visits to coincide with clinical visits, approximately every
three months. Ultimately, inter-visit durations varied substantially, in part dependent upon the
rate of disease progression. The average number of sessions across the participants was 7
(SD = 5). As expected, study retention was challenging due to immobility from ALS progres-
sion [23,24], which resulted in a number of missing data throughout the recordings.

Data acquisition
Measures of speech subsystems. The speech functions of the articulatory, resonatory,

phonatory, and respiratory subsystems were assessed during multiple speech tasks using a vari-
ety of acoustic, aerodynamic, and kinematic instruments. A brief description of the instrumen-
tation, acquisition settings and measurements is in S2 Table; more detailed descriptions have
been published previously in Green et al. [3] and Yunusova et al. [25]. Briefly here, a 45-minute
recording protocol comprised of acoustic, aerodynamic, and kinematic methodologies was
used to monitor performance across subsystems during each visit.

A total of 58 measures were collected across all four subsystems and comprised a multi-fac-
torial database. Collecting a substantial number of measures and implementing a variable dis-
covery process was necessary because the variables that best capture the decline in speech
performance with disease progression of each subsystem are unknown.

System-level speech measurement. In addition to the subsystem measurements, the Sen-
tence Intelligibility Test (SIT; [26]) was performed to obtain the system-level measurements of
speech intelligibility and speaking rate. As a standard clinical approach to assess speech intelli-
gibility in persons with motor speech disorders, SIT has been previously used to index the
severity of bulbar ALS in multiple studies [3,19,20,27].

During the test, participants were asked to read a list of 10 sentences of varying length (from
5 to 15 words) randomly generated by the SIT software. The speech samples of each participant
were transcribed by one naive listener who was unfamiliar with either the test materials or the
dysarthric patterns of the participants. Based on the SIT, speech intelligibility (i.e., the percent
of words correctly transcribed out of the total number of words) and speaking rate (i.e., the
number of words read per minute) were calculated automatically by the SIT software.

Data reduction
We performed data reduction combining Pearson’s correlation and principal component anal-
ysis (PCA) following the steps displayed in the first panel of Fig 1. The first step was a variable
selection process, which identified the variables that were sensitive to bulbar decline by calcu-
lating their correlations with speaking rate using Pearson’s correlation coefficients. While there
is currently no gold-standard measure of bulbar disease severity for ALS, speaking rate was
chosen as an indicator of bulbar decline because, unlike speech intelligibility, it is known to
decline earlier and at a relatively constant rate [19]. The correlation analysis identified 25 vari-
ables (see S3 Table) that were significantly correlated (p< .05) with speaking rate. Specifically,

Predicting Speech Intelligibility Decline in ALS

PLOSONE | DOI:10.1371/journal.pone.0154971 May 5, 2016 4 / 19



articulatory subsystem was represented by 12 variables that represented the maximum and
minimum velocities of the lips and jaw during “Buy Bobby a puppy”, and the number of repeti-
tions, duration, and rate of the AMR task. Resonatory subsystem was represented by six vari-
ables that represented the velopharyngeal aerodynamics (e.g., oral and nasal airflow) during
contrastive syllables /ma/ and /pa/, the time lag between /m/ and /p/ in “hamper”, and the
nasalance during sentence reading. Phonatory subsystem was represented by two variables that
corresponded to maximum fundamental frequency (F0) and average laryngeal airway resis-
tance. Respiratory subsystem was represented by five variables that quantified speech pausing
patterns. All of the subsystems’ variables served as the input for the second step of the analysis.

Fig 1. Flow chart for (1) the variable selection and dimensionality reduction for each subsystem; (2) constructing of individual subsystemmodels of speech
intelligibility; and (3) development of a multi-subsystemmodel of speech intelligibility.

doi:10.1371/journal.pone.0154971.g001
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In the second step, the selected variables of each subsystem were subjected to a principal
component analysis [28] to further reduce the dimensionality of the dataset and eliminate col-
linearity (Fig 1). PCA is a statistical procedure that uses an orthogonal transformation to con-
vert a set of observations of possibly correlated variables into a set of linearly uncorrelated
principal components [29]. Each principal component was represented as a weighted sum of
the subsystem variables, where the variables that determined the primary speech performance
of the subsystem were assigned high weights. For each subsystem, a minimum set of principal
components that jointly accounted for over 90% of the total variance was selected to serve as
the candidate predictors of speech intelligibility loss.

Modeling of speech intelligibility decline
To determine the relative contribution of each subsystem to the overall speech intelligibility
decline, we developed four individual subsystem models, based on which a set of variables
from each subsystem that were predictive of intelligibility decline were derived (Aim 1); we
then established one multi-subsystem model of intelligibility that predicted the contribution of
the variables from each subsystem to the overall decline in intelligibility (Aim 2). Because there
was more data on the higher end of intelligibility distribution than on the lower end (e.g.,<
40%), we only modeled intelligibility within the range of 40~100% to minimize the effect of
outliers in the lower part of the total range. In the individual subsystem models, intelligibility
was modeled as a function of the principal components of each subsystem using linear and
nonlinear mixed effects (LME/NLME) modeling approaches [30–32]. In the multi-subsystem
model, intelligibility was modeled as a function of selective predictors from the articulatory,
resonatory, phonatory, and respiratory subsystems based on a stepwise regression.

Individual subsystem models of intelligibility decline. As shown in the second panel of
the flow chart in Fig 1, each subsystem model was determined in multiple steps. First, both an
LME model (fitlme, MATLAB R2013b) and an NLME model (nlmefit, MATLAB R2013b)
were applied to predict intelligibility using the PCs of each subsystem as predictors, while
accounted for inter-subject variability. A linearity test (coefTest, MATLAB R2013b) was then
applied to the LME model to test the linearity assumption. If the linearity assumption was vio-
lated (p> = .05), the NLME model was selected. If the linearity assumption was not violated
(p< .05), the LME model was compared with the NLME model using the Bayesian informa-
tion criterion (BIC) and the model with a smaller value of BIC was selected as the optimal fit
model. The procedures for determining the form of the LME/NLME model are elaborated on
in S1 Text. In brief, if there was a single PC in the model, intelligibility was modeled as a linear
or bi-phasic function of this PC, depending on which model provided a better fit. If there were
two PCs in the model, intelligibility could be either linearly or nonlinearly correlated with each
PC, resulting in three candidate forms–one LME model and two NLME models. The Bayesian
information criterion selected the one with the best fit as the optimal model out of all candidate
models, including all NLME model(s) that converged and the LME model. If none of the
NLME models converged, then the LME model was selected. Based on the selection of the
best-fitting model for each subsystem, a set of subsystem predictors was generated.

Data imputation. Due to the high dropout rates, each predictor had a number of cases
with missing data. These cases with missing data are by default discarded in statistical models,
resulting in reduced sample size and imbalance of the data, which might potentially bias the
results. To increase the sample size and reduce the imbalance in the data, we imputed each sub-
system predictor based on its relation to intelligibility represented by each subsystem model.
Specifically, we estimated the missing values of the subsystem predictor given the observed val-
ues of intelligibility by solving the equation in the subsystem model. If there was more than one
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predictor with overlapped cases of missing data in the subsystem model, then the problem was
considered as underdetermined, and imputation was not done. All remaining cases with miss-
ing data were imputed for each subsystem predictor.

Multi-subsystem model of intelligibility decline. Following the steps in the third panel of
the flow chart in Fig 1, the multi-subsystem model of intelligibility decline was determined as a
function of all four subsystems. To select model covariates, the imputed subsystem predictors
were first tested for multicollinearity (vif, R 3.0.1) based on the variance inflation factor (VIF).
All subsystem predictors with a cutoff VIF< 3 were selected and applied as the inputs to a
stepwise regression (step, R 3.0.1), which used the Akaike information criterion (AIC) to select
a subset of predictors with minimal inter-correlations that comprised the best-fitting model of
intelligibility.

Impacts of cognitive-linguistic deficits and general respiratory status on
speech performance
Although motor symptoms predominate, 10% of patients with ALS exhibit symptoms of fronto-
temporal dementia (FTD) and up to 50% show signs of cognitive-linguistic deficits [33], which
could impact speech intelligibility and some of the subsystem measures (e.g., speech pauses).
Moreover, in addition to the respiratory component of speech intelligibility assessed in the study,
the general respiratory status could also impact the speech performance of patients with ALS.

Because our goal was to understand the changes in bulbar motor performance and their
effects on speech intelligibility, the potential confounding effects of cognitive-linguistic deficits
and general respiratory status on speech performance needed to be minimized on the intelligi-
bility model. To assess the impact of general respiratory status on speech performance, we
applied a linear mixed effects model (lmer, R 3.2.3) to examine the relation between speech
intelligibility and the % Forced Vital Capacity (%FVC), while controlling for the effect of bul-
bar motor impairment, which was represented by the bulbar subscore on the ALSFRS-R. The
model showed no significant correlation between %FVC and speech intelligibility, suggesting
that the general respiratory status did not have a significant impact on the speech performance
of the participants in this study.

To assess the impact of cognitive-linguistic deficits, we examined the relation between
speech pause duration, which was demonstrated to be sensitive to both motor impairments
and cognitive-linguistic deficits [33], and articulation rate, which is only affected by motor
impairments [33], while controlling for respiratory status. A linear mixed effects model (lmer,
R 3.2.3) was applied, which showed a significant correlation (p<0.0001) between speech pause
duration and articulation rate with an R2 of 0.7. This strong correlation indicated that the bulk
of the variance in speech pause duration was accounted for by articulation rate, suggesting that
motor impairments were the primary deficits in the participants of this study. Moreover, we
found no significant correlation between the residuals of the LME model above and speech
intelligibility, suggesting that cognitive-linguistic deficits did not have a significant impact on
speech intelligibility.

Results

Speech intelligibility
The SIT intelligibility scores ranged from 2.73% to 100% (M = 87.54%, SD = 22.70%) across sub-
jects and recording sessions. The average speech intelligibility scores at the initial and final ses-
sions were 95.05% (SD = 8.63%) and 75.20% (SD = 31.15%), respectively. The average
intelligibility drop between the first and last sessions across subjects was 19.86% (SD = 27.11%).
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Principal components of speech subsystems
Table 1 lists the principal components that accounted for the bulk of variance for each subsystem
along with the key composites of each principal component and their corresponding weights.
Two principal components (PCart1, PCart2) accounted for over 96% of the variance in the artic-
ulatory subsystem. The measures that comprised these principal components included the maxi-
mum and minimum velocities of the composite movement of lower lip and jaw, the maximum
and minimum velocities of lip opening during “Buy Bobby a puppy”, and the number of syllable
repetitions produced on one breath in the AMR task. Two principal components (PCreso1,
PCreso2) accounted for over 99% of the variance in the resonatory subsystem. The key measures
that comprised the resonatory principal components were the peak nasal flow during /pi/ and
the average nasalance score during “Buy Bobby a puppy.”One principal component (PCresp1)
accounted for over 95% of the variance in the respiratory subsystem. The key composites of the
respiratory principal component, as listed in Table 1, corresponded to the pausing pattern (i.e.,
number of pauses, % pause time, and pause duration) during the reading of a passage.

For the phonatory subsystem, the first and second principal components (PCphon1,
PCphon2) jointly accounted for 100% of the variance because only two pre-screened phonatory
variables (i.e., maximum F0 and average laryngeal airway resistance) were subjected to PCA.
However, the key measure that comprised PCphon2 (i.e., average laryngeal airway resistance)
was only available for a relatively small number of participants, which limited the statistical
power of the phonatory subsystem-based intelligibility model. To determine whether PCphon2
must be included as a predictor of intelligibility, we conducted a likelihood ratio test to com-
pare an LME model of intelligibility with only PCphon1 as a predictor and another LME model

Table 1. The key variables and the corresponding weights that comprise the principal components of each speech subsystem.

Principal components Key variables Weights

PCart1 BBP_MaxVel_LL+JAW 0.41

BBP_MaxVel_UL-LL 0.56

BBP_MinVel_LL+JAW -0.40

BBP_MinVel_UL-LL -0.56

PCart2 Reps_AMR 0.99

PCreso1 NasalFlow_Pi -1.00

PCreso2 Naso_BBP -1.00

PCphon1 Max_F0 0.97

PCresp1 Pause_Event -0.51

%Pause -0.76

Pause_Duration -0.40

Notes.

BBP_MaxVel_LL+JAW = Maximum velocity of the composite movement of lower lip and jaw during “Buy Bobby a puppy.”

BBP_MaxVel_UL-LL = Maximum velocity of lip opening during “Buy Bobby a puppy.”

BBP_MinVel_LL+JAW = Minimum velocity of the composite movement of lower lip and jaw during “Buy Bobby a puppy.”

BBP_MinVel_UL-LL = Minimum velocity of lip opening during “Buy Bobby a puppy.”

Reps_AMR = Number of syllable repetitions during the AMR test

NasalFlow_Pi = Peak nasal airflow during /pi/

Naso_BBP = Median nasalance in “Buy Bobby a puppy.”

Max_F0 = Maximum fundamental frequency during a high pitch task

%Pause = Percentage of pause time during Bamboo passage

Pause_Event = Number of pauses during Bamboo passage reading

Pause_Duration = Total duration of pauses during Bamboo passage reading

doi:10.1371/journal.pone.0154971.t001
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with both PCphon1 and PCphon2 as predictors. We found no statistical difference between the
two models (p = 0.19), so PCphon2 was dropped from the analysis. Meanwhile, because the
average laryngeal airway resistance only had a minor effect on PCphon1, we replaced the miss-
ing values of this variable with zeros and updated PCphon1 to serve as a predictor of intelligibil-
ity, which accounted for 77.7% variance in the phonatory subsystem.

Individual subsystemmodels of intelligibility decline
Statistical results of the intelligibility model as a function of each subsystem are shown in Table 2.
For the articulatory subsystem, the NLMEmodel with a linear term of PCart1 and two nonlinear
terms of PCart2, which corresponded to the early and late phases of the disease, provided a better
fit than did the LMEmodel (BIC[NLME] = 461.8, BIC[LME] = 486.1). Thus the NLMEmodel
was selected to model intelligibility as a nonlinear function of the articulatory PCs. For the reso-
natory subsystem, all candidate NLMEmodels failed to converge, so the LMEmodel was selected
as the best fit to model intelligibility as a linear function of the resonatory PCs. For the phonatory
subsystem, because the linearity assumption was violated (linearity test with p = 0.145), the
NLMEmodel with two nonlinear terms of PCphon1, corresponding to the early and late phases
of the disease, was selected as the optimal model of intelligibility. For the respiratory subsystem,
the NLMEmodel with two nonlinear terms of PCresp1, which corresponded to the early and late
phases of the disease, provided a better fit than did the LMEmodel (BIC[NLME] = 1934.8, BIC
[LME] = 2086). Therefore, the NLMEmodel was selected to model intelligibility as a nonlinear
function of the respiratory PC. According to the R2 values in Table 2 and the scatter plots in Fig
2, all of the subsystem-based models show relatively good fits.

According to the form of the articulatory subsystem-based model, (1) intelligibility declined
at a constant rate of 0.011% as PCart1 decreased; and (2) intelligibility declined at different
rates in two phases as PCart2 decreased. The transition of the two phases was determined by a
threshold of PCart2 at 31.45: when PCart2> 31.45, intelligibility declined at a slower rate of
0.015% as PCart2 decreased; and when PCart2< 31.45, intelligibility declined at a faster rate of
1.4% as PCart2 decreased.

The form of the resonatory subsystem-based model suggested that (1) intelligibility declined
at a constant rate of 0.0022% as PCreso1 decreased; and (2) intelligibility declined at a constant
rate of 0.19% as PCreso2 decreased.

The form of the phonatory subsystem-based model suggested that intelligibility declined at
different rates in two phases as PCphon1 decreased: (1) when PCphon1> 280.07, intelligibility
declined at a slower rate of 0.0047% as PCphon1 decreased; and (2) when PCphon1< 280.07,
intelligibility declined at a faster rate of 0.21% as PCphon1 decreased.

The form of the respiratory subsystem-based model suggested that intelligibility declined at
different rates in two phases as PCresp1 decreased: (1) when PCresp1> -36.43, intelligibility
declined at a slower rate of 0.13% as PCresp1 decreased; and (2) when PCresp1< -36.43, intelli-
gibility declined at a faster rate of 1.56% as PCresp1 decreased.

Table 2. Individual subsystemmodels of intelligibility.

Subsystem Fixed effects of subsystem-based model of intelligibility R2

Articulatory 93.92+0.011*PCart1+0.015*max(PCart2-31.45,0)−1.4*max(31.45-PCart2,0) 0.71

Resonatory 98.62+0.0022*PCreso1+0.19*PCreso2 0.80

Phonatory 96.84+0.0047*max(PCphon1-280.07,0)−0.21*max(280.07-PCphon1,0) 0.72

Respiratory 95.22+0.13*max(PCresp1+36.43,0)– 1.56*max(-36.43-PCresp1,0) 0.80

Note. The bold parts are subsystem predictors of intelligibility.

doi:10.1371/journal.pone.0154971.t002
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Before applying the subsystem predictors shown in Table 2 to the multi-subsystem model,
data imputation was performed. Specifically, 6% of the data were imputed in PCart1; 27% of
the data were imputed inmax(PCart2-31.45,0) andmax(31.45-PCart2,0); 8% of the data were
imputed in PCreso1 and 4% of the data were imputed in PCreso2; 61% of the data were imputed
inmax(PCphon1-280.07,0) andmax(280.07-PCphon1,0); 27% of the data were imputed inmax
(PCresp1+36.43,0) andmax(-36.43-PCresp1,0).

Multi-subsystem model of intelligibility decline
Nine subsystem predictors (3 articulatory, 2 resonatory, 2 phonatory, and 2 respiratory predic-
tors as bolded in Table 2) were subjected to the collinearity test. Among all predictors, one

Fig 2. Scatter plots of intelligibility against the estimated values of intelligibility based on each individual subsystemmodel.

doi:10.1371/journal.pone.0154971.g002
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phonatory predictor (i.e.,max[280.07-PCphon1,0]) was identified to be highly correlated with the
other 8 predictors (VIF = 13.36), so this predictor was discarded from further modeling. Among
the remaining 8 predictors, one respiratory predictor (i.e.,max[-36.43-PCresp1,0]) and one articu-
latory predictor (i.e.,max[31.45-PCart2,0]) were identified to be correlated with each other with
an R2 greater than 0.6 (VIF> 3). To determine which of these two predictors should be discarded,
we compared two stepwise regressions. In the first stepwise regression, all of the subsystem
predictors exceptmax[280.07-PCphon1,0] andmax[-36.43-PCresp1,0] were applied as the covari-
ates to predict intelligibility. Five predictors (i.e., PCart1,max[31.45-PCart2,0], PCreso1,max
[PCphon1-280.07,0],max[PCresp1+36,43,0]) were selected by the stepwise regression, which com-
bined accounted for 95.6% of the variance in the overall decline of intelligibility. In this model, the
articulatory subsystem showed the most substantial contribution (57.7%) to intelligibility decline;
the resonatory subsystem showed a moderate contribution (22.7%); and the phonatory and respi-
ratory subsystems showed minor contributions (8.3%, 7.2%, respectively) to intelligibility decline.
In the second stepwise regression, all of the subsystem predictors exceptmax[280.07-PCphon1,0]
andmax[31.45-PCart2,0]were applied as the covariates to predict intelligibility. Five predictors
(i.e.,max[-36.43-PCresp1,0],max[PCart2-31.45,0], PCreso1, PCreso2,max[PCphon1-280.07,0])
were selected by the stepwise regression, which jointly accounted for 79.1% of the variance in the
overall intelligibility decline. By comparing the two stepwise regressions, we selected the one with
a greater R2 (i.e., the first one) to comprise the multi-subsystemmodel of intelligibility decline.
The corresponding subsystem predictors, model parameters, and statistics are listed in Table 3.

According to the multi-subsystem model, over the course of the disease, intelligibility
declined at a rate of 0.0043% as PCart1 decreased and at a rate of 0.008% as PCreso1 decreased.
When PCphon1, PCresp1, and PCart2 decreased, intelligibility declined at various rates during
different stages. Specifically, when PCphon1 was> 280.07, intelligibility declined at a rate of
0.0031% as PCphon1 decreased. When PCresp1 was> -36.43, intelligibility declined at a rate of
0.033% as PCresp1 decreased. When PCart2 was< 31.45, intelligibility declined at a rate of
1.27% as PCart2 decreased.

Discussion
A data driven approach was used for identifying a set of speech subsystem variables that pre-
dicted speech intelligibility decline secondary to ALS. The subsystem variables were extracted
from a large, comprehensive set of instrumental measures (i.e., acoustic, aerodynamic, or kine-
matic) of articulatory, resonatory, phonatory, and respiratory functions. From this large set, a
small subset of variables was used to generate an explanatory model of intelligibility decline
based on the relative contribution of the selected speech subsystem predictors—2 articulatory
(i.e., slowed lip and jaw movement, reduced AMRs), 1 resonatory (i.e., increased nasal airflow
during stop consonants), 1 phonatory (i.e., reduced maximum F0), and 1 respiratory (i.e.,

Table 3. Parameters and statistics of the multi-subsystemmodel of intelligibility decline.

Subsystem Predictor Beta coefficient p-value Independent contribution

Articulatory PCart1 0.0043 0.046* 0.577

max(31.45-PCart2,0) -1.27 < .001*

Resonatory PCreso1 0.008 < .001* 0.227

Phonatory max(PCphon1-280.07,0) 0.0031 < .001* 0.083

Respiratory max(PCresp1+36.43,0) 0.033 0.069 0.072

Notes. The multi-subsystem model of intelligibility decline is in the following form, which corresponds to an R2 of 0.956

Intelligibility ffi 96.39 + 0.0043*PCart1-1.27*max(31.45-PCart2,0)+0.008*PCreso1 + 0.0031*max(PCphon1-280.07,0) + 0.033*max(PCresp1+36.43,0)

doi:10.1371/journal.pone.0154971.t003
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increased speech pauses). These predictors jointly explained 95.6% of the variance in the over-
all decline of intelligibility. Among all subsystems, the articulatory subsystem showed the most
substantial contribution (57.7%) to intelligibility decline; the resonatory subsystem showed a
moderate contribution (22.7%); and the phonatory and respiratory subsystems only accounted
for a small amount of the variance in intelligibility loss (8.3%, 7.2%, respectively). This explana-
tory model of speech intelligibility decline enhances our understanding of the physiologic
mechanism underlying speech loss due to neurologic impairments, which can potentially
improve speech motor assessments and help clinicians to identify treatment targets.

Multi-subsystem model of speech intelligibility decline in ALS
Because speech is supported by the coordinated actions of multiple subsystems (i.e., articula-
tory, resonatory, phonatory, and respiratory), models of speech intelligibility will need to
account for the individual and collective contributions from all of the speech subsystems. Com-
pared to the models of speech intelligibility in previous studies [5,6], our model accounted for a
larger portion of variance in intelligibility decline (i.e., 95.6%). The improvement might have
been due to several factors.

First, our subsystem measures were instrumentation based, which provided objective indi-
ces of subsystem functions that were not affected by listener effects compared to subjective
measures such as the auditory-perceptual features used in De Bodt et al. [5]. Second, we mod-
eled both the cross-sectional and longitudinal aspects of intelligibility decline in persons with
varying severities of ALS over a relatively wide time span. Unlike the linear regression models
used in previous studies, the mixed-effects models parceled out the variations of intelligibility
due to longitudinal decline relative to those due to cross-subject differences, which may have
minimized the potential confounding effect of the large inter-subject variation in disease pre-
sentation and severity. Third, unlike prior studies, we modeled two phases of intelligibility
decline using a nonlinear approach. Modeling the bi-phasic aspect of intelligibility decline is
important for a disease like ALS because the transition across the two phases might indicate
critical changes in subsystem functions during the disease progression, which could potentially
be used to assist disease monitoring and clinical intervention. Fourth, the data driven approach
effectively identified a subset of variables that represent the principal characteristics of each
subsystem, which were used to predict intelligibility without a priori assumptions about the
underlying relation between intelligibility and subsystem measures.

Among the five predictors selected by the stepwise regression, PCart1, which represented the
velocity of the composite movement of lower lip and jaw and the velocity of lip opening, and
PCreso1, which corresponded to the nasal airflow during oral consonants, accounted for the bulk
of variance in the longitudinal decline of intelligibility. This finding is consistent with prior stud-
ies of ALS and dysarthria. For example, De Bodt et al. [5] and Lee et al. [6] both found that the
articulatory subsystem contributed to the largest portion of variance (i.e., 47% and 58%, respec-
tively) in intelligibility in various types of dysarthria, which is consistent with our finding of a
predominant contribution (57.7%) of articulatory impairments to intelligibility decline. Kelhetter
[34] examined the nasal air pressure in oral consonants produced by three individuals with ALS
and found that increased nasal air leakage was only moderately associated with reduced intelligi-
bility due to ALS. This result is consistent with our finding of a moderate contribution (22.7%) of
increased nasal airflow during oral consonants (PCreso1) to intelligibility decline.

Key variables predictive of intelligibility decline
The data-driven approach identified a small number of features for each subsystem that were
highly predictive of intelligibility decline from a large multi-factorial dataset. For the
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articulatory subsystem, two prominent features were identified–slowed lip and jaw movements
(PCart1), and slowed AMRs (PCart2). These articulatory features were expected in response to
bulbar motor neuron deterioration. As the speed of lip and jaw slowed (i.e., PCart1 decreased),
intelligibility declined at a constant rate (see Table 2), suggesting that the speed of lip and jaw
movements might serve as effective predictors of impending declines in speech intelligibility. The
slowing of articulatory movements is expected to degrade speech intelligibly when it coincides
with decreases in the distinctiveness among consonants and among vowels [35–37]. Yunusova
et al. [19] also reported that reductions in lip and jaw movement speed were associated with a
precipitous drop in intelligibility. Because jaw or lip function appear to be less affected by motor
neuron degeneration than is lingual function [11,38], we anticipate that adding tongue data to
the model, which is the focus of our on-going data collection and analysis, would only strengthen
the association between articulatory subsystem performance and speech intelligibility–although
changes in jaw function may be indicative of the tongue impairment [39].

Among the resonatory subsystem variables, the best predictors of intelligibility decline
included increases in the nasal airflow during oral consonants (PCreso1) and increases in nasa-
lance in a sentence with oral consonants (PCreso2), which are secondary to velopharyngeal
inadequacy. Intelligibility declined at a constant rate (see Table 2) as velopharyngeal inade-
quacy increased. Prior research on hypernasality has established its global impact on speech
acoustics (e.g., reduced oral acoustic energy, altered formant structures, increased nasal reso-
nance), which combined have an impact on the acoustic distinctiveness of phonemes [40–41].
Although information about how ALS affects velopharyngeal function is scant, even modest
increases in nasality are expected to reduce speech intelligibility particularly when it coincides
with articulatory imprecision. Delorey et al. [14] and Kelhetter [34] assessed the velopharyn-
geal function in persons with ALS using aerodynamic and acoustic measurements, and
observed increased nasal airflow/pressure and greater nasalance scores (i.e., by about 12% in
the subgroup with hypernasality compared to the subgroup with nonbulbar impairment). Ball
et al. [27], anecdotally, reported that speech was most unintelligible in persons with ALS who
were unable to maintain sufficient velopharyngeal closure during pressure consonants.

The best phonatory predictor of intelligibility loss was maximum F0 during a “high pitch”
task (PCphon1). The upper range of pitch is likely to be compromised secondary to vocal fold
weakness and/or spasticity [17]. Poor laryngeal control can contribute to phonetic contrast errors
(e.g., voicing errors) and abnormal prosodic patterns that characterize the dysarthria associated
with ALS [2]. Among various phonatory variables, Kent et al. [1] identified F0 range as one of
the most indicative acoustic correlates of dysarthric intelligibility impairment. Bunton et al. [42]
subsequently found that the flattening of F0 contour had detrimental effects on intelligibility.

The best respiratory predictor of intelligibility loss was speech pausing pattern (PCresp1). The
increase in speech pauses was most likely due to respiratory muscle weakness [43]. As the num-
ber of pauses in speech increased (i.e., PCresp1 decreased), intelligibility declined in two phases,
with the second phase declining more rapidly than the first phase. Additional work is required to
determine the mechanisms that give rise to these different phases of decline. One possibility is
that during the slow phase of intelligibility decline, pausing may be adaptive for maximizing
speech intelligibility; whereas during the fast phase of intelligibility decline, the number of pauses
is increased because of the primary disease effects on respiratory musculature.

Maximum performance tasks as early indicators of subclinical bulbar
decline
The findings from the articulatory and phonatory-based models (see Table 2) suggest that the
extent to which maximum performance tasks are predictive of intelligibility decline varies
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depending on the stage of the disease. During the early stage of the disease (i.e., when the num-
ber of syllables produced on one breath in the AMR task was above 32 and maximum F0 was
above 280 Hz), rapid declines in AMR performance and maximum F0 occurred while speech
remained intelligible. Consequently, the association between these variables and speech out-
comes was weak during this stage, which may explain why variables such as the rate of speech
muscle contraction or even oromotor strength have been viewed as ineffective predictors of
speech outcomes [11,44,45]. The observation that these measures of maximum performance
tasks change during the early stages of the disease, however, suggest they are useful markers of
early bulbar involvement and, potentially, early indicators of impending speech loss [3,19].

Speech intelligibility started to decline precipitously only after the number of syllables pro-
duced on one breath in the AMR task dropped below 32 and maximum F0 dropped below 280
Hz. During this stage of the disease, declines in AMRs and maximum F0 were strongly associ-
ated with the decline in speech intelligibility. These findings raise the possibility that speech
intelligibility starts to decline only after speech muscle functions degenerated to levels that are
required to generate speech. Because tongue and lip muscles only generate 10 to 30% of their
maximal forces during speech, and the mandibular system only generates less than 2% of the
maximal muscle contraction for speech, DePaul et al. [11] suggested that the weakness of ton-
gue, jaw and lip muscles during the early stage of ALS is of little consequence to speech intelli-
gibility. Similarly, in a study of speech and voice decline due to ALS, Rosenfield et al. [46]
concluded that clinically significant impairments of speech intelligibility occurs only after
laryngeal impairment reaches a critical level.

Prior studies have primarily used alternating motion rates rather than the number of repeti-
tions produced during the AMR task to assess speech motor function [12,13,15,19,47]. In this
study, alternating motion rate was found to be correlated with the velocities of lip and jaw
movements and was thus eliminated by the data-driven approach from the predictors of intelli-
gibility decline. Instead, the number of syllables produced during the AMR task was proven to
contribute to a substantial portion of variance in intelligibility when it is combined with the
velocities of lip and jaw movements (see Table 2) as predictors of intelligibility decline. Yet, the
cutoff below 32 syllables, which was identified as the threshold that marked the onset of precip-
itous intelligibility decline, should be interpreted cautiously until additional research is con-
ducted to determine the expected variation of this measure across a large sample of healthy
controls and persons with ALS.

Interdependencies among speech subsystem variables—a challenge to
the modeling of speech intelligibility decline
Although the subsystem variables in this study are assumed to assess the isolated status of the
targeted speech subsystem, in practice, some of the variables are expected to covary because of
acoustic, aerodynamic, or biomechanic dependencies among the speech subsystems. For exam-
ple, speech pausing pattern (PCresp1), which was used to indicate respiratory function in this
study, is not only affected by respiratory impairment but also by articulatory and laryngeal
weakness. Inefficiency in airflow management at the laryngeal and oropharyngeal levels neces-
sitated more frequent inspirations. Therefore, the increase in speech pauses might reflect an
interaction between the respiratory and articulatory (and/or phonatory) subsystem impair-
ments, which could all result in declines in intelligibility. Similarly, nasal airflow is impacted
not only by the velopharyngeal status but also by oropharyngeal articulation [48]; increased
nasal airflow might be the outcome of either increased velopharyngeal inadequacy, or slowed
lip and jaw movements or a combination of the two deficits. Interdependence among subsys-
tem measures is a common challenge for both instrumental and subjective assessments of
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speech motor performance [6]. To address this challenge, the stepwise regression identified a
subset of subsystem variables with minimal interdependences, which combined predicted a
substantial proportion (i.e., 95.6%) of variance in intelligibility. Some subsystem variables that
were highly predictive of intelligibility in the individual subsystem models were excluded from
the multi-subsystem model because of their strong correlations with other subsystem variables.
For example, in the individual subsystem models, AMR (PCart2), maximum F0 (PCphon1),
and speech pauses (PCresp1) were all identified to be predictive of the rapid phase of intelligi-
bility decline. When considering the interdependence of these variables, we found that
although AMR was intended to assess orofacial deficits, it was also affected by respiratory and
phonatory impairments. Impairments to the respiratory function could lead to both decreases
in AMR repetitions and increases in speech pauses, resulting in a covariation of PCart2 and
PCresp1. We tested the effects of PCart2 and PCresp1 on the rapid phase of intelligibility
decline when combined with other subsystem predictors and found the model with PCart2
provided a better prediction of the overall decline in intelligibility. As a result, PCresp1 was not
selected by the stepwise regression to serve as a predictor of the multi-subsystem model. Simi-
larly, laryngeal deficits could lead to both voice disturbances such as reductions in maximum
F0 and increased voice onset time in the AMR task. As a result, maximum F0 was found to be
highly correlated with AMR repetitions (VIF>10), so PCphon1 was not selected as a predictor
of the multi-subsystem model.

Challenges with missing data
The goal of this study was to screen a great variety of speech subsystem variables (N = 58) in a
relatively large number of persons with ALS (66 participants) and across multiple sessions
(average = 7 sessions for each participant). When recording such a large number of variables
for each session, missing cells are expected due to either equipment failure or increasing fatigue
within a session as the disease progresses [49,50]. To minimize the potential biasing effect of
missing data within a subsystem, we imputed the missing data in each subsystem predictor
based on its relation to intelligibility decline, which allowed for the inclusion of data from 126
sessions.

Although the imputation treatment was effective for maximizing the amount of data that
could be included in the model, the approach has several potential shortcomings. First, the
missing data across different participants was imputed based on the group pattern, which may
have attenuated inter-subject variability and, in turn, inflated the R2 of the multi-subsystem
model. In addition, the imputation was not effective when there was more than one predictor
from the same subsystem with overlapping cases of missing data. Therefore, for some subsys-
tem predictors (e.g., PCart1, PCreso1, PCreso2), only a small portion of missing data could be
imputed.

Clinical Implications
The results of this study suggest that it is possible to anticipate both the onset and rate of criti-
cal speech changes occurred during different stages of the disease, by monitoring subsystem
functions. Based on the relation between the subsystem variables identified by the data-driven
approach and speech intelligibility, we propose a protocol combining AMR and maximum
phonation tasks, which can be implemented in a clinical setting for speech subsystem
assessment.

As has been discussed, persons with ALS show declines in their AMR performance prior to
the presence of speech intelligibility deficits. Rong et al. [51] further demonstrated that the
AMR performance during the early stages of ALS was predictive of the later decline of speech
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intelligibility. Specifically, approximately 6 months prior to the presence of clinical speech
symptoms (e.g., speech intelligibility deficits or slowing of speaking rate), the AMR already
showed an average difference of 1.4 syllable per second between individuals with a later fast
progression rate of speech decline (i.e., fast bulbar disease progressors) and those with a rela-
tively slow progression rate (i.e., slow bulbar disease progressors). This difference of AMR
between fast and slow progressors increases over time as the disease progresses. By monitoring
the AMR performance, clinicians can stratify fast progressors at relatively early stages of the
disease for clinical trials, which can potentially shorten the duration and reduce the cost of the
trials.

The maximum phonation task provides information on the timing of clinically significant
speech impairment. Our finding suggests that a drop in maximum F0 below 280 Hz (see
Table 2) indicated that bulbar muscle impairments exceeded a critical level, leading to loss of
speech intelligibility. This empirically-derived threshold of clinically significant speech
impairment may be useful for planning the transition to augmentative assistive communica-
tion (AAC) prior to the loss of functional speech. In addition, the accurate identification of the
stages of speech deterioration utilizing objective measures will only complement the currently
employed standard of clinical rating scales [19].

Conclusions and Future directions
This study shows that the longitudinal decline of speech intelligibility is primarily attributed to
declines in the articulatory function, as indicated by reductions in lip and jaw movement veloc-
ities, and secondarily to declines in resonatory function, as indicated by increases in nasal air-
flow leakage. Future studies will focus on identifying behavioral strategies that target the
articulatory and resonatory subsystems to prolong intelligible speech. Furthermore, models of
speech decline at the individual level are necessary for predicting individual responses to treat-
ments designed to improve speech intelligibility. This information would help clinicians deter-
mine the targets for clinical interventions for individuals at different stages of the disease.
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