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Low expression of aging-related NRXN3 is
associated with Alzheimer disease
A systematic review and meta-analysis
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Abstract
Background: Alzheimer disease (AD) is a common neurodegenerative disorder with distinct pathological features, with aging
considered the greatest risk factor. We explored how aging contributes to increased AD risk, and determined concurrent and
coordinate changes (including genetic and phenotypic modifications) commonly exhibited in both normal aging and AD.

Methods:Using the Gene Expression Omnibus (GEO) database, we collected 1 healthy aging-related and 3 AD-related datasets of
the hippocampal region. The normal aging dataset was divided into 3 age groups: young (20–40 years old), middle-aged (40–60
years old), and elderly (>60 years old). These datasets were used to analyze the differentially expressed genes (DEGs). The Gene
Ontology (GO) terms, pathways, and function network analysis of these DEGs were analyzed.

Results: One thousand two hundred ninety-one DEGs were found to be shared in the natural aging groups and AD patients.
Among the shared DEGs, ATP6V1E1, GNG3, NDUFV2, GOT1, USP14, and NAV2 have been previously found in both normal aging
individuals and AD patients. Furthermore, using Java Enrichment of Pathways Extended to Topology (JEPETTO) analysis based on
Kyoto Encyclopedia of Genes andGenomes (KEGG) database, we determined that changes in aging-related KEGG annotationsmay
contribute to the aging-dependence of AD risk. Interestingly, NRXN3, the second most commonly deregulated gene identified in the
present study, is known to carry a mutation in AD patients. According to functional network analysis, NRXN3 plays a critical role in
synaptic functions involved in the cognitive decline associated with normal aging and AD.

Conclusion: Our results indicate that the low expression of aging-related NRXN3 may increase AD risk, though the potential
mechanism requires further clarification.

Abbreviations: Ab = amyloid beta, AD = Alzheimer disease, DEGs = differentially expressed genes, FDR = false discovery rate,
GEO = Gene Expression Omnibus, JEPETTO = Java Enrichment of Pathways Extended to Topology, KEGG = Kyoto Encyclopedia
of Genes and Genomes, MCODE = molecular complex detection, NCBI = National Center for Biotechnology Information, NLGN =
neuroligin, NRXN = neurexin, PTPRT = receptor-type tyrosine-protein phosphatase T, RMA = robust multichip average, SAM =
significance analysis of microarrays, SNPs = single nucleotide polymorphisms.
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1. Introduction dysfunction.[1] AD leads to the progressive loss of cognitive function

Alzheimer disease (AD) is one of the most prevalent neurodegener-
ative disordersworldwide. It is characterized by the accumulation of
amyloidbeta (Ab) in senileplaquesandhyper-phosphorylated tau in
neurofibrillary tangles, as well as by serious neuronal and synaptic
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and is a common cause of dementia. It is strongly correlated with
aging and is thus a growing problem in elderly populations.[2]

However, even familial forms of AD rarely show clinical symptoms
before the fifth decade of life.[3]
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Despite the lack of early clinical indicators, AD begins many
years before diagnosis, with the long preclinical phase correlated
with alterations in brain aging.[4] Normal aging is accompanied
by a progressive decline in biological functions, which can
increase susceptibility to endogenous and exogenous triggers,
thereby exacerbating pre-existing pathological conditions.[5]

Alterations in the brain increase with aging at all levels, from
molecules to morphology, and at different degrees due to
neurotransmitter impairment. Aging also causes constant
changes in brain size, vasculature, and cognition, ultimately
leading to brain shrinkage.
The human brain is uniquely powerful with respect to

cognition and memory. However, many neuronal networks that
mediate complex functions are highly vulnerable to aging.[6] For
example, aging-related brain atrophy has been widely docu-
mented in the hippocampus, thereby impacting hippocampal
circuits.[7] The hippocampus plays an important role in memory
and cognitive impairment,[8] which are common complaints in
healthy aging [9] and among the earliest signs of AD.[10] Synapses,
which are highly dynamic structures within neuronal networks,
are also critical to cognition and memory. Therefore, precise
control of synaptic development and connectivity are essential
processes for maintaining accurate neuronal network activity and
normal brain function.[11] Aging and AD-related neuronal
dysfunction are accompanied by a host of complex alterations
in spine numbers and synaptic densities.[12] Impaired hippocam-
pal synaptic function is an early pathological sign of AD,
detectable well before the advanced stages of amyloid plaque
accumulation and general cell death.[13]

Thus, exploration of the shared pathological changes between
AD and normal aging could provide diagnostic clues for their
etiology, as well as facilitate the discovery of novel biomarkers
and therapeutic drugs for AD. To the best of our knowledge,
integrated pathway and network analyses of high-throughput
gene expression data from AD patients and age-matched controls
have not yet been explored. Therefore, we investigated common
transcriptional changes, biological functions, and protein–
protein interaction networks in healthy-aging and AD datasets,
and further filtered AD-risk single nucleotide polymorphisms
(SNPs). By identifying shared gene expression alterations during
natural brain aging and AD, we aimed to assess how aging
contributes to the increase in AD risk; determine changes
common to both aging and AD; and identify aging-related genes
carrying high AD risk.
2. Materials and methods

2.1. AD and aging microarray datasets

To explore common features between AD patients and normal
aging populations, we downloaded relevant data from the GEO
database of theUSNational Center for Biotechnology Information
(NCBI) (http://www.ncbi.nlm.nih.gov/geo). The data selection
Table 1

Overview of Alzheimer disease- and healthy aging-related datasets.

Study Reference

GSE5281 Liang et al (2007)
GSE28146 Blalock et al (2011)
GSE48350 Berchtold et al (2008)
GSE11882 Berchtold et al (2008)
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criteria were as follows: all datasets should be genome-wide; all
tissue should be from brain samples; each AD dataset should
includepatients andcontrols; theaging-relateddataset shouldhave
a broad age distribution, with no individuals suffering from any
known neurological or psychiatric disorder; and raw data or gene
expressionmatrices should be available in each dataset. According
to the above criteria, we selected 3 AD-related datasets (GSE5281,
GSE28146, and GSE48350) and 1 normal brain aging-related
dataset (GSE11882) for integrated analysis. All dataset samples
were collected from postmortem hippocampus tissue and tested
using the Affymetrix HumanGenome U133 Plus 2.0 Array (Santa
Clara County, CA). Additional information on these datasets is
summarized in Table 1.We classified the normal brain dataset into
3 groups: young (20–40 years old), middle-aged (40–60 years old),
and elderly (> 60 years old).

2.2. Data preprocessing and shared DEGs

The R software package was employed for data preprocessing.
All 4 microarray datasets were preprocessed using the robust
multichip average (RMA) algorithm in the oligo package.[14]

Gene annotation and integration of the AD datasets were
performed using a custom written Python code.[15] The 3 AD
datasets were further analyzed using metaMA, which applied
the empirical Bayes moderated t-statistic and weighted meta-
analysis to calculate DEGs in each dataset, and then adjusted
theP values with a false discovery rate (FDR).[16] As a result, aZ
score was assigned to each DEG, as per previous research.[16]

For the aging dataset, we used significance analysis of
microarrays (SAM) [17] in the samr R package to identify
normal aging-related genes. SAM is a dedicated multiclass-
analysis method designed for microarray data, which allocates
a score for each gene based on changes in expression relative to
the standard deviation of repeated measurements, and
generates FDR-adjusted P values.[17] We used this approach
to identify increases or decreases in gene expression variance
related to aging, as well as positive or negative correlations.
Significantly DEGs in the 2 classes of datasets were identified
with a FDR value of < 0.05. Genes deregulated in AD and
correlated with aging were considered as shared DEGs. The
pheatmap package inRwas used to show the expression profiles
of these shared genes.
2.3. Common topological pathway analysis

To determine the commonly affected cellular pathways in AD
patients and normal brain aging groups, we used JEPETTO,[18]

which visually analyzes the functional associations of the top-
ranked underlying networks between DEGs and known cellular
pathways. As a complement to classic pathway enrichment
analysis, JEPETTO can identifies novel and significant relation-
ships using protein–protein interaction networks and topological
analyses. The KEGG database was searched for the closest
Sample Group

22 Alzheimer and control
30 Alzheimer and control
62 Alzheimer and control
45 20–40 y, 40–60 y, and > 60 y

http://www.ncbi.nlm.nih.gov/geo
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topological matches and all pathway visualizations were
performed using Cytoscape 3.2.1 software.
2.4. Identification of key aging-related genes in AD

To systematically define key aging-related genes in AD, we
downloaded AD-associated SNPs from the Ensemble Variation
Database.[19] These genome-wide AD-risk SNPs were divided
into 2 groups according to their P values: significant SNPs (P<
10E-08) and suggestive SNPs (P< .001). The shared DEGs with
significant SNPs were identified as aging-related genes contribut-
ing to AD. The GeneMANIA application in Cytoscape was used
to reveal the interactive relationships among these key genes and
determine the influenced biological functions.

2.5. Ethical approval

Ethical approval is not necessary because that our study is a
systematic review of published literature. We did not make any
clinical research and we just collected the data from available
publications.

3. Results

3.1. Shared DEGs in AD and aging

We identified 6205 DEGs in the AD patients and healthy controls
from the 3 AD-related microarray datasets using the metaMA
package in R. The expression profiles of these DEGs were
approximately categorized into AD patients and healthy controls
(Figure S1, http://links.lww.com/MD/C326); however, the unsu-
pervised clustering method did not distinguish the AD samples
into the 2 categories (Figure S2, http://links.lww.com/MD/C326).
We also detected 2718 aging-related genes among the 3 different
age groups in the normal-aging dataset, and subsequently
identified 1291 DEGs in both the AD and normal-aging datasets.
As shown in Fig. 1A, the expression profiles of the 1291 shared
DEGs were significantly different between the AD patients and
healthy controls in the AD-related datasets. Furthermore, as
Figure 1. Expression profiles of the 1291 DEGs common to both the AD-
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shown in Fig. 1B, the expression profiles of the shared DEGs
in the young and middle-aged groups in the normal-aging
dataset showed similar expression patterns, whereas the
elderly group was markedly different. This difference may be
due to the large age gap observed between the first 2 groups and
the elderly group, with mean ages of 27, 46, and 82 years,
respectively. Therefore, the obtained heatmap of the 1291 shared
DEGs showed 2 distinct expression patterns among the 3 age
groups.
The top 50 shared DEGs sorted by absolute Z-score are listed

in Table 2. General comparison of the gene expression alterations
in the AD and normal-aging datasets showed that the upregulated
genes in AD patients were positively correlated with aging, and
most downregulated genes were negatively correlated with aging.
Among the top 50 shared genes, ATP6V1E1, GNG3, NDUFV2,
GOT1, USP14, and NAV2 have been previously investigated in
AD and aging studies. The evidence related to normal brain aging
and AD pathogenesis of these 6 genes, along with relevant
reference, is summarized in Table S1, http://links.lww.com/MD/
C326. Considering the shared gene expression profiles in AD and
natural aging, we hypothesized that aging-related hippocampal
transcription changes in healthy elderly individuals may increase
the risk of AD.
3.2. Topological pathway features in AD and aging

We used JEPETTO to assess pathway-level changes in AD
patients and normal aging groups. Among the 1291 shared
DEGs, 743 were mapped to specific KEGG pathways (Table S2,
http://links.lww.com/MD/C326). These topological KEGG path-
ways included human disease, cellular processes, genetic and
environmental information processing, and metabolism process-
es. Comparative analysis (degree against shortest path length) of
the topological properties is shown in Fig. 2. For the topological
properties of the shared DEGs in normal aging and AD, matched
KEGG annotations were identified for neurodegeneration
disease, Huntington disease, apoptosis, AD, ubiquitin-mediated
proteolysis, long-term depression, and Parkinson disease. The
and aging-related datasets. Expression values are converted Z-scores.

http://links.lww.com/MD/C326
http://links.lww.com/MD/C326
http://links.lww.com/MD/C326
http://links.lww.com/MD/C326
http://links.lww.com/MD/C326
http://www.md-journal.com


Table 2

Top 50 differentially expressed genes common to both AD- and aging-related datasets.

Gene symbol Gene description Deregulation in AD samples (Z-score) Correlation with aging

ATP6V1E1 ATPase H+ transporting V1 subunit E1 �7.15 �0.61
NRXN3 neurexin 3 �6.79 �0.68
MKKS McKusick–Kaufman syndrome putative chaperonin �6.78 �0.73
GNG3 G protein subunit gamma 3 �6.77 �0.59
GABBR2 Gamma-aminobutyric acid type B receptor subunit 2 �6.77 �0.82
PABPC3 Poly(A) binding protein cytoplasmic 3 6.54 0.72
ARF5 ADP ribosylation factor 5 �6.49 �0.86
SAMD12 Sterile alpha motif domain containing 12 �6.44 �1.08
SCG5 Secretogranin V �6.44 �0.72
RAB3C Member RAS oncogene family �6.37 �0.57
MTX2 Metaxin 2 �6.34 �0.72
ATCAY Caytaxin �6.33 �0.62
PTS 6-pyruvoyltetrahydropterin synthase �6.30 �0.62
HENMT1 HEN1 methyltransferase homolog 1 �6.28 �0.69
NDUFV2 NADH:ubiquinone oxidoreductase core subunit V2 �6.23 �1.15
MFSD4 major facilitator superfamily domain-containing protein 4A �6.23 �0.44
CISD1 CDGSH iron sulfur domain 1 �6.22 �0.61
KIFAP3 Kinesin associated protein 3 �6.20 �0.61
TBL1X Transducin beta like 1X-linked 6.20 0.72
WWTR1 WW domain containing transcription regulator 1 6.14 1.18
PPIA Peptidylprolyl isomerase A �6.13 �0.78
NDUFS3 NADH:ubiquinone oxidoreductase core subunit S3 �6.07 �0.57
REEP1 Receptor accessory protein 1 �6.05 �0.77
FIBP FGF1 intracellular binding protein �5.99 �0.73
GOT1 Glutamic-oxaloacetic transaminase 1 �5.98 �0.74
SORBS1 Sorbin and SH3 domain containing 1 5.92 1.03
TMEM25 Transmembrane protein 25 �5.91 �0.57
TRIM38 Tripartite motif containing 38 5.90 1.21
PI4KA Phosphatidylinositol 4-kinase alpha �5.90 �0.52
RUSC1-AS1 RUSC1 antisense RNA 1 5.88 1.02
TGFBR3 Transforming growth factor beta receptor 3 5.86 1.08
PEBP1 Phosphatidylethanolamine binding protein 1 �5.80 �0.76
ZFP36L1 ZFP36 ring finger protein like 1 5.76 1.18
ACTR10 Actin-related protein 10 homolog �5.75 �0.68
ITPRIPL2 Inositol 1,4,5-trisphosphate receptor interacting protein like 2 5.74 1.11
NETO2 Neuropilin and tolloid-like 2 �5.70 �0.54
LRRC49 Leucine-rich repeat containing 49 �5.69 �0.60
C12orf4 Chromosome 12 open reading frame 4 �5.66 �0.75
USP14 Ubiquitin-specific peptidase 14 �5.66 �0.71
GHITM Growth hormone inducible transmembrane protein �5.62 �0.69
RAP1GDS1 rap1 GTPase-GDP dissociation stimulator 1 �5.61 �0.64
NAV2 Neuron navigator 2 5.60 0.86
TMEM261 Transmembrane protein 261 �5.59 �0.80
PEG3 Paternally expressed 3 �5.59 �0.86
ITFG1 Integrin alpha FG-GAP repeat containing 1 �5.59 �0.84
DLGAP1-AS1 Disks large-associated protein 1 antisense RNA 1 5.59 0.95
NDUFAF5 NADH:ubiquinone oxidoreductase complex assembly factor 5 �5.58 �0.65
KCNV1 Potassium voltage-gated channel modifier subfamily V member 1 �5.56 �0.42
AMIGO1 Adhesion molecule with Ig like domain 1 �5.54 �0.62
ATP6AP1 ATPase H+ transporting accessory protein 1 �5.52 �0.48

AD=Alzheimer disease, ADP= adenosine diphosphate, ATPase= adenylpyrophosphatase, FG=phenylalanyl-glycyl, FGF1= fibroblast growth factor 1, GAP=glycyl-alanyl-prolyl, GDP=guanosine diphosphate,
GTPase=guanosine triphosphatase, HEN1=helix-loop-helix protein 1, NADH=nicotinamide adenine dinucleotide, RUSC1=RUN and SH3 domain-containing protein 1, SH3=SRC Homology 3, ZFP36= zinc
finger protein 36.
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main KEGG annotations demonstrated the same alterations in
cellular processes implicated in normal aging individuals and AD
patients. Thus, changes in the aging-related activity of these
processes may contribute to the aging-dependent risk of AD.

3.3. Single nucleotide polymorphisms of shared DEGs

In addition to the contribution of aging and environmental risk
elements to the pathogenesis of AD, the disease is also influenced
4

by genetic susceptibility factors. Genome-wide association
studies suggest that a significantly large number of genetic
variations increase AD risk.[20] We investigated the AD-
associated SNPs from previously published studies reported in
the Ensemble Variation Database. A total of 548 unique genes
with suggestive AD-linked SNPs were obtained, which we
mapped to the 1291 shared DEGs. We identified 32 genes
carrying mutations and increased AD risk, which were ordered
according to their absolute Z-scores (Table S3, http://links.lww.

http://links.lww.com/MD/C326


Figure 2. Topological properties of the 1291 DEGs from the AD- and aging-related datasets based on KEGG pathway analysis. Target pathways are labeled with
different colors, with some pathway annotations marked with corresponding colors and mapped gene numbers.
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com/MD/C326). The NRXN3 gene, which was the second
highest DEG (Z-score: -6.79) and was negatively correlated with
the normal aging group (�0.68, see box plot in Fig. 3 and
statistics in Table 2), overlapped with the SNP change in AD
Figure 3. NRXN3 expression levels in AD patients and healthy controls (A)

5

patients. The expression levels of NRXN3 in both the AD- and
aging-related groups exhibited downward trends. We therefore
focused on the function of NRXN3 and interacting genes in AD
patients and aging populations.
and the 3 age groups (B) were significantly different (FDR-value<0.05).

http://links.lww.com/MD/C326
http://www.md-journal.com


Figure 4. Interaction relationships among NRXN3 and its correlated genes. (A) GeneMANIA results of the NRXN3-enriched network relationships and MCODE
plugin assigning the first subcluster with red connected lines. (B) Enriched GO biological processes of the first subcluster genes in the NRXN3 network.
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3.4. Functional networks of NRXN3 and NRXN3-correlated
genes

The functional networks and correlated genes of NRXN3 are
shown in Fig. 4. As seen in Fig. 4A, many protein–protein
interactions were associated with NRXN3. We used a graph-
theoretic clustering algorithm called Molecular Complex Detec-
tion (MCODE) [21] to detect the dense functionally connected
subnetworks within the large NRXN3 protein–protein interac-
tion network. The first subcluster assigned by MCODE within
the NRXN3 network was displayed with 6 yellow nodes
(NRXN3, NRXN2, NLGN1, NLGN2, NLGN3, and PTPRT)
and red connection lines. The top 5 enriched GO biological
processes were neuron cell–cell adhesion, cell adhesion molecule
binding, cell–cell adhesion, learning, and positive regulation of
excitatory postsynaptic membrane potential (Fig. 4B). Thus, the
network and enriched GO annotation results suggested that
NRXN3 plays an important role in synapse function and nerve
cell activity associated with the other 5 proteins (NRXN2,
NLGN1, NLGN2, NLGN3, and PTPRT).

4. Discussion

Hippocampal transcriptional changes in AD patients and normal
aging-related groups were investigated, and shared DEGs,
pathways, and biological functions were explored. We identified
1291 DEGs in AD patients that were correlated with normal
aging. Comparing the genetic susceptibility of these genes, we
identified NRXN3 as the most important risk factor contributing
to AD, with low expression found in AD patients and the elderly
group (Fig. 3). Previous meta-analysis of 5 genome-wide
association studies comprised of 1256 SNPs in NRXN1,
NRXN2, NRXN3, and NLGN1 identified a NRXN3 gene
marker (rs17757879) that showed consistent protective effects,
thus concluding that NRXN3 might play a role in susceptibility
to AD in males.[22] In the present study, functional enrichment
analysis revealed that NRXN3 and its correlated genes affected
6

learning and memory, synaptic plasticity, cell–cell adhesion, and
other AD-related pathological processes (Fig. 4).
NRXN3 is a synaptic modulator and neurexin (NRXN) family

protein that functions in the vertebrate nervous system as a cell
adhesion molecule during synaptogenesis and intercellular
signaling. Thousands of NRXNs are coded from 3 genes
(NRXN1, NRXN2, and NRXN3) by alternative promoter use
and extensive alternative splicing [23] in the human genome.
NRXN3 is located on chromosome 14q24.3-q31.1 and is the
largest (about 1.8Mb) andmost alternatively spliced among the 3
NRXN genes.[24] It was initially implicated in addictions to
alcohol,[25] nicotine,[26] and illicit drugs[27]; however, emerging
research suggests that NRXN3 also plays a potential role in
deregulated synaptic transmission in the Disc1 mouse model of
schizophrenia [28] and is involved in body weight gain related to
risperidone therapy in the Chinese Han population.[29]

In addition to the production and accumulation of Ab peptide
and hyper-phosphorylated tau protein related to learning and
memory in the AD brain, synaptic dysfunction and loss are major
pathological correlates of cognitive decline and neuronal damage
in elderly individuals and AD patients.[30,31] The first subnetwork
obtained from MCODE contained NRXN3 and NRXN2, 2
proteins within the neuroligin (NRXN) family, and NLGN1,
NLGN2, and NLGN3, 3 proteins within the NLGN family.[32]

These 5 genes are all synaptic cell adhesion molecules found in
neurons, with NLGNs localized at the postsynaptic membrane
considered to be binding partners of NRXNs located at the pre-
synaptic membrane.[33] NRXN-NLGN interactions are impor-
tant for synaptic maturation and stabilization and contribute to
the ratio between excitatory and inhibitory synapses.[34] In
addition, through their extracellular domains, NRXNs and
NLGNs bind to PTPRT (receptor-type tyrosine-protein phos-
phatase T), which is exclusively expressed in the central nervous
system and regulates synapse formation in hippocampal
neurons.[35] Furthermore, NLGN and NRXN functions are
potentially regulated by a- and g-secretases at the synapses or in
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related signal transduction pathways. This regulation is altered
by several mutations in the PSEN1 gene in the substructure of
g-secretases, which can cause early-onset familial AD.[36]

Consequently, any alteration in NLGN-NRXN interactions
could have considerable influence on synaptic activity and
plasticity in aging individuals and AD patients.
Shared mechanisms of synaptic dysfunction in aging and AD

have been proposed in recent years. During natural aging,
synapse numbers and signal transmissions decrease dramatically
in different brain regions of elderly individuals,[37,38] supporting
the hypothesis that these synaptic changes are ubiquitous features
of the aging brain.[39] In its earliest clinical phase, AD
characteristically shows substantial impairment of memory.
Mounting evidence suggests that this disease begins with subtle
alterations in hippocampal synaptic efficacy before frank
neuronal degeneration, and that synaptic dysfunction is caused
by diffusible oligomeric assemblies of the amyloid b protein.[30]

Studies on synaptic proteins reveal decreased levels of pre-
synaptic (synaptophysin) and post-synaptic proteins (synapto-
podin and PSD95) [40] in AD patients compared with age-
matched controls, suggesting that these proteins are critically
involved in AD progression [41] and that synapse and
synaptic protein loss are confined to brain regions known to
be affected in AD.[42]

On the basis of the NRXN3 functional networks determined
here and previous research on the contribution of synaptic
dysfunction to cognitive decline in aging individuals and those
with AD, we hypothesized that decreasing expression of aging-
related NRXN3 in the hippocampus of healthy elderly
individuals may increase the risk of AD pathogenesis. Because
the transcription data used in this study were not complemented
by corresponding single nucleotide variation data for the same
samples, the direct relationship between genome and transcrip-
tion alterations was not assessed. Thus, the shared candidate
genes derived from our analysis will require validation using
independent complementary genome and transcription data.
In conclusion, we found similar gene expression patterns

between AD patients and normal-aging populations. Numerous
deregulated aging-related genes were also revealed in the AD
patients. Combined with genetic mutation data, downregulation
of NRXN3 was identified as the highest risk gene correlated with
AD and aging. These results provide a mechanistic explanation
for aging-related AD risk. Furthermore, the significantly altered
shared genes may have potential application in the identification
of novel biomarkers and therapeutic drugs for AD. However,
future experiments are required to validate these results and
elucidate the potential mechanisms of NRXN3 in AD.
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