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ABSTRACT: The principle of least action is the cornerstone of
classical mechanics, theory of relativity, quantum mechanics, and
thermodynamics. Here, we describe how a neural network (NN)
learns to find the trajectory for a Lennard-Jones (LJ) system that
maintains balance in minimizing the Onsager−Machlup (OM)
action and maintaining the energy conservation. The phase-space
trajectory thus calculated is in excellent agreement with the
corresponding results from the “ground-truth” molecular dynamics
(MD) simulation. Furthermore, we show that the NN can easily
find structural transformation pathways for LJ clusters, for example,
the basin-hopping transformation of an LJ38 from an incomplete
Mackay icosahedron to a truncated face-centered cubic octahedron.
Unlike MD, the NN computes atomic trajectories over the entire temporal domain in one fell swoop, and the NN time step is a
factor of 20 larger than the MD time step. The NN approach to OM action is quite general and can be adapted to model
morphometrics in a variety of applications.

1. INTRODUCTION
The principle of least action is a foundational law of physics. It
pervades classical mechanics,1 theory of relativity,2 quantum
mechanics,3 and thermodynamics.4 The action is defined as
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where L is the Lagrangian in classical mechanics and q(t) and
q̇(t) are the system trajectory and its time derivative,
respectively. Equation 1 embodies a boundary-value problem
in which A is minimized with respect to q(t), subject to the
constraints imposed by the initial and final configurations at
time t0 and t1, respectively.

5 The differential equations arising
from the principle of least action are the Euler−Lagrange
equations, which constitute an initial-value problem. These
equations are at the core of molecular dynamics (MD), the
preeminent simulation approach in physics, chemistry,
materials science, and biology.6 The essential input to MD is
interatomic potential energy from which forces are calculated
and the equations of motion are integrated over discretized
time with a finite-difference scheme.7 The output is phase-
space trajectories {q(t), q̇(t)} from which structural,
mechanical, thermodynamic, and dynamical properties of the
system can be computed and compared with experimental
measurements.
In recent years, there has been a surge of interest in applying

machine learning (ML) tools in MD tasks. Atomic force fields
have been developed using neural networks trained by data
from quantum-mechanical calculations.8,9 Predictive models

based on kernel ridge regression, support vector machine,
random forest, and other techniques have been employed to
predict material properties such as band gaps,10 elastic
constants,11 dielectric constants, and thermoelectric proper-
ties.12−14 For example, Bayesian optimization methods have
been used to discover optimal layered materials for targeted
properties such as electronic band structure and thermal-
transport coefficients.15 On the other hand, original ML
models have been built to learn the basic laws of physics for
simple systems such as a mass-spring, a double pendulum, and
even the case of light refraction.16−18

In this paper, we explore the application of ML in a different
context, that is, how a NN learns the principle of least action
and provides atomic trajectories by minimizing the Onsager−
Machlup (OM) action19
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where mi is the mass and q t( )i is the second-order time
derivative of the position vector q⃗i(t) of the ith particle. In eq 2,
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Q(t) collectively represents the coordinates of all the particles
in the system at time t and V(Q(t)) is the potential energy of
the system. The genesis of the OM action was Onsager’s
seminal papers in which he developed reciprocal relations for
irreversible transport process and proposed that the probability
of paths of a diffusion process is exponentially small with the
exponent proportional to the time integral of dissipation
function of the history.20−22 Later on, Onsager and Machlup
showed that minimization of eq 2 would produce the most
probable trajectory.20 Action formulation is a popular
optimization approach to atomistic boundary-value problems
since a global minimum is guaranteed.23 A straightforward
minimization of the discretized OM action involves second-
order derivatives which are computationally expensive to
calculate for large systems. Passerone and Parrinello add the
energy-conservation constraint to the OM action and minimize
the resulting function by making the following transformation
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which automatically satisfies the boundary condition. The
minimization is performed with respect to Fourier coefficients
an to get atomic trajectories. It has been pointed out that these
solutions are strongly dependent upon the initial values of an.

24

Here, we demonstrate how a NN optimizes the OM action
(eq 2) for a system of Lennard-Jones (LJ) atoms25 and
produces atomic trajectories in one fell swoop over the entire
time domain between t0 and t1. The atomic trajectories
generated by the NN are in excellent agreement with the
“ground-truth” MD trajectories even though the time step
taken by the NN is 20 times larger than the MD time step. We
also demonstrate that the NN can easily find transformation
pathways and energy barriers between different structures of LJ
clusters. The NN-based approach to OM action can be easily
implemented in any statistical ensemble, and it is straightfor-
ward to include constraints, invariances, and conservation laws
in the NN loss function.

2. METHODS
Figure 1 shows our NN architecture. It consists of an input
node, a hidden layer with n units, and an output layer with

d×N units, where N is the number of atoms and d is the
dimensionality of the system. The network outputs the
trajectories of all the atoms in the system, that is, the cartesian
components {qi,x, qi,y, and qi,z} from i = 1 to N. The system
configuration for all spatial degrees of freedom is calculated by
feeding time into the input layer and letting it propagate
through the hidden layer to the output layer. More details of
the model output can be found in the Supporting Information.
We evaluate the OM action numerically by discretizing the

time integral in eq 3 into Nt grid points. The time increment is
Δt = τ/Nt, where τ is the time unit computed from the chosen
LJ interaction for liquid Argon.26 The loss function L for the
NN includes not only the OM action but also constraints for
boundary conditions and energy conservation
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where {w, b} represents all the weights and biases in the NN.
For simplicity, we use Q(t) to denote the model output Q({w,
b}, t). Q0 and QT respectively represent initial and final
coordinates of all the atoms in the system. λ’s are hyper-
parameters, which are chosen using random search schema for
balancing the magnitude of individual terms (details provided
in Supporting Information). Note that the last term in eq 4 is
the energy-conservation constraint, where E0 is the total energy
of the system. In eq 6, E(Q(t),Q̇(t)) is the total energy, and ε
and σ are the parameters for the LJ potential.
We minimize the loss function in eq 4 using the Nestrov-

and-Adam (NADAM) optimizer.27 The gradient of the loss
function is calculated numerically using Google’s JAX library.28

After training the network, we compute atomic trajectories and
compare them with the “ground-truth” MD simulations
performed using the same set of initial conditions. We have
trained the network to predict trajectories of liquid Argon
systems consisting of up to 500 atoms in three dimensions. We
have also used the NN to find transition pathways and energy
barriers between different structures of LJ clusters. More
details about the NN model and the atomic systems we study
are given in the Supporting Information.

3. RESULTS
The NN learns to compute atomic trajectories of two- and
three-dimensional LJ systems from the OM least action
principle. Here, we present results for a 3D system containing
500 atoms, which was trained on a NN with 125 neurons in
the hidden layer. Results in this section are generated on Nt =
25 time increments, which correspond to a time step (∼40 fs)

Figure 1. NN consists of an input layer, a hidden layer (blue), and an
output layer (red), which gives the atomic coordinates whose first and
second derivatives provide velocity and acceleration, respectively. The
blue and red edges represent that the weights and each node has a
bias.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c00515
J. Chem. Inf. Model. 2022, 62, 3346−3351

3347

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00515/suppl_file/ci2c00515_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00515/suppl_file/ci2c00515_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00515/suppl_file/ci2c00515_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00515?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00515?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00515?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00515?fig=fig1&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.2c00515?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


that is 20 times the MD timestep (2 fs). It is worth noting that
the NN is designed to approach the most probable phase-space
trajectory for a system given initial and final configurations,
rather than outperform MD at the computing speed of atomic
trajectories.
Figure 2 shows a comparison of NN and MD trajectories for

four randomly chosen particles in the 500-atom LJ system over

a time period of 1 ps. These trajectories cover a time scale
beyond the straight-line ballistic motion and possess sharp
changes in direction. It is remarkable that the NN is able to
reproduce the dynamics at the individual particle level. From
this level of matching for particle trajectories, it is not
surprising that the NN results for all other quantities are in
excellent agreement with the “ground truth” MD results.
Figure 3 shows the root mean-square deviations (RMSDs)

between the NN and MD trajectories over the entire time
domain as a function of epochs for 256- and 500-atom LJ
systems. The RMSDs for positions Q are indeed very small,
resulting in excellent matching of the NN and MD trajectories.
The RMSDs between the NN and MD trajectories are
negligible near the initial and final configurations because of
boundary-condition constraints in the loss function. Even in
the middle of the time domain, the RMSD does not exceed

10−4. The difference between the potential energies computed
by the NN and MD is therefore negligible. The behavior of the
RMSDs for momenta P as a function of epoch is similar to the
RMSDs of trajectories, but the deviations are larger for the
following reasons: first, referring to eqs 4−6, the time
derivatives are described with fewer parameters than the
positions as the biases outside the activation function are killed
by the derivative; second, all quantities in the loss function
depend explicitly on Q and only two depend on P. Since we
have a finite number of parameters, they can only approximate
the function up to some error. These errors magnify as we take
higher derivatives.
In Figure 4, we compare the results from the NN and MD

for some standard simulation quantities. For example, the

structure of the liquid is characterized by the radial distribution
function29 g(r) shown in Figure 4a. Slightly below r = 1, g(r) =
0 because the particles cannot overlap and the NN trajectory
maintains this feature. The peaks in g(r) corresponding to the
nearest and second nearest neighbors indicate that our model
is able to obtain the correct liquid structure. To characterize
the particle dynamics, we calculated the velocity autocorrela-
tion function30 (VAF) shown in Figure 4b. The match
between NN and MD is good, and the correlation time tc,
when VAF = 0 for the first time, is about 0.16 in the unit of τ =
2 ps. Beyond tc the velocities and, in general, the particle
dynamics are not correlated with the initial dynamics of the
particles. This quantity is important in calculating time
averages, as a time series of data with points separated by at
least tc are not correlated and contribute independently to the
average quantity.
We have also used our NN to find transition pathways

between different structures of LJ clusters. The number of

Figure 2. Visualization of atomic trajectories in the 500-atom system.
NN (solid blue) and MD (solid red) trajectories show that the NN
can reproduce non-trivial paths over a time period of 1 ps.

Figure 3. Root-mean-square deviation (RMSD) between MD and NN trajectories (a) Shows the deviation between MD and NN trajectories for a
256-atom LJ system. (b) figure shows how the RMSD between NN and MD trajectories for a 500-particle system decreases with the number of
epochs and changes with time. The boundary-condition constraints in the loss function ensure that the RMSDs are much smaller near the initial
and final configurations than in the middle of the time domain. Here, τ = 2 ps.

Figure 4. Comparison between the NN and MD simulation results.
(a) Radial distribution functions and (b) velocity autocorrelation
functions from MD (red) and NN (blue) dynamics.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c00515
J. Chem. Inf. Model. 2022, 62, 3346−3351

3348

https://pubs.acs.org/doi/10.1021/acs.jcim.2c00515?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00515?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00515?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00515?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00515?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00515?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00515?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00515?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00515?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00515?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00515?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00515?fig=fig4&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.2c00515?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


conformations of a cluster can be very large,31 and the
potential energy surface (PES) of a cluster has a large number
of local minima in which it can get trapped, making it very
difficult to identify the global minimum.32 Finding the global
minimum of a cluster or protein is considered an NP-hard
problem;33 that is, the global minimum cannot be found in
polynomial time.
There have been numerous computational studies of LJ

clusters consisting of tens to hundreds of atoms. Global
minima of almost all the clusters up to LJ150 atoms have been
found. Most of them have Mackay icosahedral structures as
their global minima.34 However, there are a few exceptions,
namely, LJ38, LJ75−77, and LJ102−104.

35 The global minimum of
LJ38 is a face centered cubic (FCC) truncated octahedron, and
the global minima of LJ75−77 and LJ102−104 are Marks
dodecahedra.35

Figure 5 shows the structural transition pathway of an LJ38
from a local to the global minimum on the PES. For

comparison, we have also trained our NN to find the transition
of an LJ13 to the Mackay icosahedron global minimum. The
structural change in LJ13 from a truncated FCC to an
icosahedron can be easily spotted within a thousand MD
steps. The NN finds this transition within a few time steps as
shown in Figure 5a. In the case of an LJ38, we used the NN to
find the transition pathway between the second lowest and the
global minimum, that is, from an incomplete Mackay
icosahedron to an FCC truncated octahedron. This transition
is hard to find by MD simulation, whereas the NN rapidly finds
not only the transition pathway but also the potential energy
barrier and intermediate conformations between the Mackay

icosahedron and the FCC truncated octahedron (see Figure
5b).
To quantify the difference between the transition pathways

of LJ13 and LJ38, we compute the Euclidean distance of the
initial and final configurations Qi and Qf. The distance between
the two structures is the minimal arc length traveled by a
cluster as it transitions from Qi to Qf in a time period Τ. The
minimal distance is defined by a transformation Q̅(t), which is
a 3N-dimensional vector parameterized by time t. The
infinitesimal distance traveled during the transformation is

( )Q t
t

d ( )
d

2
, and the minimal distance between Qi and Qf is

given by36
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where Q̅(t)* is the minimal path determined by the NN. We
find that the Euclidean distances between the initial and final
configurations of LJ13 and LJ38 are 0.9 σ and 10.4 σ,
respectively. It has been suggested that the global minimum
of an LJ13 can be located much more easily than that of an LJ38
because the former has a single funnel energy landscape and
the latter has double funnels leading to the global minimum.37

4. CONCLUSIONS
In this work, we have shown that a NN can correctly generate
atomic trajectories of a LJ system by minimizing the OM
action. The NN phase-space trajectories, potential and kinetic
energies, radial distribution function, and velocity autocorre-
lation function are in excellent agreement with the
corresponding results from the “ground-truth” MD simulation.
We have also demonstrated that the NN can easily find
transition pathways and energy barriers between different
configurations of typical LJ clusters. Despite the limitation of
our method in computing speed, the NN approach to principle
of least action has some advantages over the traditional MD
method: the NN solves boundary condition problems while
the MD cannot, and the NN provides the entire trajectory in
one fell swoop with a time step much larger than that of the
MD, while maintaining energy conservation over the entire
time domain. Our NN approach is generally applicable to
systems with complex interatomic interactions other than LJ
potential. The encouraging results indicate the possibility of
making the NN method a candidate for modeling experimental
data. For example, Hills et al. have developed an algorithm
based on the least action principle to predict the dynamics of
physical systems using observed data.38 Our approach
combined with theirs can model observational data and
predict the dynamics beyond the experimental measurements
of systems more than LJ clusters.

■ DATA AVAILABILITY
The code and data that support the findings of this study are
provided in the Supporting Information; they are also available
from the corresponding author upon request.
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Figure 5. Panels (a) and (b) show potential energies per atom for
LJ13 and LJ38 clusters, respectively, as a function of time. The
intermediate structures of the clusters are also shown in panels (a)
and (b) red curves are the NN potential energies and the blue curves
are the PES obtained by quenching NN configurations. LJ13 quickly
quenches into a Mackay icosahedra global minimum. The LJ38
structure indicates that the cluster remains an incomplete Mackay
icosahedron for nearly 0.8 ps. In the next 0.6 ps, the cluster crosses an
energy barrier and transforms into an FCC truncated octahedron,
which is the global minimum. The LJ38 structures just before, during,
and after the transition are shown in (b).
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Details of the LJ interaction for the system, model pre-
training protocol, scaling curves for the time perform-
ance and RMSD with respect to the system size,
comparisons between MD and NN trajectories with
correlation functions for systems having different
number of atoms, and transition pathway generated by
the NN model for a surface-hopping event in a small 2D
LJ cluster (PDF)
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