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Abstract

The asymmetric Hopfield model is used to simulate signaling dynamics in gene regulatory networks. The model allows for a
direct mapping of a gene expression pattern into attractor states. We analyze different control strategies aimed at
disrupting attractor patterns using selective local fields representing therapeutic interventions. The control strategies are
based on the identification of signaling bottlenecks, which are single nodes or strongly connected clusters of nodes that
have a large impact on the signaling. We provide a theorem with bounds on the minimum number of nodes that guarantee
control of bottlenecks consisting of strongly connected components. The control strategies are applied to the identification
of sets of proteins that, when inhibited, selectively disrupt the signaling of cancer cells while preserving the signaling of
normal cells. We use an experimentally validated non-specific and an algorithmically-assembled specific B cell gene
regulatory network reconstructed from gene expression data to model cancer signaling in lung and B cells, respectively.
Among the potential targets identified here are TP53, FOXM1, BCL6 and SRC. This model could help in the rational design of
novel robust therapeutic interventions based on our increasing knowledge of complex gene signaling networks.
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Introduction

The vision behind systems biology is that complex interactions

and emergent properties determine the behavior of biological

systems. Many theoretical tools developed in the framework of

spin glass models are well suited to describe emergent properties,

and their application to large biological networks represents an

approach that goes beyond pinpointing the behavior of a few

genes or metabolites in a pathway. The Hopfield model [1] is a

spin glass model that was introduced to describe neural networks,

and that is solvable using mean field theory [2]. The asymmetric

case, in which the interaction between the spins can be seen as

directed, can also be exacty solved in some limits [3]. The model

belongs to the class of attractor neural networks, in which the spins

evolve towards stored attractor patterns, and it has been used to

model biological processes of high current interest, such as the

reprogramming of pluripotent stem cells [4]. Moreover, it has

been suggested that a biological system in a chronic or therapy-

resistant disease state can be seen as a network that has become

trapped in a pathological Hopfield attractor [5]. A similar class of

models is represented by Random Boolean Networks [6], which

were proposed by Kauffman to describe gene regulation and

expression states in cells [7]. Differences and similarities between

the Kauffman-type and Hopfield-type random networks have

been studied for many years [8–11].

In this paper, we consider an asymmetric Hopfield model built

from real (even if incomplete [12,13]) cellular networks, and we

map the spin attractor states to gene expression data from normal

and cancer cells. We will focus on the question of controling of a
network’s final state (after a transient period) using external local

fields representing therapeutic interventions. To a major extent,

the final determinant of cellular phenotype is the expression and

activity pattern of all proteins within the cell, which is related to

levels of mRNA transcripts. Microarrays measure genome-wide

levels of mRNA expression that therefore can be considered a

rough snapshot of the state of the cell. This state is relatively stable,

reproducible, unique to cell types, and can differentiate cancer

cells from normal cells, as well as differentiate between different

types of cancer [14,15]. In fact, there is evidence that attractors

exist in gene expression states, and that these attractors can be

reached by different trajectories rather than only by a single

transcriptional program [16]. While the dynamical attractors

paradigm has been originally proposed in the context of cellular

developement, the similarity between cellular ontogenesis, i.e. the

developement of different cell types, and oncogenesis, i.e. the

process under which normal cells are transformed into cancer

cells, has been recently emphasized [17]. The main hypothesis of
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this paper is that cancer robustness is rooted in the dynamical

robustness of signaling in an underlying cellular network. If the

cancerous state of rapid, uncontrolled growth is an attractor state

of the system [18], a goal of modeling therapeutic control could be

to design complex therapeutic interventions based on drug

combinations [19] that push the cell out of the cancer attractor

basin [20].

Many authors have discussed the control of biological signaling

networks using complex external perturbations. Calzolari and

coworkers considered the effect of complex external signals on

apoptosis signaling [21]. Agoston and coworkers [22] suggested

that perturbing a complex biological network with partial

inhibition of many targets could be more effective than the

complete inhibition of a single target, and explicitly discussed the

implications for multi-drug therapies [23]. In the traditional

approach to control theory [24], the control of a dynamical system

consists in finding the specific input temporal sequence required to

drive the system to a desired output. This approach has been

discussed in the context of Kauffmann Boolean networks [25] and

their attractor states [26]. Several studies have focused on the

intrinsic global properties of control and hierarchical organization

in biological networks [27,28]. A recent study has focused on the

minimum number of nodes that needs to be addressed to achieve

the complete control of a network [29]. This study used a linear

control framework, a matching algorithm [30] to find the

minimum number of controllers, and a replica method to provide

an analytic formulation consistent with the numerical study.

Finally, Cornelius et al. [31] discussed how nonlinearity in network

signaling allows reprogrammig a system to a desired attractor state

even in the presence of contraints in the nodes that can be

accessed by external control. This novel concept was explicitly

applied to a T-cell survival signaling network to identify potential

drug targets in T-LGL leukemia. The approach in the present

paper is based on nonlinear signaling rules and takes advantage of

some useful properties of the Hopfield formulation. In particular,

by considering two attractor states we will show that the network

separates into two types of domains which do not interact with

each other. Moreover, the Hopfield framework allows for a direct

mapping of a gene expression pattern into an attractor state of the

signaling dynamics, facilitating the integration of genomic data in

the modeling.

The paper is structured as follows. In Mathematical Model we

summarize the model and review some of its key properties.

Control Strategies describes general strategies aiming at selectively

disrupting the signaling only in cells that are near a cancer

attractor state. The strategies we have investigated use the concept

of bottlenecks, which identify single nodes or strongly connected

clusters of nodes that have a large impact on the signaling. In this

section we also provide a theorem with bounds on the minimum

number of nodes that guarantee control of a bottleneck consisting

of a strongly connected component. This theorem is useful for

practical applications since it helps to establish whether an

exhaustive search for such minimal set of nodes is practical. In

Cancer Signaling we apply the methods from Control Strategies to

lung and B cell cancers. We use two different networks for this

analysis. The first is an experimentally validated and non-specific

network (that is, the observed interactions are compiled from

many experiments conducted on heterogeneous cell types)

obtained from a kinase interactome and phospho-protein database

[32] combined with a database of interactions between transcrip-

tion factors and their target genes [33]. The second network is cell-

specific and was obtained using network reconstruction algorithms

and transcriptional and post-translational data from mature

human B cells [34]. The algorithmically reconstructed network

is significantly more dense than the experimental one, and the

same control strategies produce different results in the two cases.

Finally, we close with Conclusions.

Methods

Mathematical Model
We define the adjacency matrix of a network G composed of N

nodes as

Aij~
1 if j?i

0 otherwise

�
, ð1Þ

where j?i denotes a directed edge from node j to node i. The set

of nodes in the network G is indicated by V (G) and the set of

directed edges is indicated by E(G)~ (j,i) : j?if g. (See Table 1

for a list of mathematical symbols used in the text.) The spin of

node i at time t is si(t)~+1, and indicates an expresssed (z1) or

not expressed ({1) gene. We encode an arbitrary attractor state
~jj~(j1,j2,:::,jN ) with ji~+1 by defining the coupling matrix [1]

Jij~Aijjijj : ð2Þ

The total field at node i is then hi~hext
i z

P
j Jijsj , where hext

i is

the external field applied to node i, which will be discussed below.

The discrete-time update scheme is defined as

si(tzDt)~
z1 with prob: (1zexp½{hi(t)=T �){1

{1 with prob: (1zexp½zhi(t)=T �){1

(
ð3Þ

where T§0 is an effective temperature. For the remainder of the

paper, we consider the case of T~0 so that si~sign(hi), and the

spin is chosen randomly from +1 if hi~0. For convenience, we

take t[ and Dt~1. Nodes can be updated synchronously, and

synchronous updating can lead to limit cycles [9]. Nodes can also

be updated separately and in random order (anynchronous

updating), which does not result in limit cycles. All results

presented in this paper use the synchronous update scheme.

Source nodes (nodes with zero indegree) are fixed to their initial

states by a small external field so that sq(t)~sq(0) for all q[Q,

where Q is the set of source nodes. However, the source nodes flip

if directly targeted by an external field. Biologically, genes at the

‘‘top’’ of a network are assumed to be controlled by elements

outside of the network.

In application, two attractors are needed. Define these states as

~jjn and ~jjc, the normal state and cancer state, respectively. The

magnetization along attractor state a is

ma(t)~
1

N

XN

i~1

si(t)j
a
i : ð4Þ

Note that if ma(t)~+1, ~ss(t)~+~jja. We also define the steady

state magnetization along state a as

Hopfield Networks and Cancer Attractors
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ma
?~ lim

t??

1

t

Xt

t~1

ma(t): ð5Þ

There are two ways to model normal and cancer cells. One way

is to simply define a different coupling matrix for each attractor

state a,

Ja
ij~Aijj

a
i ja

j : ð6Þ

Alternatively, both attractor states can be encoded in the same

coupling matrix,

Jij~Aij(j
n
i jn

j zjc
i jc

j ): ð7Þ

Systems using Eqs. 6 and 7 will be referred to as the one

attractor state (p~1) and two attractor state (p~2) systems,

respectively. Eqs. 6 and 7 are particular cases of the general

Hopfield form [1]

Jij~Aij

Xp

k~1

jk
i jk

j , ð8Þ

where p is the number of attractor states, often taken to be large.

An interesting property emerges when p~2, however. Consider a

simple network composed of two nodes, with only one edge 1?2

with attractor states~jjn and~jjc, and T~0. The only nonzero entry

of the matrix Jij is

J21~jn
2jn

1zjc
2jc

1: ð9Þ

Note that if ~jjn~+~jjc, J21~2jn
2jn

1. In either case, by Eq. 3 we

have

s2(tz1)~
zjn

2 if s1(t)~zjn
1

{jn
2 if s1(t)~{jn

1

�
, ð10Þ

that is, the spin of node 2 at a given time step will be driven to

match the attractor state of node 1 at the previous time step.

However, if jn
1~+jc

1 and jn
2~+jc

2, J21~0. This gives

s2(t)~
z1 with probability 1=2

{1 with probability 1=2

(
ð11Þ

In this case, node 2 receives no input from node 1. Nodes 1 and 2

have become effectively disconnected.

This motivates new designations for node types. We define

similarity nodes as nodes with jn
i ~jc

i , and differential nodes
as nodes with jn

i ~{jc
i . We also define the set of similarity

nodes S~ i : jn
i ~jc

i

� �
and the set of differential nodes D~ i : jn

i

�
~{jc

i g. Connections between two similarity nodes or two

differential nodes remain in the network, whereas connections

that link nodes of different types transmit no signals. The effective

deletion of edges between nodes means that the original network

fully separates into two subnetworks: one composed entirely of

similarity nodes (the similarity network) and another composed

entirely of differential nodes (the differential network), each of

which can be composed of one or more separate weakly connected

components (see Fig. 1). With this separation, new source nodes

(effective sources) can be exposed in both the similarity and

differential networks. For the remainder of this article, Q is the set

of both source and effective source nodes in a given network.

Control Strategies
The strategies presented below focus on selecting the best single

nodes or small clusters of nodes to control, ranked by how much

they individually change ma
?. In application, however, controlling

many nodes is necessary to achieve a sufficiently changed ma
?.

Table 1. Reference table for symbols.

Symbol Explanation

G Set of nodes and directed edges (network)

N Number of nodes

Aij Adjacency matrix

V (G) Set of nodes in G

E(G) Set of edges in G

degz={(i) Outdegree/indegree of node i

si Spin of node i, ~+1

ja
ath attractor

jn=c Normal/cancer attractor

Jij Coupling matrix

hi Total field at node i

hext
i External field applied to node i

T Temperature

Q Set of source and effective source nodes

ma(t) Magnetization along attractor a at time t

ma
? Steady-state magnetization along attractor a

p Number of attractors in coupling matrix

S Set of similarity nodes

D Set of differential nodes

L(B) Control set of bottleneck B

I(B) Impact of bottleneck B

C Cycle cluster

B Size k bottleneck, where k~DBD

Z(B,G) Set of critical nodes for bottleneck B in network G

ncrit(B,G) Critical number of nodes in bottleneck B in network G

R(C,G) Set of externally influenced nodes

W (C,G) Set of intruder connections

Zred(C,G) Reduced set of critical nodes

m Minimum indegree of all nodes in a cycle cluster

ecrit(B) Critical efficiency of bottleneck B

eopt(B) Optimal efficiency of bottleneck B

This table lists all important symbols introduced in the article with a brief
explanation of its purpose.
doi:10.1371/journal.pone.0105842.t001
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The effects of controlling a set of nodes can be more than the sum

of the effects of controlling individual nodes, and predicting the

truly optimal set of nodes to target is computationally difficult.

Here, we discuss heuristic strategies for controlling large networks

where the combinatorial approach is impractical.

For both p~1 and p~2, simulating a cancer cell means that

~ss(0)~z~jjc, and likewise for normal cells. Although the normal

and cancer states are mathematically interchangeable, biologically

we seek to decrease m c
? as much as possible while leaving

m n
?&z1. By ‘‘network control’’ we thus mean driving the system

away from its initial state of ~ss(0)~~jjc with ~hhext. Controlling

individual nodes is achieved by applying a strong field (stronger

than the magnitude of the field due to the node’s upstream

neighbors) to a set of targeted nodes T so that

hext
t ~

lim(u??) {ujc
t t[T

0 else

(
: ð12Þ

This ensures that the drug field can always overcome the field

from neighboring nodes.

In application, similarity nodes are never deliberately directly

targeted, since changing their state would adversely affect both

normal and cancer cells. Roughly 70% of the nodes in the

networks surveyed are similarity nodes, so the search space is

reduced. For p~2, the effective edge deletion means that only the

differential network in cancer cells needs to be simulated to

determine the effectiveness of~hhext. For p~1, however, there may

be some similarity nodes that receive signals from upstream

differential nodes. In this case, the full effect of ~hhext can be

determined only by simulating all differential nodes as well as any

similarity nodes downstream of differential nodes. All following

discussion assumes that all nodes examined are differential, and

therefore targetable, for both p~1 and p~2. The existence of

similarity nodes for p~1 only limits the set of targetable nodes.

Directed acyclic networks. Full control of a directed acyclic

network is achieved by forcing sq~{jc
q for all q[Q. This

guarantees mc
?~{1. Suppose that nodes q[Q in an acyclic

network have always been fixed away from the cancer state, that is,

sq(t?{?)~{jc
q. For any node i to have si(t)~jn

i , it is

sufficient to have either i[Q or sj(t{1)~jn
j for all j?i, i[=Q.

Because there are no cycles present, all upstream paths of sufficent

length terminate at a source. Because the spin of all nodes q[Q

point away from the cancer attractor state, all nodes downstream

must also point away from the cancer attractor state. Thus, for

acyclic networks, forcing sq~{jc
q guarantees mc

?~{1. The

complications that arise from cycles are discussed in the next

subsubsection. However, controlling nodes in Q may not be the

most efficient way to push the system away from the cancer basin

of attraction and, depending on the control limitations, it may not

be possible. If minimizing the number of controllers is required,

searching for the most important bottlenecks is a better strategy.

Consider a directed network G and an initially identical copy,

G0~G: If removing node i (and all connections to and from i)

from G0 decreases the indegree of at least one node j[V (G0), j=i,

to less than half of its indegree in network G, fig is a size 1
bottleneck. The bottleneck control set of bottleneck fig, L(i), is

defined algorithmically as follows: (1) Begin a set L(i) with the

current bottleneck i so that L~fig; (2) Remove bottleneck fig
from network G0; (3) Append L(i) with all nodes j with current

indegree that is less than half of that from the original network G;

(4) Remove all nodes j from the network G0. If additional nodes in

G0 have their indegree reduced to below half of their indegree in

G, go to step 3. Otherwise, stop. The impact of the bottleneck i, I(i),
is defined as

I(i)~DL(i)D, ð13Þ

where DX D is the cardinality of the set X : The impact of a

bottleneck is the minimum number of nodes that are guaranteed

to switch away from the cancer state when the bottleneck is forced

away from the cancer state.

Figure 1. Network segregation for two attractor states (p~2). Every edge that connects a similarity node to a differential node or a differential
node to a similarity node transmits no signal. This means that the signaling in the right network shown above is identical to that of the left network.
Because the goal is to leave normal cells unaltered while damaging cancer cells as much as possible, all similarity nodes can be safely ignored, and
searches and simulations only need to be done on the differential subnetwork.
doi:10.1371/journal.pone.0105842.g001
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The impact is used to rank the size 1 bottlenecks by importance,

with the most important as those with the largest impact. In

application, when searching for nodes to control, any size 1

bottleneck fig that appears in the bottleneck control set of a

different size 1 bottleneck fjg can be ignored, since fixing j to the

normal state fixes i to the normal state as well. Note that the

definition given above in terms of G and G0 avoids miscounting in

the impact of a bottleneck.

The network in Fig. 2, for example, has three sources (nodes 1,

2 and 3), but one important bottleneck (node 6). If full damage, i.e.

mc
?~{1, is required, then control of all source nodes is

necessary. If minimizing the number of directly targeted nodes is

important and mc
?w{1 can be tolerated, then control of the

bottleneck node 6 is a better choice.

Directed cycle-rich networks. Not all networks can be fully

controlled at T~0 by controlling the source nodes, however. If

there is a cycle present, paths of infinite length exist and the final

state of the system may depend on the initial state, causing parts of

the network to be hysteretic. Controlling only sources in a general

directed network thus does not guarantee mc
?~{1 unless the

system begins with si~{jc
i .

Define a cycle cluster, C, as a strongly connected subnetwork of

a network G: The network in Fig. 3, for example, has one cycle

cluster with nodes V (C)~ 4,5,6,7f g. If the network begins with

~ss(0)~~jjc, forcing both source nodes away from the cancer state

does nothing to the nodes downsteam of node 3 (see Fig. 4). This is

because the indegree deg{(4)~4, and a majority of the nodes

connecting to node 4 are in the cancer attractor state. At T~0,

cycle clusters with high connectivity tend to block incoming signals

from outside of the cluster, resulting in an insurmountable

activation barrier.

The most effective single node to control in this network is any

one of nodes 4, 6 or 7. Forcing any of these away from the cancer

attractor state will eventually cause the entire cycle cluster to flip

away from the cancer state, and all nodes downstream will flip as

well, as shown in Fig. 4. The cycle cluster here acts as a sort of

large, hysteretic bottleneck. We now generalize the concept of

bottlenecks.

Define a size k bottleneck in a network G to be a cycle cluster B

with DV(B)D~k which, when removed from G, reduces the

indegree of at least one node j[V (G), j[=V Bð Þ to less than half of

its original indegree. Other than now using the set of nodes V (B)
rather than a single node set, the above algorithm for finding the

bottleneck control set remains unchanged. In Fig. 3, for instance,

V (B)~ 4,5,6,7f g, k~4, L(B)~ 4,5,6,7,8,9,10f g, and I(B)~7.

With this more general definition, we note that controlling any size

k bottleneck B guarantees control of all size 1 bottlenecks B0 in the

control set of B for all k§1.

For any bottleneck B of size k§1 in a network G, define the set
of critical nodes, Z(B,G), as the set of nodes Z(B,G)(V (B) of

minimum cardinality that, when controlled, guarantees full control

of all nodes i[V (B) after a transient period. Also define the critical
number of nodes as ncrit(B,G)~DZ(B,G)D. Thus, for the network in

Fig. 3, Z(B,G)~f4g, f6g, or f7g, and ncrit(B,G)~1.

In general, however, more than one node in a cycle cluster may

need to be targeted to control the entire cycle cluster. Fig. 5 shows

a cycle cluster (composed of nodes 2–10) that cannot be controlled

by targeting any single node. The precise value of ncrit for a given

cycle cluster C depends on its topology as well as the edges

connecting nodes from outside of C to the nodes inside of C, and

finding Z(C,G) can be difficult. We present a theorem that puts

bounds on ncrit to help determine whether a search for Z(C,G) is

practical.

Theorem: Suppose a network G contains a cycle cluster C:
Define the set of externally influenced nodes

R(C,G)~fi[V (C) : j[V (G \C),(j,i)[E(G)g, ð14Þ

the set of intruder connections

W (C,G)~f(j,i)[E(G) : i[V (C),j[V (G \C)g, ð15Þ

and the reduced set of critical nodes

Zred(C,G)~Z(C,G \W ): ð16Þ

If N~DV (C)D and

m: min
i[V (C)

deg{(i), ð17Þ

where deg{(i) is computed ignoring intruder connections, then

qm

2
rƒncrit(C,G)ƒf, ð18Þ

where

f:min qN

2
rzDR(C,G)\Zred(C,G)D,N

� �
: ð19Þ

Proof: First, prove the lower limit of Eq. 18. Let C be a cycle

cluster in a network G with R(C,G)~f1g. (A cycle cluster in a

network with DR(C,G)Dw0 will have the same or higher activation

barrier for any node in the cluster than the same cycle cluster in a

network with R~f1g. Since we are examining the lower limit of

Eq. 18, we consider the case with the lowest activation barrier.

Figure 2. A directed acyclic network. Controlling all three source
nodes (nodes 1, 2 and 3) guarantees full control of the network, but are
ineffective when targeted individually. The best single node to control
in this network is node 6 because it directly controls all downstream
nodes.
doi:10.1371/journal.pone.0105842.g002
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Any externally influenced nodes cause ncrit to either increase or

remain the same.) For any node i to be able to flip away from the

cancer state (although not necessarily remain there), we must have

that hi~{ajc
i for a§0, meaning that at least half of the nodes

upstream of i must point away from the cancer state. The node i

requiring the smallest number of upstream nodes to be in the

normal state is the node that satisfies deg{(i)~m: Controlling less

than m=2 nodes will leave all uncontrolled nodes with a field in the

cancer direction, and no more flips will occur. Thus,

ncrit§qm

2
r: ð20Þ

For the upper limit of Eq. 18, consider a complete clique on N

nodes, C~KN (that is, Aij~1 for all i, j[V (KN ), including self

loops) in a network G: First, let there be no connections to any

nodes in C from outside of C so that R(C,G)~f1g. For odd N,
forcing (Nz1)=2 nodes away from the cancer state will result in

the field

X
j

Jijsj~
N{1

2
{

Nz1

2

� �
jc

i ~{jc
i ð21Þ

for all nodes i: After one time step, all nodes will flip away from the

cancer state. For even N, forcing N=2 nodes away from the cancer

state will result in the field

X
j

Jijsj~
N

2
{

N

2

� �
jc

i ~0 ð22Þ

for all nodes i: At the next time step, the unfixed nodes will pick

randomly between the normal and cancer state. If at least one of

these nodes makes the transition away from the cancer state, the

field at all other nodes will point away from the cancer direction.

The system will then require one more time step to completely

settle to si~{jc
i :. Thus, we have that for C~KN in a network G

with R(C,G)~f1g,

ncrit(KN ,G)~qN

2
r: ð23Þ

KN with si(0)~jc
i gives the largest activation barrier for any cycle

cluster on N nodes with R(C,G)~f1g to switch away from the

cancer attractor state. A general cycle cluster C with any topology

on N nodes with R(C,G)~f1g in a network G will have

deg{(i)ƒN for all nodes i, and so we have the upper bound

ncrit(C,G)ƒqN

2
r, ð24Þ

thus proving Eq. 18 for the special case of R(C,G)~f1g.
Now consider a cycle cluster C on N nodes in a network G with

DR(C,G)D§0. Suppose all nodes in Zred(C,G) are fixed away

from the cancer state. By Eq. 24, DZred C,Gð ÞDƒqN=2r: For any

node i[(R(C,G)\Zred(C,G)), si(t??)~{jc
i is guaranteed

because it has already been directly controlled. Any node

i[(R(C,G)\Zred(C,G)) has some incoming connections from

nodes j[=V (C), and these connections could increase the activation

barrier enough such that fixing Zred(C,G) is not enough to

guarantee si(t??)~{jc
i . To ensure that any node l[V (C)

points away from the cancer state, it is sufficient to fix all nodes

i[(R(C,G)\Zred(C,G)) as well as Zred(C,G) away from the cancer

state. This increases ncrit by at most DR(C,G)\Zred(C,G)D, leaving

ncrit(C,G)ƒqN

2
rzDR(C,G)\Zred(C,G)D: ð25Þ

ncrit can never exceed N, however, because directly controlling

every node results in controlling C: We can thus say that

ncrit(C,G)ƒmin qN

2
rzDR(C,G)\Zred(C,G)D,N

� �
: ð26Þ

Finally, combining the upper limit in Eq. 26 with the lower limit

from Eq. 20 gives Eq. 18. &

There can be more than one Zred for a given cycle cluster. Note

that the tightest constraints on ncrit in Eq. 18 come from using the

Zred with the largest overlap with R. If finding Zred is too difficult,

an overestimate for the upper limit of ncrit can be made by

assuming that R\Zred~f1g so that

qm

2
rƒncrit(C,G)ƒ min qN

2
rzDR(C,G)D, N

� �
: ð27Þ

The cycle cluster in Fig. 5 has N~9, R~f2,9g, m~1, and one

of the reduced sets of critical nodes is Zred~f9,10g, so

1ƒncritƒ6: It can be shown through an exhaustive search that

for this network ncrit~2, and the set of critical nodes is Z~f9,10g
(see Fig. 6). Here, Z~Zred, although this is not always the case.

Because the cycle cluster has 9 nodes and 1ƒncritƒ6, at mostP6
n~1

9

n

� �
~465 simulations are needed to find at least one

solution for Z(C,G). However, the maximum number of

Figure 3. A network in which nodes 4, 5, 6 and 7 compose a
single cycle cluster. The high connectivity of node 4 prevents any
changes made to the spin of nodes 1–3 from propagating downstream.
The only way to indirectly control nodes 8–10 is to target nodes inside
of the cycle cluster. Targeting node 4, 6 or 7 will cause the entire cycle
cluster to flip away from its initial state, guaranteeing control of nodes
4–10 (see Fig. 4).
doi:10.1371/journal.pone.0105842.g003
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simulations required to find Z(C,G) increases exponentially and

for larger networks the problem quickly becomes intractable.

One heuristic strategy for controlling cycle clusters is to look for

size k0vDV (C)D bottlenecks inside of C: Bottlenecks of size k&1
and average indegree Sdeg{(B)T%k can contain high impact size

k0 bottlenecks, where k0vk. Size k§1 bottlenecks need to be

compared to find the best set of nodes to target to reduce mc
?.

Simply comparing the impact is insufficent because a cycle cluster

with a large impact could also have a large ncrit, requiring much

more effort than its impact merits. Define the critical efficiency of a

bottleneck B as

ecrit(B)~
I(B)

ncrit(B,G)
: ð28Þ

If the critical efficiency of a cycle cluster is much smaller than the

impacts of size 1 bottlenecks from outside of the cycle cluster, the

the cycle cluster can be safely ignored.

For some cycle clusters, however, not all of the nodes need to be

controlled in order for a large portion of the nodes in the cycle

cluster’s control set to flip. Define the optimal efficiency of a

bottleneck B as

eopt(B)~ max
n~1,2,...

I
Sn

i~1 Bi

� �
n

� �
ð29Þ

where Bi(V(B) are size 1 bottlenecks and I(Bi)wI(Biz1) for all

i: Note that for any size 1 bottleneck B, eopt(B)~ecrit(B)~I(B):
This quantity thus allows bottlenecks with very different properties

(I(B), ncrit(B,G), or DV (B)D) to be ranked against each other.

All strategies presented above are designed to select the best

individual or small group of nodes to target. Significant changes in

the biological networks’ magnetization require targeting many

nodes, however. Brute force searches on the effect of larger

combinations of nodes are typically impossible because the

required number of simulations scales exponentially with the

number of nodes. A crude Monte Carlo search is also numerically

expensive, since it is difficult to sample an appreciable portion of

the available space. One alternative is to take advantage of the

bottlenecks that can be easily found, and rank all size k§1
bottlenecks Bi in an ordered list U such that

U~(B1,B2,B3, . . . ) ð30Þ

where

Figure 4. Cancer magnetization from targeting various nodes in the network shown in Fig. 3, averaged over 10,000 runs. The
averaging removes fluctuations due to the random flipping of nodes with hi~0: Targeting node 7 results in the quickest stabilization, but targeting
any one of nodes 4, 6 or 7 results in the same final magnetization.
doi:10.1371/journal.pone.0105842.g004
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eopt Bið Þ§eopt Biz1ð Þ, Bi5=L Bj

� �
ð31Þ

for all Bi,Bj[U and fix the bottlenecks in the list in order. This is

called the efficiency-ranked strategy. If all size kw1 bottlenecks are

ignored, it is called the pure efficiency-ranked strategy, and if size

kw1 bottlenecks are included it is called the mixed efficiency-

ranked strategy.

An effective polynomial-time algorithm for finding the top z

nodes to fix, which we call the best+1 strategy (equivalent to a

greedy algorithm), works as follows: (1) Begin with a seed set of

nodes to fix, F ; (2) Test the effect of fixing F|i for all allowed

nodes i[=F ; (3) F/F|ibest, where ibest is the best node from all i

sampled; (4) If DF Dvz, go to step (2). Otherwise, stop. The seed set

of nodes could be the single highest impact size 1 bottleneck in the

network, or it could be the best set of n nodes (where nvz) found

from a brute force search.

Cancer Signaling

In application to biological systems, we assume that the

magnetization of cell type a is related to the viability of cell type

a, that is, the fraction of cells of type a that survives a drug

treatment. It is reasonable to assume that the viability of cell type

a, va(ma
?), is a monotonically increasing function of ma

?. Because

the exact relationship is not known, we analyze the effect of

external perturbations in terms of the final magnetizations.

We need to use as few controllers as possible to sufficiently

reduce mc
? while leaving mn

?&z1. In practical applications,

however, one is limited in the set of druggable targets. All classes of

drugs are constrained to act only on a specific set of biological

components. For example, one class of drugs that is currently

under intense research is protein kinase inhibitors [35]. In this case

one has two constraints: the only nodes that can be targeted are

those that correspond to kinases, and they can only be inhibited,

i.e. turned off. We will use the example of kinase inhibitors to show

how control is affected by such types of constraints. In the real

systems studied, many differential nodes have only similarity nodes

upstream and downstream of them, while the remaining

differential nodes form one large cluster. This is not important

for p~1, but the effective edge deletion for p~2 results in many

Figure 5. A network with a cycle cluster C, composed of nodes
2–10, that cannot be controlled at T~0 by controlling any
single node. Here, the set of externally influenced nodes is
R(C,G)~f2,9g, the set of intruder connections is W (C,G)~f(1,2),
(1,9)g, the reduced set of critical nodes is Zred(C,G)~f9,10g, the
minimum indegree is m~1 and the number of nodes in the cycle cluster
is N~9: By Eq. 18, this gives the bounds of the critical number of nodes
to be 1ƒncritƒ6.
doi:10.1371/journal.pone.0105842.g005

Figure 6. Magnetization for network from Fig. 5, averaged over 10,000 runs. There is no single node to target that will control the cycle
cluster, but fixing nodes 9 and 10 results in full control of the cycle cluster, leaving only node 1 in the cancer state. This means Z(C,G)~f9,10g and
ncrit~2.
doi:10.1371/journal.pone.0105842.g006
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islets, which are nodes i with Aij~Aji~0 for all i=j (self-loops

allowed). Controlling islets requires targeting each islet individu-

ally. For p~2, we concentrate on controlling only the largest

weakly connected differential subnetwork. All final magnetizations

are normalized by the total number of nodes in the full network,

even if the simulations are only conducted on small portion of the

network.

The data files for all networks and attractors analyzed below can

be found in Supporting Information.

Lung Cell Network
The network used to simulate lung cells was built by combining

the kinase interactome from PhosphoPOINT [32] with the

transcription factor interactome from TRANSFAC [33]. Both of

these are general networks that were constructed by compiling

many observed pairwise interactions between components, mean-

ing that if j?i, at least one of the proteins encoded by gene j has

been directly observed interacting with gene i in experiments. This

bottom-up approach means that some edges may be missing, but

those present are reliable. Because of this, the network is sparse

(*0:057% complete, see Table 2), resulting in the formation of

many islets for p~2. Note also that this network presents a clear

hierarchical structure, characteristic of biological networks

[36,37], with many ‘‘sink’’ nodes [38] that are targets of

Table 2. General properties of the full networks.

Properties Lung B cell

Nodes 9073 4364

Edges 45635 55144

Sources 129 8

Sinks 8443 1418

Av. outdegree 5.03 12.64

Max outdegree 240 2372

Max indegree 68 196

Self-loops 238 0

Undirected edges 350 23386

Diameter 11 11

Max cycle cluster 401 2886

Av. clustering coeff. [73] 0.0544 0.2315

The network used for the analysis of lung cancer is a generic one obtained
combining the data sets in Refs. [32] and [33]. The B cell network is a curated
version of the B cell interactome obtained in Ref. [34] using a network
reconstruction method and gene expression data from B cells.
doi:10.1371/journal.pone.0105842.t002

Figure 7. Final cancer magnetizations for an unconstrained search on the lung cell network using p = 1. The efficiency-ranked strategy
outperforms the relatively expensive Monte Carlo strategy. The best+1 strategy works best, although it requires the largest computational time. Note
that the mixed efficiency-ranked curve is not shown because it is identical to the pure efficiency-ranked curve. Key for magnetization curves: MC =
Monte Carlo, B+1 = best+1, ERP = pure efficiency-ranked, ERM = mixed efficiency-ranked, EX = exhausive search.
doi:10.1371/journal.pone.0105842.g007
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transcription factors and a relatively large cycle cluster originating

from the kinase interactome.

It is important to note that this is a non-specific network,

whereas real gene regulatory networks can experience a sort of

‘‘rewiring’’ for a single cell type under various internal conditions

[39]. In this analysis, we assume that the difference in topology

between a normal and a cancer cell’s regulatory network is

negligible. The methods described here can be applied to more

specialized networks for specific cell types and cancer types as

these networks become more widely avaliable.

In our signaling model, the IMR-90 cell line [40,41] was used

for the normal attractor state, and the two cancer attractor states

examined were from the A549 (adenocarcinoma) [42–46] and

NCI-H358 (bronchioalveolar carcinoma) [42,43] cell lines. Gene

expression measurements from all referenced studies for a given

cell line were averaged together to create a single attractor. The

resulting magnetization curves for A549 and NCI-H358 are very

similar, so the following analysis addresses only A549. The full

network contains 9073 nodes, but only 1175 of them are

differential nodes in the IMR-90/A549 model. In the uncon-

strained p~1 case, all 1175 differential nodes are candidates for

targeting. Exhaustively searching for the best pair of nodes to

control requires investigating 689725 combinations simulated on

the full network of 9073 nodes. However, 1094 of the 1175 nodes

are sinks (i.e. nodes i with outdegree degz(i)~0, ignoring self

loops) and therefore have I(i)~eopt(i)~1, which can be safely

ignored. The search space is thus reduced to 81 nodes, and finding

even the best triplet of nodes exhaustively is possible. Including

constraints, only 31 nodes are differential kinases with jc
i ~z1.

This reduces the search space at the cost of increasing the

minimum achievable mc
?.

There is one important cycle cluster in the full network, and it is

composed of 401 nodes. This cycle cluster has an impact of 7948

for p~1, giving a critical efficiency of at least *19:8, and

1ƒncritƒ401 by Eq. 27. The optimal efficiency for this cycle

cluster is eopt~29, but this is achieved for fixing the first bottleneck

in the cluster. Additionally, this node is the highest impact size 1

bottleneck in the full network, and so the mixed efficiency-ranked

results are identical to the pure efficiency-ranked results for the

unconstrained p~1 lung network. The mixed efficiency-ranked

strategy was thus ignored in this case.

Fig. 7 shows the results for the unconstrained p~1 model of the

IMR-90/A549 lung cell network. (All simulations were performed

using MATLAB on a desktop computer. Running the simulations

to make all curves shown below required approximately 12 hours.)

The unconstrained p~1 system has the largest search space, so the

Monte Carlo strategy performs poorly. The best+1 strategy is the

most effective strategy for controlling this network. The seed set of

nodes used here was simply the size 1 bottleneck with the largest

impact. Note that best+1 works better than effeciency-ranked.

Figure 8. Final cancer magnetizations for an unconstrained search on the lung cell network using p = 2. As in the p = 1 case, the
efficiency-ranked strategy outperforms the expensive Monte Carlo search. The plateaus in the efficiency-ranked strategy when fixing 9–10, 12–15, 20–
21, etc. nodes are a result of targeting bottlenecks that are already indirectly controlled.
doi:10.1371/journal.pone.0105842.g008
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This is because best+1 includes the synergistic effects of fixing

multiple nodes, while efficiency-ranked assumes that there is no

overlap between the set of nodes downstream from multiple

bottlenecks. Importantly, however, the efficiency-ranked method

works nearly as well as best+1 and much better than Monte Carlo,

both of which are more computationally expensive than the

efficiency-ranked strategy.

Fig. 8 shows the results for the unconstrained p~2 model of the

IMR-90/A549 lung cell network. The search space for p~2 is

much smaller than that for p~1. The largest weakly connected

differential subnetwork contains only 506 nodes (see Table 3), and

the remaining differential nodes are islets or are in subnetworks

composed of two nodes and are therefore unnecessary to consider.

Of these 506 nodes, 450 are sinks. Fig. 9 shows the largest weakly

connected component of the differential subnetwork, and the top

five bottlenecks in the unconstrained case are shown in red. If

limiting the search to differential kinases with jc
i ~z1 and

ignoring all sinks, p~2 has 19 possible targets. There is only one

cycle cluster in the largest differential subnetwork, containing 6

nodes. Like the p~1 case, the optimal efficiency occurs when

targeting the first node, which is the highest impact size 1

bottleneck. Because the mixed efficiency-ranked strategy gives the

same results as the pure efficiency-ranked strategy, only the pure

strategy was examined. The Monte Carlo strategy fares better in

the unconstrained p~2 case because the search space is smaller.

Additionally, the efficiency-ranked strategy does worse against

the best+1 strategy for p~2 than it did for p~1. This is because

the effective edge deletion decreases the average indegree of the

network and makes nodes easier to control indirectly. When many

upstream bottlenecks are controlled, some of the downstream

bottlenecks in the efficiency-ranked list can be indirectly

controlled. Thus, controlling these nodes directly results in no

change in the magnetization. This gives the plateaus shown for

fixing nodes 9-10 and 12–15, for example.

The only case in which an exhaustive search is possible is for

p~2 with constraints, which is shown in Fig. 10. Note that the

polynomial-time best+1 strategy identifies the same set of nodes as

the exponential-time exhaustive search. This is not surprising,

however, since the constraints limit the available search space.

This means that the Monte Carlo also does well. The efficiency-

ranked method performs worst. The efficiency-ranked strategy is

designed to be a heuristic strategy that scales gently, however, and

is not expected to work well in such a small space when compared

with more computationally expensive methods.

B Cell Network
The B cell network was derived from the B cell interactome of

Ref. [34]. The reconstruction method used in Ref. [34] removes

edges from an initially complete network depending on pairwise

gene expression correlation. Additionally, the original B cell

network contains many protein-protein interactions (PPIs) as well

as transcription factor-gene interactions (TFGIs). TFGIs have

definite directionality: a transcription factor encoded by one gene

affects the expression level of its target gene(s). PPIs, however, do

not have obvious directionality. We first filtered these PPIs by

checking if the genes encoding these proteins interacted according

to the PhosphoPOINT/TRANSFAC network of the previous

section, and if so, kept the edge as directed. If the remaining PPIs

are ignored, the results for the B cell are similar to those of the lung

cell network. We found more interesting results when keeping the

remaining PPIs as undirected, as is discussed below.

Because of the network construction algorithm and the inclusion

of many undirected edges, the B cell network is more dense

(*0.290% complete, see Table 2) than the lung cell network. This
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higher density leads to many more cycles than the lung cell

network, and many of these cycles overlap to form one very large

cycle cluster containing *66% of nodes in the full network. All

gene expression data used for B cell attractors was taken from Ref.

[47]. We analyzed two types of normal B cells (naı̈ve and memory)

and three types of B cell cancers (diffuse large B-cell lymphoma

(DLBCL), follicular lymphoma, and EBV-immortalized lympho-

blastoma), giving six combinations in total. We present results for

only the naı̈ve/DLBCL combination below, but Tables 3 and 4

list the properties of all normal/cancer combinations. Again, all

gene expression measurements for a given cell type were averaged

together to produce a single attractor. The full B cell network is

composed of 4364 nodes. For p~1, there is one cycle cluster C

composed of 2886 nodes. This cycle cluster has 1ƒncrit(C)
ƒ1460, I(C)~4353, and 3:0ƒecrit(C)ƒ4353: Finding Z(C) was

deemed too difficult.

Fig.11 shows the results for the unconstrained p~1 case. Again,

the pure efficiency-ranked strategy gave the same results as the

mixed efficiency-ranked strategy, so only the pure strategy was

analyzed. As shown in Fig. 11, the Monte Carlo strategy is out-

performed by both the efficiency-ranked and best+1 strategies.

The synergistic effects of fixing multiple bottlenecks slowly

becomes apparent as the best+1 and efficiency-ranked curves

separate.

Fig. 12 shows the results for the unconstrained p~2 case. The

largest weakly connected subnetwork contains one cycle cluster

Figure 9. Largest weakly connected differential subnetwork for IMR-90/A549 and p = 2. Out of the 506 pictured nodes, 450 are sinks and
therefore have an impact equal to one. The top five bottlenecks are labeled with their gene names and colored orange.
doi:10.1371/journal.pone.0105842.g009
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with 351 nodes, with 1ƒncritƒ208. Although finding a set of

critical nodes is difficult, the optimal efficiency for this cycle cluster

is 62.2 for fixing 10 bottlenecks in the cycle cluster. This makes

targeting the cycle cluster worthwhile. The efficiency of this set of

10 nodes is larger than the efficiencies of the first 10 nodes from

the pure efficiency-ranked strategy, so the mc
? from the mixed

strategy drops earlier than the pure strategy. Both strategies

quickly identify a small set of nodes capable of controlling a

significant portion of the differential network, however, and the

same result is obtained for fixing more than 10 nodes. The best+1

strategy finds a smaller set of nodes that controls a similar fraction

of the cycle cluster, and fixing more than 7 nodes results in only

incremental decreases in mc
?. The Monte Carlo strategy performs

poorly, never finding a set of nodes adequate to control a

significant fraction of the nodes in the cycle cluster.

Conclusions

Signaling models for large and complex biological networks are

becoming important tools for designing new therapeutic methods

for complex diseases such as cancer. Even if our knowledge of

biological networks is incomplete, rapid progress is currently being

made using reconstruction methods that use large amounts of

publicly available omic data [12,13]. The Hopfield model we use

in our approach allows mapping of gene expression patterns of

normal and cancer cells into stored attractor states of the signaling

dynamics in directed networks. The role of each node in disrupting

the network signaling can therefore be explicitly analyzed to

identify isolated genes or sets of strongly connected genes that are

selective in their action. We have introduced the concept of size k
bottlnecks to identify such genes. This concept led to the

formulation of several heuristic strategies, such as the efficiency-
ranked and best+1 strategy to find nodes that reduce the overlap of

the cell network with a cancer attractor. Using this approach, we

have located small sets of nodes in lung and B cancer cells which,

when forced away from their initial states with local magnetic

fields (representing targeted drugs), disrupt the signaling of the

cancer cells while leaving normal cells in their original state. For

networks with few targetable nodes, exhaustive searches or Monte

Carlo searches can locate effective sets of nodes. For larger

networks, however, these strategies become too cumbersome and

our heuristic strategies represent a feasible alternative. For tree-like

networks, the pure efficiency-ranked strategy works well, whereas

the mixed efficiency-ranked strategy could be a better choice for

networks with high-impact cycle clusters.

We make two important assumptions in applying this analysis to

real biological systems. First, we assume that genes are either fully

off or fully on, with no intermediate state. Modelling the state of a

neuron as ‘‘all-or-none’’ has long been accepted as a reasonable

assumption [48], which provided the spin glass framework for the

Figure 10. Final cancer magnetizations for a constrained search on the lung cell network using p = 2. This is the only case in which a
limited exhaustive search is possible. Interestingly, the exhaustive search locates the same nodes as the best+1 strategy for fixing up to eight nodes.
The efficiency-ranked strategy performs poorly compared to the Monte Carlo strategy because the search space is small and a large portion of the
available space is sampled by the Monte Carlo search.
doi:10.1371/journal.pone.0105842.g010
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Hopfield model. While similar switch-like behavior in gene

regulatory networks has been proposed as an explanation of, for

example, segmentation in Drosophila embryos [49], assigning a

Boolean value to gene expression may be overly simplistic in many

cases. A model which uses spins with more than two projections

could prove to be more realistic and predictive. Second, we

assume that all nodes update their status with a single timescale

and with a single interaction strength. If the signaling timescale tij

for each edge in the biological network is known, simulations could

be conducted in which a signal traveling along an edge (j,i)
reaches its target after tij time steps. This would amount to a

synchronous update schedule with a ‘‘queue’’ of signals moving

between nodes. Likewise, our model gives equal weight to all edges

(aside from edges that are effectively deleted in the p~2 case),

whereas real gene regulatory networks exhibit a spectrum of

interaction strengths. This can easily be integrated with our model

by using a weighted, directed adjacency matrix. However, doing

this would surely require a change in control strategy.

Despite these issues, our model shows promise. Some of the

genes identified in Table 4 are consistent with current clinical and

cancer biology knowledge. For instance, in the lung cancer list we

found a well known tumor suppressor gene (TP53) [50] that is

frequently mutated in many cancer types including lung cancer

[51]. Mutations in PBX1 have recently been detected in non-

small-cell lung cancer and this gene is now being considered as a

target for therapy and prognosis [52]. MAP3K3 and MAP3K14

are in the MAPK/ERK pathway which is a target of many novel

therapeutic agents [53], and SRC is a well known oncogene and a

candidate target in lung cancer [54]. BCL6 (B-cell lymphoma 6) is

the most common oncogene in DLBCL, and it is known that its

expression can predict prognosis and response to drug therapy

[55–57]. BCL6 is also frequently mutated in follicular lymphoma

[58,59]. Our analysis identified BCL6 as an important drug target

for both DLBCL and follicular lymphoma using either naive or

memory B-cells as a control for both p~1 and p~2. RBL2

disregulation has been recently associated with many types of

lymphoma [60–62]. FOXM1 is a potential therapeutic target in

mature B cell tumors [63] and ATF2 has been recently found to be

highly disregulated in lymphoma [64,65]. Besides BCL6 discussed

above, the N/D list for DLBCL contains genes (MEF2A [66],

NCOA1 [67,68], TGIF1 [69–71], NFATC3 [72]) that are all

known to have a functional role in cancer, even if they have not

been associated to the specific B-cell cancer types we have

considered. Our predictions are for the immortalized cell lines we

have selected, some of which are commonly used for in-vitro

testing in many laboratories. RNAi and targeted drugs could then

be used in these cell lines against the top scoring genes in Table 4

to test the disruption of survival or proliferative capacity. If

experimentally validated, our analysis based on attractor states and

bottlenecks could be applied to patient-derived cancer cells by

Figure 11. Final cancer magnetizations for an unconstrained search on the B cell network using p = 1. The Monte Carlo strategy is
ineffective for fixing any number of nodes. The efficiency-ranked and best+1 curves slowly separate because synergistic effects accumulate faster for
best+1.
doi:10.1371/journal.pone.0105842.g011
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integrating in the model patient gene expression data to identify

patient-specific targets.

The above unconstrained searches assume that there exists

some set of ‘‘miracle drugs’’ which can turn any gene ‘‘on’’ and

‘‘off’’ at will. This limitation can be patially taken into account by

using constrained searches that limit the nodes that can be

addressed. However, even the constrained search results are

unrealistic, since most drugs directly target more than one gene.

Inhibitors, for example, could target differential nodes with

jc
i ~{1 and jn

i ~z1, which would damage only normal cells.

Additionally, drugs would not be restricted to target only

differential nodes, and certain combinations could be toxic to

both normal and cancer cells. Few cancer treatments involve the

use of a single drug, and the synergistic effects of combining

multiple drugs adds yet another level of complication to finding an

effective treatment [27]. On the other hand, the intrinsic

nonlinearity of a cellular signaling network, with its inherent

structure of attractor states, enhances control [31] so that a

properly selected set of druggable targets might be sufficient for

robust control.

Supporting Information

Table S1 Lung cell network. The column labeled ‘‘Source

EzID’’ contains the Entrez IDs of transcription factors and kinases,

and ‘‘Target EzID’’ contains the Entrez IDs of the genes targeted

by the transcription factor or kinase to its left.

(TXT)

Table S2 IMR-90/A549 attractors for lung cell network.
The column labeled ‘‘EzID’’ contains the Entrez ID of the genes.

The second and third columns are the normal and cancer

attractor, respectively.

(TXT)

Table S3 IMR-90/NCI-H358 attractors for lung cell
network. The column labeled ‘‘EzID’’ contains the Entrez ID

of the genes. The second and third columns are the normal and

cancer attractor, respectively.

(TXT)

Table S4 B cell network. The column labeled ‘‘Source EzID’’

contains the Entrez IDs of transcription factors and kinases, and

‘‘Target EzID’’ contains the Entrez IDs of the genes targeted by

the transcription factor or kinase to its left.

(TXT)

Table S5 Memory/DLBCL attractors for B cell net-
work. The column labeled ‘‘EzID’’ contains the Entrez ID of the

genes. The second and third columns are the normal and cancer

attractor, respectively.

(TXT)

Figure 12. Final cancer magnetizations for an unconstrained search on the B cell network using p = 2. The rather sudden drop in the
magnetization between controlling 5 and 10 nodes in the efficiency-ranked strategies comes from flipping a significant portion of a cycle cluster. This
is the only network examined in which the mixed efficiency-ranked strategy produces results different from the pure efficiency-ranked strategy.
doi:10.1371/journal.pone.0105842.g012
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Table S6 Memory/EBV-immortalized lymphoblastoma
attractors for B cell network. The column labeled ‘‘EzID’’

contains the Entrez ID of the genes. The second and third

columns are the normal and cancer attractor, respectively.

(TXT)

Table S7 Memory/follicular lymphoma attractors for B
cell network. The column labeled ‘‘EzID’’ contains the Entrez

ID of the genes. The second and third columns are the normal and

cancer attractor, respectively.

(TXT)

Table S8 Naı̈ve/DLBCL attractors for B cell network.
The column labeled ‘‘EzID’’ contains the Entrez ID of the genes.

The second and third columns are the normal and cancer

attractor, respectively.

(TXT)

Table S9 Naı̈ve/EBV-immortalized lymphoblastoma
attractors for B cell network. The column labeled ‘‘EzID’’

contains the Entrez ID of the genes. The second and third

columns are the normal and cancer attractor, respectively.

(TXT)

Table S10 Naı̈ve/follicular lymphoma attractors for B
cell network. The column labeled ‘‘EzID’’ contains the Entrez

ID of the genes. The second and third columns are the normal and

cancer attractor, respectively.

(TXT)
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