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Summary

Peronospora effusa causes downy mildew, the eco-
nomically most important disease of cultivated spin-
ach worldwide. To date, 19 P. effusa races have been
denominated based on their capacity to break spin-
ach resistances, but their genetic diversity and the
evolutionary processes that contribute to race emer-
gence are unknown. Here, we performed the first sys-
tematic analysis of P. effusa races showing that
those emerge by both asexual and sexual reproduc-
tion. Specifically, we studied the diversity of
26 P. effusa isolates from 16 denominated races
based on mitochondrial and nuclear comparative
genomics. Mitochondrial genomes based on long-
read sequencing coupled with diversity assessment
based on short-read sequencing uncovered two mito-
chondrial haplogroups, each with distinct genome
organization. Nuclear genome-wide comparisons of
the 26 isolates revealed that 10 isolates from six
races could clearly be divided into three asexually
evolving groups, in concordance with their mitochon-
drial phylogeny. The remaining isolates showed sig-
nals of reticulated evolution and discordance
between nuclear and mitochondrial phylogenies,
suggesting that these evolved through sexual repro-
duction. Increased understanding of this pathogen’s
reproductive modes will provide the framework for

future studies into the molecular mechanisms under-
lying race emergence and into the P. effusa-spinach
interaction, thus assisting in sustainable production
of spinach through knowledge-driven resistance
breeding.

Introduction

Many microbial plant pathogens need to successfully col-
onize their hosts to complete their life cycle. Colonization
leads to extensive damage and disease on the infected
host plants (McMullan et al., 2015). To mitigate these
effects, plants have evolved defence mechanisms to
resist pathogens, while in turn pathogens evolve to over-
come the host immune system to successfully establish
an infection (Cook et al., 2015). In natural populations,
host and pathogen populations are slowly coevolving and
maintain diversity of resistance and virulence alleles
(Barrett et al., 2009; Möller and Stukenbrock, 2017). In
the last decades, modern agricultural practices have
introduced resistant host cultivars that are often deployed
in monocultures (Miller et al., 2020). This practice exerts
strong evolutionary pressure on pathogen populations to
overcome the introduced host resistance, and conse-
quently pathogens are engaging in rapid evolutionary
arms races (Möller and Stukenbrock, 2017; Mohd-
Assaad et al., 2019).

The oomycete downy mildew Peronospora effusa (Pe)
is an obligate biotrophic pathogen of spinach, and eco-
nomically the most important disease of cultivated spin-
ach worldwide (Lyon et al., 2016; Ribera et al., 2020).
Severe downy mildew infection can rapidly destroy entire
spinach fields, and even minor disease symptoms may
require removing infected leaves before harvest, thus sig-
nificantly decreasing profitability (Correll et al., 2011). In
conventional spinach production, downy mildew is man-
aged by the deployment of resistant cultivars and/or fun-
gicide applications for short-term control (Koike
et al., 1992). However, spinach production nowadays is
shifting to organic practices, and consequently develop-
ment and deployment of resistant cultivars are the most
practical management tool (Kandel et al., 2020). Modern
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farming practices of high-density, year-round spinach
production are an ideal environment for downy mildew,
providing ‘green bridges’ that sustain pathogen survival
(Lyon et al., 2016). Due to the added pressure from
newly developed resistant spinach cultivars, P. effusa
evolves rapidly and repeatedly overcomes host resis-
tance, resulting in new epidemics and severe economic
losses (Ribera et al., 2020).

Newly identified P. effusa isolates are assigned to dif-
ferent races based on their ability to infect a defined set
of differential spinach lines developed by the International
Seed Federation (Correll et al., 2015). These spinach dif-
ferentials contain one or more resistance (R) loci that are
known to effectively contain P. effusa races (Feng
et al., 2018). New races are determined by the Interna-
tional Working Group on Peronospora, which annually
evaluates newly identified P. effusa isolates for their
capacity to overcome previously known host resistances.
Downy mildew of spinach was first identified and reported
in Britain in 1824 (Ribera et al., 2020). More than a cen-
tury later, race 2 was described in 1958. Before 1990,
only three races of the pathogen were known, and the
disease could be well controlled (Koike et al., 1992).
Likely driven by the extensive deployment of resistance
loci (R-loci) in commercial spinach varieties, after 1990
the number of identified races increased tremendously,
and 16 additional races have been discovered within the
last 20 years (Supporting Information Fig. S1) (Lyon
et al., 2016; Feng et al., 2018; Klein et al., 2020).

Like many oomycetes, P. effusa is a heterozygous dip-
loid organism. Its genome sequence is relatively small
compared with other oomycetes (58.6 Mb compared with,
for instance, Phytophthora infestans which is 240 Mb;
Haas et al., 2009), and it is organized in 17 chromosomes
with 53.7% repeat content (Fletcher et al., 2021).
P. effusa can reproduce both asexually and sexually.
During the spinach growing season, P. effusa reproduces
asexually on infected plant tissues, releasing millions of
asexual spores (Kandel et al., 2020). These spores are
produced on leaves and other infected parts of the plant
on sporangiophores that are visible with the naked eye.
By the end of the growing season, P. effusa will also
reproduce sexually, which happens when two P. effusa
isolates of the opposite mating type (P1 and P2) co-occur
in the same infected spinach tissue. Sexual reproduction
results in new combinations of parental chromosomes,
and this process has been thought to be a powerful driver
of the emergence of new P. effusa races (Feng
et al., 2018). However, P. effusa field isolates from vari-
ous locations in the United States displayed limited geno-
typic diversity suggesting that these isolates are primarily
the result of asexual reproduction. Nevertheless, geno-
typic diversity in historical isolates is likely influenced by
sexual recombination (Lyon et al., 2016). The complete

genome assembly of the P. effusa isolate UA202013 has
been compared with closely related isolates from races
12, 13, and 14 with limited variation being observed
(Fletcher et al., 2021). Consequently, we still know sur-
prisingly little about genome-wide diversity between most
of P. effusa isolates and races, as well as evolutionary
processes that contribute to the emergence of new
P. effusa races.

Mitochondrial genomes are ideal markers to study
oomycete taxonomy and evolution as the mitochondrial
genome has a 5–10 times higher evolutionary rate com-
pared to the nuclear genome (Choi et al., 2011; Yuan
et al., 2017; Bourret et al., 2018). Previously, the mito-
chondrial genes cox2 and nad1 have been used to shed
light on the relationship between different P. effusa iso-
lates (Choi et al., 2011), which uncovered two distinct
mitochondrial haplotype groups that could be linked to
their geographical origin (Group I for Asia and Oceania
and Group II for American, European, and Japan) (Choi
et al., 2011). However, the mitochondrial phylogeny of
denominated P. effusa races is currently unknown. Here,
by using long-read sequencing data, we generated mito-
chondrial assemblies for four P. effusa isolates, including
Pe1 the first officially denominated P. effusa race which
was isolated in the United States (Lyon et al., 2016).
These four isolates differ in their mitochondrial genome
structure, which correlates with their separation into two
haplogroups. Combined with whole-genome short-read
sequencing data, we developed both mitochondrial and
nuclear phylogenies of 26 P. effusa isolates. Compari-
sons of both phylogenies revealed discordance and sig-
natures of shared genetic material, which suggest that
pervasive sexual recombination contributed to the evolu-
tion of resistance-breaking P. effusa isolates.

Results

De novo P. effusa mitochondrial genome assembly

To study the mitochondrial phylogeny of P. effusa iso-
lates, we first sought to reconstruct the complete mito-
chondrial genome of Pe1, the first denominated P. effusa
race. We performed whole-genome long-read sequenc-
ing using Oxford Nanopore sequencing technology on
total genomic DNA obtained from Pe1 spores
(Supporting Information Table S1B). To facilitate the
assembly of the Pe1 mitochondrial genome sequence,
we recovered 19 627 reads based on sequence similarity
searches to a collection of 26 publicly available oomycete
mitochondrial genome sequences (Supporting Informa-
tion Tables 1B and 2). The sequencing reads were error-
corrected and assembled using Canu, yielding one linear
contig of 49 964 bp long. We manually curated this
assembly to reconstruct a circular contig, which we
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further corrected for sequencing errors with high-quality
Illumina short reads (Supporting Information Table S1B).
The resulting complete mitochondrial genome sequence
of Pe1 is a 41 316 bp circular molecule with 22.8% GC
content, which is similar to mitochondrial genome assem-
blies previously reported for other oomycetes (Yuan
et al., 2017; Fletcher et al., 2018). Based on sequence
homology searches, we identified 42 protein-coding
genes encoding 19 respiratory chain proteins, 16 ribo-
somal proteins, two protein transport proteins, and five
hypothetical proteins also present in other oomycetes; of
these, 12 were annotated in the negative strand and
30 in the positive strand (Fig. 1; Supporting Information
Table S3). We observed that the majority of genes are

conserved across the 26 selected mitochondrial refer-
ence sequences. Notably, we also identified three
predicted genes [open reading frames (ORFs)] without
homologues in any of the references including R13 and
R14, which is comparable to the five ORFs without
homology previously identified in P. effusa isolates R13
and R14 (Fletcher et al., 2018) and to the 6–12 genus-
specific ORFs found in different Phytophthora species
(Yuan et al., 2017; Cai and Scofield, 2020).

Mitochondrial genomes are known to contain inverted
repeats (Achaz et al., 2003; Voineagu et al., 2008), and
thus we used blastn to self-align the genome and identi-
fied two 100% identical 832 bp-long inverted repeats in
Pe1 (Fig. 1). Inverted repeats are challenging to resolve

Fig. 1. Circular representation of the mitochondrial genome assembly of Peronospora effusa race 1 (Pe1). Protein-coding genes, tRNA, rRNA,
and other open-reading frames (ORFs) are shown along the outer ring (positive strand is the outside of the ring and the negative strand is the
inside). The two inverted repeats are highlighted by red boxes and with arrows. The inner ring depicts the GC content. The start and end of the
linear representations (Fig. 2B, Fig. 3B) of the circular genome assembly are indicated with two black lines at the start of the black arrow, which
indicates the direction.
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correctly in genome assemblies when sequencing reads
are not long enough to span the repetitive sequence
(Wang et al., 2018). To corroborate the genome organi-
zation of the Pe1 mitochondrial assembly, we mapped
both short- and long-read sequencing data of Pe1 to the
assembly, which did not reveal any discordant align-
ments (Supporting Information Fig. S2), suggesting that
the overall structure of the Pe1 assembly is correct.

Structural rearrangement in the Peronospora effusa race
1 mitochondrial genome

Structural rearrangements in mitochondrial genomes of
oomycetes are common (Yuan et al., 2017). We sought
to investigate the mitochondrial genome structures in
other Peronosporaceae and compare it to Pe1. To this
end, we used the publicly annotated mitochondrial
genome assemblies of 15 closely related species, which
belong to the Peronosporaceae family, together with the
Pe1 and R13 assembly. We first reconstructed the phylo-
genetic relationship between the 17 Peronosporaceae
based on the mitochondrial genes cox2 and nad1, which
are two highly conserved genes that have been previ-
ously used as taxonomic markers to study the relation-
ships of oomycetes including P. effusa (Choi
et al., 2011). The phylogenetic tree based on
concatenated cox2 and nad1 alignments recovers the
known relationship between Peronosporaceae by clearly
separating the different genera (Fig. 2A).

Guided by their phylogenetic relationship, we
reconstructed gene-based alignments between these
17 mitochondrial genomes. We observed six independent
large-scale structural rearrangements across the 17 Pero-
nosporaceae mitochondrial genomes, with Pe1 having a
unique structure that is different from R13; R13 is collin-
ear with R14 and the publicly available assembly of the
closest relative, the tobacco pathogen Peronospora
tabacina (Fletcher et al., 2018). All the observed
rearrangements can be summarized by displaying the dif-
ferences in just 10 species (Fig. 2B); three of the
observed structural rearrangements (i, ii, and iv) are con-
served across multiple species, while three are unique to
the species in which they were identified (iii, v, and vi).
Two rearrangements are small (2.5 kb) and involve only
two genes (ii, iii), while the remaining four are larger, 8–
16 kb, and involve 11–15 genes. We found no evidence
of the same region being rearranged more than once,
although the regions of the rearrangements iv and vi fully
overlap with those of i and ii. Thus, our data suggest that
structural rearrangements are common in Pero-
nosporaceae mitochondrial genomes; yet, the organiza-
tion of mitochondrial genomes is typically conserved in
closely related species. Like in P. effusa, we observed
inverted repeats in many Peronosporaceae mitochondrial

genomes. Their localization and size vary considerably
between species, and they are often absent in Phyto-
phthora spp. (Fig. 2C), implying that they can be gained
or lost multiple times independently during evolution.
Notably, inverted repeats directly flank two of the unique
rearrangements (v and vi), suggesting that these struc-
tures recombine to result in inversions in Pero-
nosporaceae (Yuan et al., 2017).

Mitochondrial genome phylogeny separates
Peronospora effusa into two distinct groups

Phylogenetic analysis of the global P. effusa population
based on the mitochondrial genes cox2 and nad1 has
previously uncovered two distinct mitochondrial
haplogroups that can be linked to the geographic origin
of the individual isolates (Choi et al., 2011). To study the
phylogenetic relationship between the denominated
P. effusa races, we obtained spore material for
24 P. effusa isolates. The pathogenicity of the isolates is
determined based on the current standard set of interna-
tional spinach differentials (Supporting Information
Fig. S1). To discover the evolutionary relationship of the
24 P. effusa isolates, we generated on average 58.8 mil-
lion Illumina paired-end sequencing reads, which were
subsequently mapped to the Pe1 mitochondrial assembly
to determine sequence variants (Supporting Information
Table S1A).

We initially focused on the mitochondrial specific genes
cox2 and nad1 as this enabled us to study our 24 isolates
together with the previously analysed 33 isolates from
the global population (Choi et al., 2011) as well as R13
and R14 (Fletcher et al., 2018). The alignment and phylo-
genetic analyses of these genes reveal that P. effusa iso-
lates can be divided into two distinct mitochondrial
haplogroups (Supporting Information Fig. S3), thereby
corroborating previous results by Choi and colleagues
(Choi et al., 2011). Based on Choi and colleagues,
European and North American isolates belong to Hap-
logroup II, while Asian and Australian isolates belong to
Haplogroup I (Choi et al., 2011). However, we observed
that multiple isolates denominated to Haplogroup I were
isolated in the USA (Pe5, Pe4, Pe16, US-13a), and thus
we could not establish the same correlation between the
mitochondrial haplogroups and the geographical location
of the P. effusa isolates.

To further support the separation into two haplogroups,
we performed phylogenetic analyses based on the whole
mitochondrial genomes of the 26 isolates (16 den-
ominated races, eight pathotypes, as well as R13 and
R14). We could identify 85 variant sites (76 SNPs,
9 indels) across the mitochondrial genome in the 26 iso-
lates based on the comparison to the Pe1 reference mito-
chondrial assembly (Supporting Information Table S1A).
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Of those, 48 variants were identified in protein-coding
regions (two in ORFs that lack similarity to known
protein-coding genes). Based on these 85 variants, we
constructed a maximum-likelihood phylogeny, which simi-
lar to cox2 and nad1 supports a separation into two dis-
tinct haplogroups (separated by 46 of the 85 variants,
and 100% bootstrap support); isolates within Haplogroup
I differ by 21 variant sites and within Haplogroup II by
18 variant sites (Fig. 3A).

Based on the discovery of the novel structure of the
Pe1 mitochondrial genome (Fig. 2B), we sought to further
investigate the P. effusa mitochondrial genome organiza-
tion in the two haplogroups. To this end, we selected
three additional P. effusa isolates for Nanopore long-read
sequencing: Pe4 and Pe6 from Haplogroup I and Pe11
from Haplogroup II (Supporting Information Table S1B).
We recovered �153 943 reads with an average length of
6.8 Kb based on sequence similarity searches to a col-
lection of 26 publicly available oomycete mitochondrial
genome sequences (Supporting Information Table S2).
We assembled the long reads with Canu and manually
corrected the assemblies into circular genome
sequences of 41.4 kb on average (Supporting Informa-
tion Fig. S4). Like in Pe1, these assemblies encode
43 protein-coding genes and two 100% identical, 832 bp
long inverted repeats. Despite these similarities, the
gene-based alignment of the four P. effusa mitochondrial
genomes revealed a distinct genome structure for each
haplogroup that is characterized by an inversion at the
inverted repeats (Fig. 3B). An ORF predicted on one
edge of this structural rearrangement in Pe1 and Pe11 is
missing from Pe4 and Pe6. Notably, the same 16 kb long
structural rearrangement that we previously described
between Pe1 and P. tabacina (Fig. 2B) also differentiates
the two P. effusa haplogroups, suggesting that the struc-
tural rearrangement was introduced only in the P. effusa
Haplogroup II.

Nuclear and mitochondrial genome phylogenies of
Peronospora effusa isolates are discordant

P. effusa reproduces both sexually and asexually
(Kandel et al., 2020), and since the mitochondria are typi-
cally inherited from only one parental strain, mitochon-
drial variation alone cannot fully reveal the relationship

and diversity of P. effusa isolates (Bourret et al., 2018).
To further investigate the relationship between P. effusa
isolates, we performed in-depth comparisons of mito-
chondrial and nuclear genome variation of the
26 P. effusa isolates used in this study. Using Illumina
short-read data, we performed variant calling with GATK
against the public nuclear genome of Pe1 (Klein
et al., 2020). In total, we identified 314 276 multiallelic
variant sites that can be separated in 280 750 SNPs and
35677 indels. On average, 35.8% of the variants per iso-
late are homozygous and 64.2% are heterozygous. Apart
from Pe1, on average 1.53% of the variants per isolate
are unique, 1.75% are shared by only two, and 19.67%
are shared between all isolates (Supporting Information
Fig. 5 and Table S1A). To uncover the evolutionary rela-
tionship of the 26 P. effusa isolates, we used 260 616
biallelic SNPs to determine the pairwise nuclear genome
nucleotide diversity for each isolate, as a percentage of
difference over the entire genome. The average nucleo-
tide diversity (nd) between all isolates was 0.083%
(0.008% standard deviation), with the closest related iso-
lates being US-11 and US-13b (0.055% nd), and the
most distant isolates being Pe6 and Pe14 (0.097% nd).
Based on these observations, we assigned three geno-
mic clusters of closely related isolates that have been
denominated to different races: Cluster i contains Pe1,
Pe2, and Pe3 (0.056% average nd); Cluster ii contains
Pe4 and Pe6 (0.071% nd); and Cluster iii contains Pe12,
Pe14, R14, US-11, and US-13b (0.058% average nd).
We observed high similarity between additional isolates,
for example, R13 and Pe13 (0.066% nd), which were not
assigned into separate clusters because they are desig-
nated to the same race (Fig. 4A).

To further explore the relationships between the iso-
lates, we directly compared their similarity based on the
nuclear variation with that identified from the mitochon-
drial phylogeny (Fig. 4B). We observed that the 10 iso-
lates that cluster based on genome-wide nuclear
similarity (<0.072% nd) also clearly cluster based on the
mitochondrial phylogeny and belong to the same mito-
chondrial haplogroup (Fig. 4B). For example, all isolates
assigned to Cluster i (Pe1, Pe2, and Pe3) belong to Hap-
logroup II, while all the isolates assigned to Cluster ii
(Pe4 and Pe6) belong to Haplogroup I. In contrast, we
observed clear discordance between nuclear clustering

Fig. 2. Mitochondrial genome assemblies of 10 Peronosporaceae species reveal structural rearrangements that are often flanked by inverted
repeats.
A. Unrooted maximum-likelihood phylogeny of 17 different Peronosporaceae mitochondria (16 species) based on the sequences of the mitochon-
drial cox2 and nad1 genes.
B. Linear representation of mitochondrial gene order is shown for 10 Peronosporaceae, representative of the 16 species in the phylogenetic tree.
Genes are coloured based on their functions and they are connected by ribbons shaded based on the percentage of protein identity (from white
to black). The relative positions of the inverted repeats are shown by red arrows and the structural rearrangements are numbered (i–vi).
C. Comparison of the inverted repeats in Peronosporaceae. The ribbons display the alignment scores, reflecting the sequence similarity (percent-
age): red (>75%), orange (50%–75%), and blue (25%). The respective start end of the linear representation of the circular genomes is indicated
with the green/orange stripes, with the arrow indicating the direction.
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and the mitochondrial phylogeny for the 16 remaining iso-
lates (Fig. 4B). For example, isolates with high genome-
wide nucleotide similarity such as US-15 and Pe16
(0.073% nd), Pe5 and Pe15 (0.078% nd), or Pe11 and
US-13a (0.079% nd) belong to different mitochondrial
haplogroups.

Mitochondrial and nuclear variation suggests that sexual
recombination contributes to the evolution of resistance-
breaking Peronospora effusa isolates

To explain the discordance between nuclear clustering
and mitochondrial phylogeny of P. effusa, we further
explored the genetic relatedness between P. effusa iso-
lates. Based on the previously generated diversity matrix

(260 616 biallelic SNPs), we explored the genetic differ-
ences by principal component analysis (PCA); the first
principal component explains 14.14% of the observed
variation and the second 13.22%, while the third principal
component only explains 7.01%. When visualizing the
first two principal components, we observed the same
three distinct clusters that were previously recovered
based on the genome-wide nuclear diversity (Fig. 5A).
The remaining isolates are localized in the middle of the
PCA, sharing genetic material but did not clearly cluster
in a distinct group.

To better visualize the complex phylogenetic relation-
ship of P. effusa isolates, we performed neighbour-net
phylogenetic network analyses (260 616 biallelic SNPs),
which is well suited to illustrate the complex evolutionary
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relationships among different isolates in the presence of
phylogenetic conflicts caused by, for instance, sexual
recombination, hybridization, or horizontal gene transfer
(Galtier et al., 2009). The neighbour-net phylogenetic net-
work shows clear evidence of phylogenetic conflicts
(Fig. 5B), for instance between Pe13 and Pe5 that local-
ized close to the centre of the network. P. effusa is
known to reproduce sexually (Kandel et al., 2020), and
thus, the most likely explanation for phylogenetic conflicts
observed in our data is sexual recombination, which is
further supported by the PHI test for recombination
(260 616 biallelic SNPs, P < 0.0001) (Bruen et al., 2006).
In contrast, the above defined three P. effusa nuclear
clusters are connected to the main network with relatively
long branches, suggesting that they accumulated a sub-
stantial number of cluster-specific variants (e.g., Pe4 and
Pe6 uniquely share 5029 (3.5%) variants), and thus, at
least for some time, these isolates likely evolved without
recombination with isolates outside of the respective
cluster.

To further examine the exchange of genetic material
between these isolates, we analysed the variation of
P. effusa isolates using STRUCTURE, a population
structure inference approach that uses Bayesian cluster-
ing based on allele frequencies to assign isolates to a

pre-defined number of populations (K) (Linck and
Battey, 2019). We performed STRUCTURE analysis with
two, three, and four predefined sub-populations (K = 2,
K = 3, K = 4) (Fig. 5C); any analysis with K > 4 had iden-
tical results with K = 4. When assuming two sub-
populations (K = 2), isolates belonging to both Cluster i
and Cluster ii, and belonging to both haplogroups are
present in a single sub-population (purple), thus their var-
iation is not fully explained. When the isolates are divided
into three and four sub-populations (K = 3, K = 4), the
same three distinct clusters (i, ii, iii) that were previously
identified by phylogenetic analysis were also assigned
into three distinct sub-populations (purple, yellow, green)
(Figs. 4 and 5). This division in these three distinct sub-
populations further confirms that the isolates in each clus-
ter did likely evolve asexually. In the case of K = 3, all
isolates belonging to the mitochondrial Haplogroup I are
either a part of nuclear Cluster ii (yellow) or a recombina-
tion of nuclear Cluster ii with other clusters. For K = 4,
isolates that previously shared genetic material are now
assigned to a distinct sub-population (red), which con-
tains isolates belonging to both mitochondrial
haplogroups. The presence of both mitochondrial
haplogroups suggests that the isolates assigned to the
red sub-population but have different virulence spectrum,
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do not have a common origin but have likely evolved
after one or more sexual recombination events between
Cluster i and ii isolates. For example, for K = 3, we
observed that Pe5 contains genetic information that is
partially shared with Cluster i and ii (purple and yellow).
We similarly observed genetic combinations of Clusters i,
ii, and iii for some of the isolates (Fig. 5C). For example,
for K = 3, Pe13 is represented as a mix of the three

defined sub-populations. This pattern could have
emerged from multiple sexual recombination events
involving different isolates of all three defined genetic
sub-populations. We also observed a large variation in
the number of unique variants for each isolate
(Supporting Information Fig. S5). For F-05, for example,
we observed 3630 (2.79%) unique variants, which sug-
gests that this isolate likely evolved asexually after the
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possible sexual recombination event. In contrast, we only
observed 910 (0.73%) unique variants in Pe11, which
suggests more recent sexual recombination events.

Discussion

In the last two decades, new races of the spinach downy
mildew Peronospora effusa (Pe) have been rapidly
emerging, and thus far 19 P. effusa races have been
denominated; the two latest ones have been added in
2021 (Correll and Smilde, 2021). However, we know little
about the processes contributing to the diversity and evo-
lution of different P. effusa races. To better understand
the molecular differences between P. effusa races, we
here described the mitochondrial and nuclear relation-
ships between 16 denominated races and eight
pathotypes of P. effusa; for the most recent races (Pe
17–19), no genomic data were yet available. Based on
mitochondrial data, P. effusa isolates can be divided into
two clear groups based on the sequence and structure.
Based on nuclear data, we observed that a subset of iso-
lates could be described by three distinct groups, which
are in concordance with their mitochondrial phylogeny, in
turn, suggesting that these isolates likely evolved through
asexual reproduction. The remaining 16 isolates display
discordance between nuclear and mitochondrial cluster-
ing as well as signs of shared genetic material, which
uncovers that sexual reproduction also contributed to the
emergence of P. effusa races.

Newly found P. effusa isolates are assigned to races
based on their ability to infect a defined set of differential
spinach lines (Supporting Information Fig. S1). The
phenotyping and maintenance of P. effusa races, and the
development of differential spinach lines is handled by
the International Seed Federation (Correll et al., 2015)
(Supporting Information Table S4). The 24 isolates
sequenced in this study have been carefully maintained
and screened based on their phenotypes since their date
of isolation, to avoid mixtures of multiple races (Feng
et al., 2014). As it has been shown in other obligate bio-
trophic plant pathogens, what is described as an isolate
could be a population of genetically distinct isolates with
identical phenotypes, rather than a single genetically dis-
tinct isolate (Barsoum et al., 2020). However, based on
our genome sequencing data, we are unable to find any
indication of mixed genotypes in a single isolate. Based
on our variant calling analysis against the mitochondrial
and nuclear genome of Pe1, we did not observe any mul-
tiallelic sites for individual isolates, i.e., more than one
allele for mitochondria and more than two alleles for
nuclear genomes. In the same analysis of nuclear
genome variants, we did not observe a significant devia-
tion in allele frequency from the expected 50:50 of a dip-
loid organism. Similarly, comparisons of isolates with the

same phenotype (Pe13 with R13, and Pe14 with R14)
show that they have almost identical genotypes (0.066%
and 0.061% nucleotide diversity, respectively), despite
being isolated and sequenced independently (Fletcher
et al., 2018). Thus, we conclude that our data do not sug-
gest that any of our isolates is in fact a mixture of differ-
ent genotypes.

Inverted repeats are known to form cruciform DNA struc-
tures that can cause chromosomal instabilities, leading to
the formation of structural rearrangements (Achaz
et al., 2003; Voineagu et al., 2008). Here, we observed
inverted repeats to be associated with mitochondrial
genome rearrangements in P. effusa as well as throughout
related Peronosporaceae. Inverted repeats are genomic
regions that are particularly challenging to assemble cor-
rectly when sequencing reads are not long enough to span
these repeats (Wang et al., 2018). Inverted repeats in the
P. effusa mitochondrial genome are 832 bp in size, making
it impossible for short-read data to faithfully resolve mito-
chondrial chromosome structures. The R13 and R14 mito-
chondrial genomes display the structure of Haplogroup I
isolates, even though these isolates are clearly assigned
to Haplogroup II based on mitochondrial sequence varia-
tion. This discrepancy could be due to the short-read
sequencing data used to reconstruct the R13 and R14
mitochondrial sequences (Fletcher et al., 2018). In con-
trast, we utilized long-read sequencing data to assemble
mitochondrial genomes. The long reads span the inverted
repeats, as corroborated by uniform read coverage
throughout the mitochondrial sequence, which suggests
that our mitochondrial assemblies of Pe1, Pe4, Pe11, and
Pe16 are accurate. The structural rearrangement that was
initially observed in Pe1 separates the two mitochondrial
haplogroups of P. effusa. This rearrangement is not pre-
sent in any queried oomycete, suggesting it is of relatively
recent origin. Similarly, we can assume that the unique
structural rearrangement in Plasmopara viticola is also
formed by a relatively recent event. The DNA of these two
recent rearrangements are flanked by inverted repeats,
thus suggesting that genome instability caused by recom-
bination of inverted repeats can drive mitochondrial diver-
sity in Peronosporaceae. Because of this instability, we
can foresee that rearrangements are likely to reoccur in
this region. Thus, the inverted repeats itself would be a
poor marker to robustly separate the defined haplogroups.
To distinguish the mitochondrial haplogroups, the inverted
repeats could be augmented by the identified haplotype-
specific, single-nucleotide variants.

The mitochondrial genes cox2 and nad1 have been
previously used to separate P. effusa isolates into two
district haplogroups that were found to be associated with
geographical origin of the isolates tested (Choi
et al., 2011). Here, we used 24 P. effusa isolates and
robustly recovered these two distinct haplogroups based
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on cox2 and nad1, whole-mitochondrial genome align-
ment, and structural variation. Even though most
P. effusa isolates that were isolated outside the
United States can be found in Haplogroup I, we were
unable to establish a clear correlation between the mito-
chondrial haplogroup and the geographical origin of the
isolates. Isolates with similar virulence spectrum are often
simultaneously found at different geographical locations
(Irish et al., 2003; Satou et al., 2006), which is likely due
to the globalized spinach market where new spinach vari-
eties are distributed and sold worldwide. Possibly, the
sexually produced oospores of P. effusa that are abun-
dant in spinach fields drive the repeated emergence of
new races (Dhillon et al., 2020), followed by a rapid
spread over a large area. Therefore, it is difficult to deter-
mine where a novel resistance-breaking isolate first
occurred, and in our case, to know the exact geographi-
cal origin of the denominated P. effusa races.
P. effusa can reproduce both sexually and asexually

(Kandel et al., 2020). It has been suggested that sexual
reproduction is the main mechanism behind increased
adaptability, while asexual reproduction allows the rapid
propagation of successful genotypes thereby causing major
disease epidemics (Drenth et al., 2019). As a result, sam-
pling in the field during an epidemic will be greatly biased
towards isolates that have been asexually reproducing,
obscuring the role of sexual reproduction. Consequently,
most P. effusa field isolates at a certain time and geo-
graphic location are the result of asexual reproduction
(Lyon et al., 2016). Asexual reproduction can introduce sig-
nificant phenotypic changes in resistant breaking P. effusa
isolates (e.g., Pe4 and Pe6, Pe12 and Pe14). Various
mechanisms for asexual evolution have been documented
in other oomycete and fungal plant pathogens. In Phyto-
phthora infestans asexually evolving populations increase
their genotypic variation by increase in ploidy and in gene
copy number (Cooke et al., 2012; Knaus et al., 2020). Addi-
tionally, phenotypic differences can result from changes in
gene expression (Cooke et al., 2012; Depotter et al., 2021).
The forest pathogen Phytophthora ramorum has only been
observed to reproduce asexually, with extensive mitotic
recombination and gene copy number variation driving the
genotypic diversity (Dale et al., 2019). In fungi, it has been
suggested that high levels of genotypic diversity can be
generated by asexual reproduction through large structural
variation (Seidl and Thomma, 2014; McDonald and
Stukenbrock, 2016). For example, different races of the
asexual fungal plant pathogen Verticillium dahliae evolve
by extensive chromosomal rearrangements including large-
scale gene losses (De Jonge et al., 2012; Faino
et al., 2016; Chavarro-Carrero et al., 2021). In P. effusa,
loss of heterozygosity is suggested to contribute to the
observed variation in asexually reproducing isolates (Lyon
et al., 2016). From the available 13 P. effusa races that

were discovered after 1990, nine have evolved through
sexual recombination (Pe5, Pe7–Pe11, Pe13, Pe15, and
Pe16). Thus, we hypothesize that in the period when
P. effusa is under strong evolutionary pressure from the
introduction of resistant spinach varieties, sexual reproduc-
tion has driven the fast emergence of new P. effusa races.
Evolving sexually is often connected to a more stable
genome structure. For example, in Phytophthora infestans
sexually evolving populations are predominantly diploid
and have less gene copy number variation than the asex-
ual populations (Cooke et al., 2012). These findings show
that there are multiple mechanisms for evolutionary adapta-
tion, both with asexual and sexual reproduction (Seidl and
Thomma, 2014).

Up to today, the genetic underpinnings of the race struc-
ture and evolution in P. effusa remain unknown. Based on
the findings in other plant pathogenic oomycetes and
fungi, it can be anticipated that the emergence of novel
races is linked to genotypic changes in specific effector
genes. Effector proteins are secreted by pathogens to
modulate host physiology, often by deregulating immune
responses, and establish infection. Resistant hosts pro-
duce immune receptors that can detect these effectors
and trigger strong immune responses thereby stopping
colonization. Effector genes often localize in repeat-rich
genomic regions that are notoriously challenging to
assemble with short-read sequencing that has been com-
monly used until recently (Gibriel et al., 2016). High qual-
ity, complete genome assemblies of multiple P. effusa
isolates are thus invaluable to fully uncover the molecular
underpinning of race emergence in P. effusa (Thomma
et al., 2016). The newly generated high-quality genome
assembly of P. effusa is much longer and more repetitive
compared with previous genome assemblies (Fletcher
et al., 2021), providing a valuable resource to start com-
parative research between races. To link genotypic varia-
tion to differences in resistance breaking on spinach
cultivars, emphasis should be given to the systematic min-
ing of effector genes and their variation between geneti-
cally and phenotypically distinct P. effusa isolates. This
research will greatly benefit from the here developed phy-
logenetic framework and insights in the proposed sexual
recombination between different P. effusa races, which will
facilitate our understanding of P. effusa-spinach interaction
and assist in sustainable production of spinach through
knowledge-drive resistance breeding.

Experimental procedures

Peronospora effusa infection on soil-grown spinach and
spore isolation

We sowed spinach plants in potting soil (Primasta, NL)
and kept them under long-day conditions (16-h light,
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21�C). Two to three weeks after germination, the spinach
plants were inoculated with P. effusa by spraying them
with P. effusa spores suspended in water using a spray
gun. Following inoculation, the lids of the plastic trays
were sprayed with water and covered to keep the plants
humid and dark. After 24 h, we placed the plants under
9-h light and 16 �C. The lids of the boxes were again
sprayed with water 7–10 days after inoculation, creating
a humid environment that promotes the sporulation of
P. effusa.

To harvest P. effusa spores for Oxford nanopore
sequencing, we collected leaves with sporulating
P. effusa from spinach plants and placed them in a glass
bottle with tap water. The spores were brought into sus-
pension by shaking the bottle vigorously. Soil and other
large contaminants were removed by filtering the spore
suspension over a 50-μm nylon mesh filter (Merck Mil-
lipore, USA). To remove small biological contaminants,
the remaining filtrate was first filtered over a 11-μm nylon
mesh filter (Merck Millipore, USA) using the Merck™ All-
Glass Filter Holder (47 mm) and a vacuum pump. After-
wards, the remaining spores were resuspended in the
All-Glass Filter Holder using 100 ml of autoclaved tap
water and filtered.

High-molecular weight DNA extraction protocol

To isolate high-molecular weight (HMW) DNA, the col-
lected P. effusa spores were freeze-dried and lysed using
glass beads in a tissue lyser (2 � 30 s on 30 Hz). The
lysed spores were incubated in extraction buffer (3%
CTAB, 2% PVP, 1.25 M NaCl, 200 mM Tris–HCl, pH 8.5,
25 mM EDTA, pH 8.0) for 30 min at 65�C, gently inverting
the tube several times every 5 min. Then RNase was
added, and the sample was incubated for 30 min at 37C,
after which 0.5% 2-Mercaptoethanol was added, followed
by another 15-min incubation at 37�C. HMW DNA was
isolated from the lysate by subsequent phenol/chloro-
form/IAA extraction, chloroform/IAA washing, RNase
treatment, another phenol/chloroform/IAA extraction,
chloroform washing, and lastly, isopropanol precipitation.

DNA purity was determined with Nanodrop (Thermo
Fisher Scientific, USA) to measure A260/280 and
A260/230 ratios. DNA concentrations were estimated
using a fluorimeter and fluorescent DNA-binding dye
(Qubit™ dsDNA BR Assay Kit; Thermo Fisher Scientific,
USA), according to the manufacturer’s protocol. DNA
integrity was confirmed by 0.4% agarose gel electropho-
resis performed at 4�C at 20 V overnight.

Genome sequencing using Oxford Nanopore

We obtained long-read sequencing data for four P. effusa
isolates (Pe1, Pe4, Pe11, Pe16) with Oxford Nanopore

sequencing technology (Oxford Nanopore, UK). The
ligation-based sequencing kit from Oxford Nanopore was
used for library preparation (ONT - SQK-LSK109; Oxford
Nanopore, UK) following the manufacturer’s protocol,
apart from DNA-nick repair. This was performed as
described by the protocol of Illumina sequence library
preparation (kit: NEB - M6630; protocol: E6040; Illumina,
USA). We used a Nanopore MinION flowcell (R10) for
real-time sequencing, and base-calling of the raw long-
read sequencing data was performed using Guppy (ver-
sion 4.4.2; default settings). The raw long-read sequenc-
ing data were checked for contamination using Kraken2
(version 2.0.9; default settings).

Genome sequencing using Illumina

We obtained paired-end short-read sequencing data of
24 P. effusa isolates and the Peronospora farinosa f. sp.
betae isolate ES-15 on the Illumina sequencing platform
(Illumina, USA). Sequencing libraries were constructed
with the Illumina TruSeq DNA PCR-Free kit. Fragment-
size distribution was determined before and after the
library preparation using the Agilent Bioanalyzer 2100
with HS-DNA chip (Agilent Technologies). The final
library size was approximately 550 bp). Libraries were
paired-end sequenced (two times 150-bp reads) on the
Illumina NextSeq platform (Utrecht Sequencing Facility)
in high output mode.

Mitochondrial genome assembly and annotation

We selected on average 155 Mb of long-read sequences
from the four sequenced P. effusa isolates based on their
sequence alignment to 26 publicly available oomycete
mitochondrial genomes. To this end, we aligned the long-
read sequences to these 26 mitochondrial genomes
using mimimap2 (version 2.17) (Li, 2018) with rec-
ommended settings for Nanopore reads. The extracted
reads were subsequently assembled with Canu (version
2.0) (Koren et al., 2017) with recommended settings for
the assembly of Nanopore reads. We mapped the high-
quality Illumina paired-end short-reads of the four
P. effusa isolates to their respective draft assembly with
BWA-mem (version 0.7.17; default settings) (Li and
Durbin, 2009), and sequencing errors in the draft mito-
chondrial genome assembly were corrected with Pilon
(version 1.23; default settings) (Walker et al., 2014).
Genes were annotated according to the universal genetic
code and based on sequence similarity with known mito-
chondrial genes using GeSeq (Tillich et al., 2017).
Inverted repeats were detected by self-alignment of mito-
chondrial genome sequences and visualized using Cir-
coletto (version 07.09.16) (Darzentas, 2010).
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Clinker (version 0.0.12) (Gilchrist and Chooi, 2021)
was used to visualize the mitochondrial genome struc-
ture, by aligning the mitochondrial protein sequences of
Pe1 together with 17 Peronosporaceae species and
using those alignments as ankers to visualize the order
of genes in the genomes.

Variant calling on mitochondrial and nuclear genomes

We used Illumina paired-end genomic short-read data for
26 P. effusa isolates to discover single-nucleotide variants.
We first filtered short reads by quality using Trimmomatic
(version 0.39-1; MINLEN:36 LEADING:3 TRAILING:3
SLIDINGWINDOW:4:15) (Bolger et al., 2014) and
removed Illumina sequencing artefacts with Fastp (version
0.20.0) (Chen et al., 2018). The filtered short-read data
were aligned to the newly generated mitochondrial
genome sequences or to the publicly available nuclear
genome assemblies of Pe1 with BWA-mem (version
0.7.17; default settings) (Li and Durbin, 2009; Klein
et al., 2020). We identified single-nucleotide variants
(SNPs) using the GATK joint variant calling pipeline (ver-
sion 4.1.9.0) following the best practices for germline
short-variant discovery. We filtered individual variants
based on the hard-filtering best practices of GATK: Quality
by depth < 4.0, Fisher Strand > 60.0, Strand Odds
Ratio > 3.0, RMS Mapping Quality < 20.0, Mapping Qual-
ity Rank Sum Test <�3.0, Read Position Rank Sum Test
<�1.0, Read Position Rank Sum Test >3.5.

Mitochondrial genome phylogeny

The SNPs identified in each of the 26 P. effusa isolates
were incorporated in the Pe1 mitochondrial genome
sequence to reconstruct an isolate-specific mitochondrial
sequence with FastaAlternateReferenceMaker (GATK ver-
sion 4.1.9.0; default settings). The resulting isolate-
specific sequences were aligned using MAFFT (version
7.471; default settings) (Nakamura et al., 2018) and a
maximum-likelihood genome phylogeny was con-
structed using IQ-TREE (version 1.6.12; default set-
tings) (Nguyen et al., 2015). Branch support was
evaluated using 1000 bootstrap replicates. Similarly, we
reconstructed a maximum-likelihood phylogeny based
on the sequences of the mitochondrial genes cox2 and
nad1 that were extracted from the mitochondrial
genomes of 18 Peronosporaceae.

Nuclear genome nucleotide diversity

Based on the data for all 26 P. effusa isolates, we gener-
ated a joint VCF file with both variant and invariant sites,
using the variant calling pipeline described above with
the added option ‘-all-sites’ in the tool GenotypeGVCFs

(GATK version 4.1.9.0). We calculated the nucleotide
diversity between the P. effusa isolates with pixy (version
1.0.4; �-chunk_size 1000000) (Korunes and
Samuk, 2021). We performed hierarchical clustering of
the genome-wide nucleotide diversity and visualized the
data as a hierarchically clustered heatmap with seaborn
(version 0.11.1) (Waskom, 2021).

The single nucleotide variants of the 26 P. effusa isolates
were transformed into a distance matrix with PGDSpider
(version 2.1.1.5) (Lischer and Excoffier, 2012), which was
used for the following analysis: first, we performed a PCA
and visualized the first two principal components on a
scatterplot in RStudio (libraries: vcfR version 1.12.0,
adegenet version 2.1.3) (Jombart and Ahmed, 2011; Knaus
and Grünwald, 2017). Second, we constructed a decompo-
sition network using the Neighbour-Net algorithm with
SplitsTree (version 4.17.0) (Huson and Bryant, 2006). We
calculated the branch confidence of the network using
1000 bootstrap replicates. PHI recombination test was cal-
culated using phipack (version 1.1; default settings) (Bruen
et al., 2006). The single nucleotide nuclear variants of the
26 P. effusa isolates were additionally filtered for minor
allele frequency < 0.1 (169 016 biallelic SNPs), and trans-
formed into the STRUCTURE format with PGDSpider
(version 2.1.1.5). We performed STRUCTURE analysis
using fastStructure (version 1.0; default settings) (Raj
et al., 2014) with various k values. The results were visu-
alized on a stacked bar-plot in RStudio (libraries: vcfR
version 1.12.0, poppr version 2.9.0) (Kamvar et al., 2015;
Knaus and Grünwald, 2017).
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Additional Supporting Information may be found in the online
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Fig. S1. Breaking of resistance on spinach differential set
from the 16 Peronospora effusa designated races.
Fig. S2. Coverage of the mitochondrial genome assem-
blies of Peronospora effusa races 1, 4, 11, and 16 (Pe1,
Pe4, Pe11, Pe16). For each race, the sequenced nanopore
long-reads were mapped back to their mitochondrial genome
assembly, filtered for mapping quality 20 and visualized in
IGV (version 2.8.13).
Fig. S3. Peronospora effusa (here named Pfs) phylog-
eny of the cox2 and nad1 mitochondrial genes reveals
two distinct groups. Unrooted maximum-likelihood phy-
logeny based on a 500 bp sequence of the cox2 and nad1
genes from our 24 isolates together with the previously
analysed 33 isolates from the global population (Choi et al.,
2011) as well as R13 and R14 (Fletcher et al. 2018). The
specific substitutions and their location separating each
node in the trees are depicted in coloured boxes, blue for
cox2 and orange for nad1. A. A substitution (T to A) in the
third nucleotide of the nad1 subsequence (position 423 in
the whole sequence) separates the 26 isolates sequenced
with Illumina technology and the 33 isolates sequenced
with SANGER technology (Choi et al., 2011), suggesting
it’s due to a sequencing error. B. The first 3 nucleotides of
the nad1 subsequence was excluded because of the possi-
ble sequencing error.
Fig. S4. Mitochondrial genome annotation of
Peronospora effusa races 4, 11, and 16 (Pe4, Pe11,
Pe16). Protein-coding genes, tRNA, rRNA, and other open-

reading frames (ORFs) are shown along the outer ring (posi-
tive strand is the outside of the ring and the negative strand
is the inside). The regions of inverted repeats are highlighted
in red with arrows and are present in both strands. The inner
ring depicts the GC content. The start and end of the linear
representations (Figure 2B, Figure 3B) of the circular
genome assembly is indicated with two black lines, with the
arrow indicating the direction.
Fig. S5. Nuclear genome variation of Peronospora effusa
isolates. Bar plots depicting the number of short variants
(SNPs and single nucleotide INDELs) for each isolate in
comparison to the Pe1 reference genome. A. Distinction of
variants in: unique, shared by only two (rare), shared by
more than half of the isolates (shared), and shared between
all isolates other than Pe1 (core). B. Distinction of variants in
homozygous and heterozygous.
Table S1. Metrics of sequencing data used in this
project. A. Illumina paired-end whole genome sequencing
of 26 P. effusa isolates and quality control (yellow); variant
calling of nuclear genome based on the Pe1 reference
(blue); variant calling of mitochondrial genome based on Pe1
reference (green). B. Nanopore whole genome sequencing
of four P. effusa isolates (yellow); mitochondrial genome
assemblies generated with the nanopore sequencing
data (blue).
Table S2. List of the species that their mitochondrial genome
assembly was used to bait the reads for the mitochondrial
genome assemblies of Pe1, Pe4, Pe6, and Pe11.
Table S3. Gene annotation of Pe1 mitochondrial genome
generated with GeSeq.
Table S4. Details of the P. effusa isolates that have been
sequenced in this study.
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