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ABSTRACT

This paper presents a new fast and accurate web ser-
vice for protein model quality analysis, called PSICA
(Protein Structural Information Conformity Analysis).
It is designed to evaluate how much a tertiary model
of a given protein primary sequence conforms to
the known protein structures of similar protein se-
quences, and to evaluate the quality of predicted
protein models. PSICA implements the MUfoldQA S
method, an efficient state-of-the-art protein model
quality assessment (QA) method. In CASP12, MU-
foldQA S ranked No. 1 in the protein model QA select-
20 category in terms of the difference between the
predicted and true GDT-TS value of each model. For
a given predicted 3D model, PSICA generates (i) pre-
dicted global GDT-TS value; (ii) interactive compar-
ison between the model and other known protein
structures; (iii) visualization of the predicted local
quality of the model; and (iv) JSmol rendering of the
model. Additionally, PSICA implements MUfoldQA C,
a new consensus method based on MUfoldQA S. In
CASP12, MUfoldQA C ranked No. 1 in top 1 model
GDT-TS loss on the select-20 QA category and No.
2 in the average difference between the predicted
and true GDT-TS value of each model for both select-
20 and best-150 QA categories. The PSICA server
is freely available at http://qas.wangwb.com/~wwr34/
mufoldqa/index.html.

INTRODUCTION

The three-dimensional (3D) structure of a protein is essen-
tial in studying its functions (1). Computational 3D protein
structure prediction is important since experimental meth-
ods including X-ray crystallography, electron microscopes
and nuclear magnetic resonance (NMR) are all costly and
time consuming (2). Predicting 3D structures using compu-
tational methods can be much faster and cheaper. However,
the accuracy of predicted models can vary greatly for differ-

ent targets and different prediction methods. Therefore, it is
vital to find a reliable method to evaluate the quality of pre-
dicted models (3).

Over the past 20 years, many protein model quality as-
sessment (QA) methods have been proposed (4,5). There
are two basic approaches: single-model QA methods (6–10)
that are able to evaluate a single model’s quality, and multi-
model QA methods (11,12) that require a pool of models
to evaluate the quality of one or some models in the pool.
Multi-model QA methods have outperformed single-model
QA methods in recent CASPs (4,5,13,14). However, the size
and quality of the model pool used by multi-model methods
have great impact on their QA results (15). Single-model QA
methods use potential functions and/or machine learning.
Potential functions include physics-based potential func-
tions and knowledge-based potentials (16). Machine learn-
ing has been used to aggregate various potential functions
to achieve improved results.

Quasi-single-model QA methods (17) try to combine the
advantages of both types of methods. They employ the ‘con-
sensus’ idea from multi-model QA methods, but do not
require a pool of models as input. Instead, they generate
their own reference models. Quasi-single-model QA meth-
ods have achieved good results in recent CASPs, compa-
rable to multi-model QA methods. However, generating a
good pool of reference models and making the best use of
multiple fragments of known protein structures remain a
challenge.

After years of development, state-of-the-art QA meth-
ods are becoming complex and difficult for users to im-
plement. The PSICA (Protein Structural Information Con-
formity Analysis) web service is intended to make some of
the best existing QA methods available to the public. It has
an intuitive user interface that runs on all mainstream web
browsers. Users do not need to run any local software, plug-
in, Java Applets or ActiveX.

PSICA is designed to evaluate how much a tertiary model
of a given protein primary sequence conforms to the known
protein structures of similar protein sequences, and to as-
sess the quality of predicted protein models. PSICA imple-
ments the MUfoldQA S method (18), an efficient state-of-
the-art quasi-single-model QA method. In CASP12, MU-
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Figure 1. Example of task receipt file in .txt format.

Figure 2. Example of job status web page.

foldQA S ranked No. 1 in the protein model QA select-20
category in terms of the difference between the predicted
and true GDT-TS value of each model. MUfoldQA S cal-
culates quality scores based on templates. which are protein
fragments with known 3D structure and sequences similar
to the sequence of predicted model. For a given predicted
3D model, PSICA generates (i) predicted global GDT-TS
value; (ii) interactive comparison between the model and
other related known protein structures; (iii) visualization of
the predicted local quality of the model; and (iv) JSmol ren-
dering of the model. The GDT-TS value is a popular indi-
cator of similarity between the two protein 3D structures
(in our case, predicted models and observed structures). It
is calculated by computing the percentage of corresponding
C-alpha atom pairs whose distance falls within the cut-off
values of 1, 2, 4 or 8 Å after superimposing the two protein
structures, and compute the average of those four percent-
age values.

Additionally, PSICA implements MUfoldQA C (18), a
multi-model QA method based on MUfoldQA S. MU-
foldQA C uses MUfoldQA S results as weights in a con-
sensus approach and let better models contribute more to
the final QA result. In CASP12, MUfoldQA C ranked No.
1 in top 1 model GDT-TS loss in the select-20 QA category
and No. 2 in the average difference between the predicted
and true GDT-TS value of each model for both select-20
and best-150 QA categories.

In the rest of this paper, after a brief overview of the algo-
rithms, the implementations of the web service will be pre-
sented. Then, a detailed description of inputs and results

will be given. At last, experimental results on benchmark
datasets will be presented to show its advantages over exist-
ing servers.

MATERIALS AND METHODS

Algorithm overview

MUfoldQA S is a quasi-single model QA method that pre-
dicts the GDT-TS value between a protein model and its
native structure. This method calculates model QA score
based on the fragments of other known protein structures
with similar primary sequences without building full pro-
tein models.

The input to MUfoldQA S is the sequence of amino acids
of the target protein (TargetSeq 0) and a predicted model
(Decoy 0). Its main steps are as follows:

(i) Use Blast (19) to query our in-house protein database (20)
to find a set of proteins with similar sequences. Blast first
uses NR sequence database to generate the checkpoint
file and then use this file as input to search PDB sequence
database for similar sequences. Let us call the set of sim-
ilar sequences found by Blast Seq Blast.

(ii) Sort Seq Blast according to heuristic score T = (3-
log10E)• I• C, where I is the sequence identity, i.e. the
extent to which two amino acid sequences have the same
residues at the same positions in an alignment, expressed
as a percentage; C is the ratio of the template length to
the target sequence length; and E is the E-value. The for-
mula combines the three factors together in spite of the
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Figure 3. Example of results summary page.

different scales. The term (3-log10E) is designed to return
a positive value for all E < 1000, which is a good trade-off
between covering the majority of the cases and maintain-
ing a good performance.

(iii) Select the top 10 similar sequences (referred to as
Seq Blast T10) with the highest T-scores.

(iv) Repeat Step 1–3 using HHsearch (21) to replace Blast
to get another set of similar sequences, referred to as
Seq HH T10. HHsearch uses a profile HMMs database
derived from the PDB sequences to get results.

(v) Merge Seq Blast T10 and Seq HH T10 to get Seq T20,
without removing any of these sequences even if some se-
quences are from the same protein.

(vi) For each C-alpha position j on template k from the se-
quence pool Seq T20, compare its sequence with position
j on TargetSeq 0 from the input and calculate BLOSUM-
based (22) weight Wkj.

(vii) Retrieve the corresponding 3D coordinates of all se-
quences in Seq T20 from the PDB database, referred to
as Structure T20.

(viii) Compare the 3D structure of the predicted model (De-
coy 0) with each structure in Structure T20 to calculate
GDT-TS value Sk.

(ix) MUfoldQA S local score Hj at position j is the average of
Sk weighted by Wkj.

(x) MUfoldQA S global score is the simple average of all Hj.

MUfoldQA C uses the information that MUfoldQA S
generates to improve consensus result. MUfoldQA C takes
in a group of predicted models and runs MUfoldQA S on
each one to generate its local and global scores. Then, a
certain number of top models are selected as the reference
models according to their global scores. The final QA score
for each predicted model is the weighted average of pair-
wise GDT-TS value between the model and each reference
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Figure 4. Some of the interactive visualizations in the detailed report page for each of the predicted models. (A) JSmol View of the Decoy; (B) Comparing
Decoy with Different Templates; (C) Visualization of Local Quality of the Decoy (Range 0–1, Higher the Better); (D) Decoy Distance Matrix.

model, weighted by the local score of MUfoldQA S. For
more details about the database and parameters, please re-
fer to our paper (18).

Implementation

On PSICA web page, after the user submits a task either
through filling out a form on the web page or through an
API, the task data will be stored in a queue managed by
the server. When a task is executed, the server runs Blast
and HHsearch, respectively, to find similar sequences us-
ing the target sequence. When a compressed protein model
file is submitted, the server unpacks the compressed file to
get a set of predicted models. Then, for each model, MU-
foldQA S is run to calculate a global QA score and local QA
scores. These results and the original task information are
stored in functionality expansion APIs for other programs
to use. If MUfoldQA C add-on is enabled by the user, MU-
foldQA C scores will be computed using MUfoldQA S data
from the APIs. At last, all results are presented and visual-
ized in a user-friendly manner.

The server backend is written in PHP. All frontend user
interface and interactive visualization are implemented in
HTML5/JavaScript. Neither browser plug-in, Java Applets,
nor ActiveX is required. The task scheduler of the server is
written in Go without using any SQL statement to elim-
inate SQL injection. MUfoldQA S is mainly written in
Octave/MATLAB. In addition to third party software Blast
and HHsearch, the server also uses TMscore (23,24) to cal-
culate GDT-TS values.

RESULTS

Web interface

PSICA requires the input of a protein sequence and one pre-
dicted model file in PDB format. Optionally, multiple pre-
dicted models can be submitted together in a *.tar.gz file as
used in CASP. For users who want to generate their own tar-
ball files, command line instructions for Linux and MacOS
and executable files for Windows are provided to simplify
the process.
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Table 1. Difference between the predicted and true GDT-TS values of models, average over all targets

CASP12 Select-20 CASP12 Best-150

GR CR Group Name GN AD GR CR Group Name GN AD

1 1 MUfoldQA S 334 3.602 1 1 FDUBio 237 5.173
2 1 MUfoldQA C 318 3.818 2 2 MUfoldQA C 318 5.512
3 2 Davis-EMAconsensus 034 5.615 3 1 ModFOLD6 cor 360 6.748
4 3 FDUBio 237 5.756 4 3 Davis-EMAconsensus 034 6.781
5 2 ModFOLD6 201 5.883 5 2 ModFOLD6 201 7.087
6 3 ModFOLD6 cor 360 6.697 6 4 ModFOLDclust2 214 7.093
7 4 ModFOLDclust2 214 6.878 7 5 iFold 2 112 8.373
8 1 Wang4 195 7.021 8 6 Deepfold-Contact 219 8.373
9 5 Wallner 073 7.272 9 7 DeepFold-Boom 223 8.373
10 2 Wang2 206 8.021 10 3 MUfoldQA S 334 8.898
11 3 ProQ3 1 diso 095 8.155 11 8 naive 109 9.210
12 4 VoroMQAsr 093 8.275 12 9 QASproCL 267 9.664
13 5 ProQ3 1 302 8.449 13 10 Wallner 073 9.710
14 6 VoroMQA 224 8.488 14 4 ModFOLD6 rank 072 9.754
15 6 DeepFold-Boom 223 8.507 15 11 Pcomb-domain 411 9.839
16 7 Deepfold-Contact 219 8.507 16 1 ProQ3 1 302 10.155
17 8 naive 109 8.507 17 2 ProQ3 1 diso 095 10.159
18 9 iFold 2 112 8.507 18 3 ProQ3 213 11.418
19 10 Pcomb-domain 411 8.560 19 4 MULTICOM-CLUSTER 287 11.445
20 11 QASproCL 267 9.107 20 5 qSVMQA 120 11.608

More groups omitted. . . More groups omitted. . .

GR: Global Ranking, the ranking among all method. CR: Categorical Ranking, the ranking within its QA method category, either single-model QA,
quasi-single-model QA or multi-model QA. GN: Group Number: an identification number of the group assigned by the CASP officials. AD: Average
difference between the predicted and true GDT-TS value of each model. Different font style represents different type of QA methods: regular for single-
model QA method, italic for quasi-single-model QA method, and bold for multi-model QA method. GOAL and COFOLD QA submitted no more than
five predictions, which makes it an unfair comparison when all other group submitted at least 68 predictions, thus removed from ranking.
The lower the GDT-TS differences, the better. Results of the top 20 groups are shown.

An optional MUfoldQA C add-on is available, which is
useful for QA on a set of predicted models for the same tar-
get sequence. The other optional inputs include the Target
Name field, which helps the user to remember different sub-
mitted tasks, and the Email field, which allows the user to
receive a notification email after the task is finished. The
notification email includes a text version of the result and
a link to the full report. If the user chooses not to provide
the email address, the user can still retrieve the results via
either the task status page or the task receipt file generated
(Figure 1) during the submission process. For people using
public computer or simply wish not to receive receipt file,
they can use ‘Disable receipt file for this task’ when submit-
ting the task. For users who need a quick demonstration of
the server, a sample input with instruction is provided. The
sample comes from CASP12 target T0865 stage 1 (select-20)
QA task. T0865 is C-terminal coiled-coil domain of CIN85
(PDB code: 2N64). At the length of 75 amino acids, it is
one of the shortest targets in CASP 12, and thus minimize
the download, upload and computation time needed for the
demonstration.

When a user clicks the ‘Submit This Job’ button, the in-
put will first be verified on the frontend and then validated
on the backend. If the submission is successful, a task re-
ceipt file will be generated to make a local copy of the basic
information of the task and the URL to retrieve the result.
Then the webpage will automatically redirect to the result
page. If the task is still running, this page will show the basic
task information (Figure 2). In addition to the information
submitted by the user, this page also includes fields indicat-
ing if the job is running or waiting in queue (‘CurrentSta-
tus’), the time user submitted this task (‘SubmitTime’), and

the time in which this task leaves the waiting queue and
starts running (‘StartTime’). When the task is running, the
‘TaskProgress’ section will show a list of subtasks and their
statuses.

When the task is finished, the result page will display a
table showing a summary of the results. From left to right,
the columns are visualization of the local quality, name of
the predicted model, global score (ranging from 0 to 1, the
higher the better), and the link to the full report of this pre-
dicted model. The table is sorted by global score by default
but can be changed to be sorted by decoy name. If the user
has enabled MUfoldQA C add-on, an additional column
of MUfoldQA C results (ranging from 0 to 1, the higher
the better) will be added (Figure 3), and the result will be
sorted by MUfoldQA C scores. A user can export the scores
to CSV file by click on ‘[Export to CSV]’ or simply print the
page with ‘[Print This Page]’. Below the summary table is
the task information table, which recalls some information
like when the task starts and finishes, what the sequence is,
the max, mean and min sequence identities of the templates.

In the full report, the title will show the model name and
its global quality, followed by the interactive JSmol view
(Figure 4A) of the model. The JSmol view uses mouse to
control rotation and includes widgets to change the way the
model is colored and rendered, and to export the model file
or take a snapshot of the model.

Next to the JSmol view is the interactive visualization to
compare models with templates (Figure 4B). The visualiza-
tion consists of a pair of 3D C-alpha backbone models su-
perimposed over each other. The blue one represents the
predicted model and the red one represents the template.
The drop-down menu allows users to select from a pool of
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Figure 5. Comparison of execution time between MUfoldQA S, MUfoldQA C and some other QA methods (ModFOLD6, iFold 2, QASproCL) on the
CASP12 best-150 dataset.
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Table 2. Difference between the predicted and true GDT-TS value of each model for CASP13 20-target subset, average over all targets

CASP13 Select-20 Best-150

Method AD NT AD NT

MUfoldQA C 3.309 20 4.045 20
ModFOLD7 4.788 20 5.645 20
MUfoldQA S 4.970 20 6.368 20
MULTICOM CLUSTER 5.041 20 8.235 20
MULTICOM-NOVEL 5.937 20 8.310 20
ProQ3D 7.792 18 9.388 20
ProQ3 10.117 18 11.483 20
ProQ4 16.206 20 14.262 20

AD: Average GDT-TS difference between predicted and true values. NT: Number of targets.

20 templates based on Blast and HHsearch results. In MU-
foldQA S, each one of these templates is superimposed to
the predicted model to calculate a similarity score, which
is then used to evaluate the quality of the predicted model.
More details about each template are also described in a
table below the visualization. This table includes Method
(Blast/HHsearch), Template ID (which corresponds to the
ID in the dropdown menu), Origin (the PDB code), Iden-
tity, E-value, Coverage and Score.

Below the template comparison is the visualization of lo-
cal MUfoldQA S score (Figure 4C). It is an interactive 3D
model of C-alpha backbone in different colors that repre-
sent different local qualities. The local quality is calculated
for each C-alpha position. This graph shows which section
might be ill-folded and helps user to gain insights on how to
improve the predicted structure. At last, the visualization of
distance matrix (Figure 4D) is provided. Contact map is of
great importance in protein structure prediction. It is a 2D
binary matrix where each element represents if the distance
of two amino acids falls into a cut-off threshold. A con-
tact map could be derived from the distance matrix based
on a cut-off threshold. Instead of plotting multiple contact
maps that a user might need, the 3D map allows a user to in-
teractively explore how the contour separating contact and
non-contact regions changes with different cut-off values by
simply moving the mouse.

For developers who want to integrate PSICA into their
own software, a script is provided to demonstrate how to in-
teract with PSICA sever, including submitting a task, check-
ing for task status and retrieving the final results in Python,
Octave/MATLAB. Since the API for PSICA is simple to
use, the script can also be easily adapted to most program-
ming languages that support system calls. In fact, we have
already used PSICA in some of our QA methods in CASP
13.

Benchmark results

To gain an unbiased evaluation of the performance, we
have participated in CASP12 under the group name MU-
foldQA S and MUfoldQA C. CASP (Critical Assessment
of Techniques for Protein Structure Prediction) experiment
is a world-wide competition held every two years since 1994.
It is designed to provide objective evaluation of the state-
of-the-art methods for protein structure prediction. In re-
cent CASPs, the QA task consists of two stages. In stage 1,
each QA group was given up to 20 selected predicted models

(Select-20) ranging from good to bad. In the stage 2, each
QA group was given up to 150 top models (Best-150) se-
lected by the naı̈ve consensus algorithm.

Accuracy. When blindly tested in CASP12, MUfoldQA S
(scores shown in ‘Global Score’ column in the result sum-
mary page in Figure 3) and MUfoldQA C (scores shown
in ‘Add-on: MUfoldQA C’ column in the result summary
page in Figure 3) achieved good results. Table 1 shows the
performance comparison between them and other methods
in terms of GDT-TS differences between predicted and true
values, average over up to 70 targets. All data are from the
CASP official website.

For the select-20 QA category, which is similar to prac-
tical protein structure prediction situation, where a small
number of predictions are generated and their qualities vary
greatly, MUfoldQA S and MUfoldQA C performed signifi-
cantly better than other methods in terms of average GDT-
TS differences, ranked No. 1 and No. 2, respectively, out-
performing the third place by 35.8% and 32.0%. For the
Best-150 QA category, MUfoldQA C ranked No. 2, out-
performing the next best, ModFOLD6 cor, by 18.3%. MU-
foldQA S ranked the third place among all single-model
and quasi-single-model QA methods. Furthermore, PSICA
is tested using the recently released CASP13 dataset. Only
20 targets (out of total 79 valid targets) can be used for
QA performance evaluation because both the true GDT-
TS of each decoy model of these targets and the perfor-
mance of each group are available, whereas the other targets
are not. PSICA is compared with other publicly available
servers/tools and the result is shown in Table 2. The scores
of other methods are from the CASP official website. The
result shows that MUfoldQA C outperforms the latest ver-
sion of ModFOLD7 by 31% in the select-20 QA category
and 28% in the Best-150 QA category. MUfoldQA S also
outperforms MULTICOM series and ProQ series in both
categories.

Speed. PSICA is much faster than other QA methods, as
shown in the comparison of the execution times of PSICA
and other methods on the CASP12 best-150 dataset of
70 targets. The execution times of other methods are ob-
tained from the CASP official website, which were calcu-
lated as the duration between the timestamp of server re-
ceived the task and the timestamp of server submitted the
result. Figure 5 shows a comparison of execution time be-
tween MUfoldQA S (PSICA with MUfoldQA C add-on
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disabled), MUfoldQA C (PSICA with MUfoldQA C add-
on enabled) and other QA groups. MUfoldQA S, on av-
erage, uses 2,765 s to evaluate a target with 150 decoys.
MUfoldQA C and ModFOLD6 (15) are slower, using 8,694
and 9,961 s, respectively. QASproCL and iFold 2 are much
slower, using 23,518 s (7.5 times slower than MUfoldQA S)
and 148,476 s (52.7 times slower than MUfoldQA S), re-
spectively.

CONCLUSION

In this paper, we have presented PSICA, a new web service
to evaluate predicted protein models by analyzing its con-
formity to known protein structures. The service is devel-
oped based on a top quasi-single-model and a top multi-
model QA method in CASP12. It runs faster than other ex-
isting servers.

For developers of protein tertiary structure prediction
methods, PSICA could be easily integrated into their pre-
diction pipeline. Furthermore, PSICA provides interactive
GUIs to visualize varies aspects of the predicted protein
model, including interactive comparison between the pre-
dicted model and other known protein structures, visual-
ization of the local quality of the predicted model, visual-
ization of its distance matrix and JSmol rendering of the
model.
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