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Abstract

The standard diffusion MRI model with intra- and extra-axonal water pools offers a set of microstructural parameters
describing brain white matter architecture. However, non-linearities in the standard model and diffusion data contami-
nation by noise and imaging artefacts make estimation of diffusion metrics challenging. In order to develop reliable dif-
fusion approaches and to avoid computational model degeneracy, additional theoretical assumptions allowing stable
numerical implementations are required. Advanced diffusion approaches allow for estimation of intra-axonal water frac-
tion (AWF), describing a key structural characteristic of brain tissue. AWF can be interpreted as an indirect measure or
proxy of neurite density and has a potential as useful clinical biomarker. Established diffusion approaches such as white
matter tract integrity, neurite orientation dispersion and density imaging (NODDI), and spherical mean technique pro-
vide estimates of AWF within their respective theoretical frameworks. In the present study, we estimated AWF metrics
using different diffusion approaches and compared measures of brain asymmetry between the different metrics in a
sub-sample of 182 subjects from the UK Biobank. Multivariate decomposition by mean of linked independent component
analysis revealed that the various AWF proxies derived from the different diffusion approaches reflect partly non-
overlapping variance of independent components, with distinct anatomical distributions and sensitivity to age. Further,
voxel-wise analysis revealed age-related differences in AWF-based brain asymmetry, indicating less apparent left-right
hemisphere difference with higher age. Finally, we demonstrated that NODDI metrics suffer from a quite strong depen-
dence on used numerical algorithms and post-processing pipeline. The analysis based on AWF metrics strongly depends
on the used diffusion approach and leads to poorly reproducible results.
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Introduction

Diffusion MRI is a powerful non-invasive imaging tech-
nique allowing one to visualise and probe brain tissue at the
micrometer scale in vivo. An important question arising in
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the interpretation of experimental diffusion data is how to
connect the diffusion signal decay with underlying intra-
voxel geometry and the organisation of complex living tis-
sue [58,57,29]. Different diffusion approaches have been
developed and applied to address this challenge, for example
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to artificial systems [22,44,78,50] in order to relate theoret-
ical approaches with the known ground truth systems, ani-
mal models as a rich source of preclinical research
information [36,28,18,60] and in the human brain in vivo
(see books [37,38] and references therein).

Diffusion tensor imaging (DTI) [8] is the most popular
diffusion approach, providing a set of scalar metrics that
can be related to tissue integrity, such as fractional aniso-
tropy (FA) or mean diffusivity, and various estimates of
white matter (WM) connectivity using diffusion tensor trac-
tography. Many attempts to fit the diffusion signal decay by
different empirical functions have been made [58,30], e.g.
cumulant expansion [33] or stretched-exponent [10]. The
parameters of these functions do not explain the tissue archi-
tecture but can provide a visible contrast, in particular, in
pathology. In parallel, researchers have tried to model WM
and, partially, grey matter architecture by proposing a sim-
plified representation of typical tissue compounds such as
infinite cylinders, sticks and balls, impermeable spheres
etc. [30]. The models include but are not limited to compos-
ite hindered and restricted model of diffusion (CHARMED)
[6], extended CHARMED model with introduced diameter
distribution of restricted cylindrical axons (AxCalibre) [7],
neurite orientation distribution and density imaging
(NODDI) [88], white matter tract integrity (WMTI) [21],
spherical mean techniques (SMT) [41,40], restriction spec-
trum imaging [87], and other [29,30,58]. The different mod-
els have been developed and validated using either diffusion
phantoms [22,44] or ex vivo measurements [28,34,25,36]
including comparison with electron microscopy data
[49,87,65,90]. This has led to the formulation of a standard
diffusion model based on decomposition of diffusion pools
into intra- and extra-axonal water compartments
[58,57,30]. The standard diffusion model is primarily com-
mon to the most of the aforementioned approaches as a sim-
plified description of WM tissue. However, each approach
attracts its specific assumptions and relationships between
diffusion parameters. These assumptions could be denied
by the further research findings. Consequently, it leads to
the difference in a practical realisation of the standard model.
In the context of the standard diffusion model, measures of
the intra-axonal water fraction (AWF) presents a useful indi-
rect marker of neurite density in the brain and could be used
for clinical research and diagnostics across a range of condi-
tions [47,48,20].

Thus, AWF based on diffusion MRI represents a unique
feature of the microstructure and organisation of human
WM. Measures of AWF might provide sensitive biomarkers
for understanding brain aging [71,42], genome-wide associ-
ation studies [19], and brain and mental disorders [56].
Although attributed similar biophysical properties, the
AWF metrics provided by the different implementations of
the standard model may diverge due to theoretical and
model-specific assumptions. However, there is still a lack
of direct group comparison between different approaches
using realistic human MRI data [31,32,11].

The UK Biobank (UKB) diffusion protocol [54,2] is one
of the most used diffusion schemes in research and clinical
studies, and the use of multi-shell diffusion imaging and
many encoding directions enables the implementation of a
set of biophysical models including the abovementioned dif-
fusion approaches. Hence, UKB is an excellent source for
statistical validation of diffusion models, in particular, in
cases with unknown ground truth. UKB offers a set of
pre-estimated diffusion metrics, including DTI and NODDI,
and raw data for additional analysis [54]. These microstruc-
tural diffusion-based properties of the human brain allow
scholars to discover general brain patterns and imaging phe-
notypes that are sensitive to variability in physiological,
genetic and demographic features [71]. As an interesting
application of AWF measure, we use brain asymmetry
[66,74,73,61]. The brain asymmetry index [76,5] represents
a relevant metric for comparison of the AWF estimations
due to a concealment of the obvious difference between
the AWF metrics derived from the different diffusion
approaches. As a result, it is feasible to expect some depen-
dence of asymmetry index on age and likely other parame-
ters in WM.

In this work we investigated the consistency between
neurite density metrics derived from three popular diffusion
approaches (WMTI, NODDI, and SMT). Due to the time-
consuming computations of NODDI parameters, it is impor-
tant to test the consistency and reliability of NODDI metrics
derived from different post-processing pipelines [2,51] and
numerical algorithms [88,12]. To evaluate the feasibility of
the estimated neurite density indices as surrogate imaging
biomarkers, we compared brain WM asymmetry measures
between the different implementations and their associations
with age. We used a combination of univariate voxel-wise
analysis with permutation-based inference, data-driven mul-
timodal decomposition using linked independent component
analysis (LICA), and structural similarity analysis, which
allowed for a comprehensive assessment of brain asymmetry
patterns based on various AWF metrics.

Materials and Methods

Participants and MRI data

In the present study we used 182 participants (age:
min = 40.24; max = 70.11; mean = 54.70; std = 9.35 years),
(sex: male = 90; female = 92), (right-handed = 151, left-
handed = 27, ambidexters = 4) randomly selected in order
to uniformly cover the UKB age range between 40 and 70
years. An overview of the UKB data acquisition, protocol
parameters, and image validation can be found in [2,54].
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Briefly, a conventional Stejskal-Tanner monopolar spin-
echo echo-planar imaging (EPI) sequence was used with
multiband factor 3, diffusion weightings were b = 1 and
2 ms/mm2 and 50 non-coplanar diffusion directions per dif-
fusion shell. All selected subjects were scanned at a single
3T Siemens Skyra scanner with a standard Siemens 32-
channel head coil, in Cheadle, Manchester, UK. The spatial
resolution was 2 mm3 isotropic, and 5 AP vs 3 PA images
with b = 0 ms/mm2 were acquired. All diffusion data were
post-processed using an optimised diffusion pipeline [51]
consisting of 7 steps: noise correction [80], Gibbs-ringing
correction [43], estimation of echo-planar imaging distor-
tions, motion, eddy-current and susceptibility distortion cor-
rections including outlier detection and reestimation [4,3],
field non-uniformity correction [77], spatial smoothing using
fslmaths from FSL package [70] with the Gaussian kernel
1 mm3, and diffusion metrics estimation. A data quality
was estimated by temporal signal-to-noise ratio [64] for each
b-shell. Original UKB data, supplied by UKB, were esti-
mated using UKB pipeline [2] including susceptibility,
eddy-current, and head motion corrections accompanied
with slice outlier detection and replacement [3,4]. The orig-
inal UKB scalar NODDI metrics were computed using
Python implementation of the Accelerated Microstructure
Imaging via Convex Optimisation (AMICO) algorithm
[12] of NODDI model [88].

Diffusion approaches

In order to derive neurite density metrics based on intra-
axonal water fraction we chose three commonly applied bio-
physical approaches derived from the standard diffusion
model [58]: WMTI, NODDI, and SMT. These diffusion
approaches are feasible for similar protocols with high diffu-
sion weightings [9]. Below we briefly describe each
approach.

WMTI

In terms of the standard diffusion model, WMTI assumes
two water compartments: intra- and extra-axonal spaces. As
a result, WMTI models the intra-axonal space as a parallel
bundle of cylinders with effective radius equals to zero
[21]. The cylinders are impermeable, i.e., there are no water
exchange between intra- and extra-axonal spaces. The extra-
axonal space is described by anisotropic but still Gaussian
diffusion. In order to keep the model simple, a few more
assumptions have been made: that the intra-axonal space
consists of mostly myelinated axons without any contribu-
tion from myelin due to fast relaxation rate across of typical
diffusion times; at the same time in extra-axonal space the
glial cells possess fast water exchange with extra-cellular
matrix; both intra- and extra-axonal spaces are modelled
by Gaussian diffusion tensors [21,31]. In order to avoid
degeneration, it is incorrectly assumed that intra-axonal dif-
fusion is slower than diffusion in the extra-axonal matrix.
Besides, WMTI parametrisation works in the case of a
coherent or parallel axonal bundle. Some estimations allow
to have an orientation dispersion up to 30�. WMTI output
consists of axonal water fraction (AWF), extra-axonal diffu-
sivities: axial and radial components. The scalar metrics
were estimated using the original Matlab scripts (Math-
Works, Natick, MA USA) from Veraart and colleagues
[81]. It is worth considering that the WMTI approach is
not valid in the case of crossing fibres or high orientation
dispersion. Additionally, the assumption about the slower
intra-axonal diffusivity did not find its confirmation in the
recent publications [14,35]. Thus, WMTI should be inter-
preted with a caution.

NODDI

NODDI introduces three water compartments: intra- and
extra-axonal spaces and isotropic water pool responsible
for cerebrospinal fluid contamination [88]. The NODDI
approach assumes that the axon orientation dispersion can
be described by an axially symmetric function, such as Wat-
son [88] or Bingham [75] functions. In turn, both intra- and
extra-axonal diffusivities parallel to the bundle axis are fixed
to a given value (in the case of adults to 1.7 mm2/ms). The
radial diffusivity in extra-axonal space is determined
by the tortuosity model [72]: Dextra

\ = Dextra
|| (1 – fic), where

Dextra are the extra-axonal radial (\ and axial (||) diffusion
coefficients, respectively; fic is the intra-axonal water frac-
tion. Water diffusion in isotropic compartment is fixed to
3 mm2/ms. NODDI is computationally demanding. In order
to accelerate the estimation of geometrical parameters, such
as orientation dispersion and water fractions, Daducci and
colleagues [12] decomposed and linearised the problem
using information about a bundle orientation from a DTI
metric. This significantly reduced computation time per sub-
ject. The NODDI approach output consists of intra-axonal
water fraction (icvf for original NODDI metric, and ICVF
for AMICO derived metric in our notation), isotropic water
fraction, and orientation neurite dispersion. We estimated
NODDI parameters using the Matlab scripts for original
NODDI [88] and for AMICO acceleration [12]. In our work,
the UKB pre-estimated intra-axonal water fraction shared by
UKB is defined as UICVF. NODDI assumptions such as
coincidence of intra- and extra-axonal axial diffusivities
and its fixation did not find a confirmation in the recent pub-
lications [14,27].

SMT

Estimating orientation dispersion in the axon bundles is a
complex theoretical problem [57], in particular, using stan-
dard diffusion sequence protocols [63,59]. Recent achieve-
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ments in isotropic diffusion weightings [85,36,79] and dou-
ble diffusion encoding [26,67] allowed one to avoid prob-
lems associated with standard model degeneration. Instead
of requiring a new pulse sequence on the clinical scanners
one can recall a similar approach using a powder averaging
technique [41] for both one and two compartment models
[40]. Nevertheless, the averaged signal still possesses a quite
flat-fitting landscape, which might lead to degeneracy as in
the case of NODDI [31,32,26]. Kaden et al. [40] increased
the stability of the optimisation procedure by the following
additional assumptions: diffusivity determines by the tortu-
osity model [72], axial diffusivity in intra- and extra-
axonal spaces are equal, and axons are presented as sticks,
i.e. radial inta-axonal diffusion is equal to zero. In the pre-
sent work we consider two compartment spherical mean
technique [40] allowing one to extract a neurite density met-
ric. Note that SMT does not model free water contamination
similar to WMTI approach, however, allows one to model
the orientation dispersion. SMT output consists of intra-
axonal water fraction (intra), intra-axonal diffusivity, and
extra-axonal diffusivities: mean and radial components,
and micro FA. We estimated SMT metrics using the original
SMT code (https://github.com/ekaden/smt). Similar to the
NODDI assumptions, the SMT approach demands an equal-
ity of intra- and extra-axonal axial diffusivities. This
assumption was not approved by the recently published
results [26,36].

Tract Based Spatial Statistics (TBSS)

In order to compare different diffusion metrics and
approaches, we applied voxel-wise analysis using TBSS
[69]. Initially, all volumes were aligned to the FMRI58_FA
template, supplied by FSL [70], using a non-linear transfor-
mation implemented by FNIRT [70]. Next, a mean FA
images of all subjects was obtained and thinned in order to
create mean FA skeleton. Afterwards, the subject’s FA val-
ues are projected onto the mean skeleton, by filling the
skeleton with FA values from the nearest relevant tract cen-
tre. The skeleton-based analysis allows one to minimise con-
founding effects due to partial voluming and any residual
misalignments originating from non-linear spatial transfor-
mations. Additionally, the TBSS derived skeleton is used
for averaging of diffusion metrics over the skeleton.

We performed voxel-wise comparisons of NODDI scalar
metrics obtained from two pipelines and different algorithm
implementations using general linear models (GLM). For
simplicity, we used individual level difference maps (MA-
MB, where M is the scalar metric, and A/B are the algorithm
or pipeline index) including age and sex as covariates. For
all contrasts, statistical analysis was performed using
permutation-based inference implemented in randomise with
5000 permutations. Threshold-free cluster enhancement
(TFCE) was used [68]. Statistical p-value maps were thresh-
olded at p < 0.05 corrected for multiple comparisons across
space.

Brain asymmetry analysis was performed using the sym-
metrised TBSS skeleton produced by the FSL utility
tbss_sym. The script generated the symmetric mean FA
image and derived symmetric skeleton. Next, the difference
maps between left-right hemispheres are tested voxel-wise
for each diffusion metric using an appropriate design matrix
and contrast files with age and sex as covariates by the ran-
domise function with 5000 permutations. Statistical p-value
maps were thresholded at p < 0.05 corrected for multiple
comparisons as well. Analysis of averaged asymmetry index
for different diffusion approaches was performed using a
Kruskal-Wallis test and kruskalwallis MATLAB function.
It included post hoc analysis with Bonferroni corrections
for the multiple comparisons.

Linked independent component analysis (LICA)

In order to model inter-subject variability across the dif-
fusion metrics we performed data-driven decomposition
based on LICA from the FSL package [23,24]. LICA is
based on the conventional ICA technique, assuming that
the signal presents a linear mixture of statistically indepen-
dent spatial patterns. LICA iteratively searches maximally
non-Gaussian patterns by subject weight updating. The
resulting LICA components are characterised by group spa-
tial maps and corresponding individual subject weights. The
model order was defined using cophenetic coefficient esti-
mation [62]. LICA allows us to decompose independent
multimodal spatial patterns across different imaging pheno-
types [16,23,24]. We would expect that images assumed to
reflect similar biological properties, such as axonal water
fraction, would show large degree of fusing, reflecting their
shared variance, i.e. one does not expect to find any domi-
nating (unique) AWF metric.

The AWF metrics and FA maps were included in the
LICA decomposition in order to evaluate the common and
unique inter-subject variability across the six parameters tak-
ing into account differences in the pipeline and NODDI
algorithm evaluations. Namely, FA from DKI, AWF from
WMTI, intra from SMT, icvf from original NODDI and
optimised pipeline, ICVF from AMICO NODDI and opti-
mised pipeline, and UICVF from AMICO NODDI and
UKB pipeline. Since FA are not assumed to reflect direct
neurite density we repeated LICA without FA maps as well.
All LICA runs were performed using TBSS skeletons with
1 mm3 resolution and 3000 iterations.

Statistical analysis

Diffusion metrics and associated global asymmetry
indices (AI = [MR � ML]/[MR + ML], where R/L are the
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right- or left-hemisphere values of metric M, respectively)
were compared using general linear model (GLM)
AI = b0 + b1 Age + b2 Sex. Global AI was computed by
averaging the voxel-wise AI maps. The GLM fit was per-
formed using Matlab function lmfit. The linear correlations
between skeleton-averaged diffusion metrics and global AI
values were estimated using Matlab function corr, which
produced a Pearson correlation coefficient.

In order to provide a quantitative comparison between the
skeleton maps we used structural similarity (SSIM) metric
[83]. SSIM allows one to estimate three basic parameters
of the image in accordance with the reference image: lumi-
nance, contrast, and structure, and has been used in MR
image evaluations [53,82]. For SSIM we used Matlab func-
tion ssim. In order to present a qualitative estimation of
SSIM values in the case of TBSS pipeline, we presented a
distribution of SSIM values for intra metrics in Supplemen-
tary Material as well as simple simulations for skeleton
based images and their influence on SSIM estimation.
Results

In order to estimate correlations between all diffusion
metrics, we averaged each metric over the TBSS skeleton
for each subject. Fig. 1 shows the scatter plots of mean
skeleton FA and estimated axonal water fractions from
WMTI, SMT, and NODDI models. FA demonstrated the
lowest correlation coefficients among all diffusion metrics.
The original NODDI metric (icvf) exhibits the same correla-
tions (r = 0.97) with ICVF and UICVF values, in contrast to
the lower correlation (r = 0.94) between the two NODDI
AMICO metrics ICVF and UICVF. The AWF and intra
(r = 0.97) metrics show a lower correlation (r = 0.92) with
ICVF values. The histogram mode of axonal water fraction
(0.39) for AWF values is lower than the modes (� 0.59)
of all other metrics.

Fig. 2 shows the results of LICA analysis using 20 inde-
pendent components (IC) in two cases: with and without FA.
Fig. 2 shows the contribution of different diffusion metrics
to each IC. The weights coefficient correlations of all sub-
jects for 20 IC in both cases with and without FA metric
are presented as well. As an example of common variation
patterns, we present IC number 1 and 15. In the case of
IC1 we find contribution from all diffusion metrics with
the strongest contribution from icfv (25%) and ICVF
(25%) metrics and lowest contribution from FA. Notably,
all diffusion metrics, including FA, contribute in spatial pat-
terns distributed over the most part of TBSS skeleton. In
contrast, IC15 reflects contributions from UICVF only
(98%) with negligible interaction of ICVF metrics (1%).
Mapped spatial pattern of IC15 is similar to the behaviour
of IC17 with ICVF metric (96%) (not presented in Fig. 2).
IC15 exhibits the remarkable spatial patterns of the common
variance (see Fig. 2d).

In order to find spatial patterns with significant differ-
ences on the brain skeleton between the three NODDI
approaches, we applied TBSS analysis for three NODDI-
derived diffusion metrics (axon water fraction, isotropic
water fraction, and neurite orientation dispersion). Fig. 3
demonstrates the results of the TBSS analysis between two
pairs of approaches: a) comparison between original NODDI
and NODDI AMICO using the same optimised pipeline; b)
comparison between optimised and UKB pipelines for
NODDI AMICO algorithm implemented in Matlab (opti-
mised pipeline) and in Python (UKB pipeline). Briefly, the
difference between original NODDI and AMICO NODDI
using the optimised pipeline covers a large part of the brain
skeleton and presents mainly a global offset shift. The shift
appears in all NODDI-derived metrics. The comparison
between the same NODDI AMICO metrics obtained using
different pipelines revealed more complex patterns with
under- and overestimated values. The differences are found
in all NODDI metrics.

Fig. 4 shows the results from the TBSS asymmetry anal-
ysis. All diffusion metrics demonstrated regions with signif-
icant asymmetry. In order to perform a pairwise comparison
between statistically significant spatial patterns on the skele-
ton, we computed structural similarities between all image
pairs. The results are presented in Table 1. The structural
similarities are estimated for two cases: the values from
the left hemisphere are higher than in the right hemisphere,
and in the opposite case, the values from the left hemisphere
are lower than in the right hemisphere. These values are pre-
sented in the table cells over the main diagonal (the main
diagonal marked by the red colour). The values below the
main diagonal present a ratio between a number of common
voxel and the total number of voxels with significant differ-
ences, i.e. R = NA\NB/NA, where NA is the number of vox-
els in estimated skeleton region, and NB is the number of
voxels in skeleton region for a pair comparison. The compar-
ison reveals that the spatial patterns with significant differ-
ence localised by UICVF metric demonstrate lower
structural similarities among other diffusion metrics and a
lower proportion of common skeleton voxels with signifi-
cant difference. In turn, icvf and ICVF metrics demonstrate
high level of proximity in both the structural similarities
and number of the common voxels. The mean overlap
between AWF, intra and icvf maps for higher and lower met-
rics in left hemisphere were AWF = 0.7913/0.5745; in-
tra = 0.8254/0.6359; icvf = 0.8358/0.6098, respectively,
suggesting that the intra metric (SMT) had the highest over-
lapping rate among all AWF metrics.

Fig. 5 shows scatterplots of diffusion metrics and their
respective AI values. The axon water fractions derived from
NODDI showed weak positive correlations for AI vs ICVF



Figure 1. Correlation plots for FA and axonal water fractions obtained from WMTI (AWF), SMT (intra), and NODDI: original algorithm
and optimised pipeline (ficvf); NODDI AMICO algorithm and optimised pipeline (ICVF); and NODDI AMICO algorithm and UKB
pipeline (UICVF). All diffusion metrics were averaged over subject’s skeletons in accordance with TBSS pipeline. Black dotted lines are a
unity; margenta lines are a result of linear regression. Upper diagonal shows the corresponding correlation coefficients. Histograms on the
main diagonal present a distribution of mean skeleton values for each diffusion metric.
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and negative correlations for AI vs (icvf, UICVF). The cor-
relations between AI and (FA, AWF, intra) were also weak.
For FA, higher anisotropy was weakly associated with more
negative AI, i.e. stronger right-left asymmetry. The associa-
tion between AI and (AWF, intra) were positive, with higher
axon water fraction with more positive AI.
In order to compare averaged AI derived from different
diffusion approaches we visualised AI using boxplots in
Fig. 6. The Kruskal-Wallis test demonstrated that all diffu-
sion metrics are different including (one-side p-value < 1e-
99) and excluding (one-side p-value < 0.003) FA values.
Post hoc analysis allowed us to reveal that AI means for icvf



Figure 2. Results of LICA analysis based on diffusion metrics and TBSS skeleton with (a,c,d) and without (e,f) FA values. Number of
independent components (IC) is equal to 20. a) contribution of diffusion metrics (x-axis: fraction of weight) into 20 IC (y-axis) including
FA values; b) correlation map of weight coefficients for 20 IC with FA values; c) spatial patterns of common variance in the case of the first
component; d) spatial patterns of common variance in the case of the 15th component; e) contribution of diffusion metrics (x-axis: fraction
of weight) into 20 IC without FA values; f) correlation map of weight coefficients for 20 IC without FA values.

I.I. Maximov, L.T. Westlye / Z Med Phys 35 (2025) 177–192 183
and ICVF groups, AWF and intra, and AWF, icvf and ICVF
groups are the same.

Fig. 7 and Table 2 show results from the analysis testing
for associations between age and AI for the different metrics.
In brief, all AWF metrics showed decreasing AI with increas-
ing age, i.e. less pronounced hemispheric asymmetry. In con-
trast, AI for FA showed positive associations with age. The
highest R-squared and GLM slope values were found for in-
tra and UICVF metrics. Cocor function [15] from R did not
reveal any significant difference between all AI metrics.



Figure 3. Voxelwise comparison of NODDI metrics using TBSS
approach. The TBSS results are ordered as the following: the top
row is AWF, the middle row is isotropic water fraction, and the
bottom row is orientation distribution. The yellow-red colour marks
the regions with values higher (p < 0.05) in subplot groups, the
light blue-blue colour marks the regions with values lower
(p < 0.05) in subplot groups. The skeleton is marked by the green
colour. a) comparison of original NODDI metrics vs NODDI
AMICO; b) comparison of NODDI AMICO metrics vs UKB
NODDI AMICO.
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Discussion

The diffusion parameters derived from the standard diffu-
sion model [57,29] are limited by their non-linear estimation,
numerical instability and being dependent on acquired image
quality, e.g., affected by a low signal-to-noise ratio and
applied imaging techniques such as EPI, concomitant eddy
currents etc. Our comparison of different metrics reflecting
intra-axonal water fraction obtained from WMTI, NODDI,
and SMT demonstrated high correlations between averaged
metrics, but also diverging findings related to brain asymme-
try and its association with age. Further, comparison
revealed significant voxel-wise differences in NODDI met-
rics between data assessed using different algorithms (origi-
nal NODDI vs AMICO) or pre-processing pipeline (original
UKB pipeline vs optimised pipeline). In particular, LICA
demonstrated that the NODDI AMICO algorithm might
affect the diffusion metrics introducing algorithm specific
variances and an estimation of ICs. Similarly, the asymmetry
index analysis derived from the different diffusion metrics
revealed metric specific voxel-wise patterns and age associ-
ations. Notably, the means of AI are different for all diffu-
sion metrics, however, exhibiting equal mean’s pairs, for
example, for icvf and ICVF.

Axonal water fraction as a proxy of neurite density can be
estimated using different numerical algorithms with different
theoretical assumptions in order to make the computations
more reliable within the framework of the standard diffusion
model, and the same biophysical feature can be estimated
using different approaches such as WMTI, NODDI, and
SMT. While different implementations of the same model,
such as the original NODDI and NODDI AMICO, may pro-
duce different results, the mean skeleton diffusion metrics
demonstrated high correlations overall. In contrast, the neu-
rite density distribution demonstrated differences with
modes around 0.59 for NODDI and SMT, and �0.51 for
WMTI (see Fig. 1). Lower mode of AWF values in contrast
to other diffusion approaches could be stipulated by not
accurately satisfied WMTI assumptions over the whole
skeleton. Indeed, not all skeleton regions could be treated
as a coherent neurite bundle and the relationship between
intra- and extra-axonal diffusivities chosen in WMTI seems
to be not valid. As a result, the estimated neurite density
metric for WMTI has lower value after skeleton averaging.
Another reason for such behaviour is a different relationship
between intra- and extra-axonal axial diffusivities used as
practical assumptions in SMT/NODDI and WMTI models.
This relationship might seriously affect the obtained solu-
tions on a quite flat optimisation landscape (see, for exam-
ple, similar results in Refs. [31,32,35,14].

LICA allowed us to decompose the various metrics as a
linear mixture of independent spatial components and iden-
tify spatial patterns with common and unique variance and to
estimate the relative contribution of each modality to each
component. Assuming that the different metrics all represent
the same biophysical property, we expected to see a high
degree of fusing across all neurite density metrics. As
expected, the primary independent components, which
explain the largest amount of the total variance, were highly
multimodal with contributions from all metrics maps (see,



Figure 4. The result of TBSS analysis using the brain asymmetry feature. Diffusion metrics are represented by FA and axonal water
fractions from different diffusion models. The yellow-red colour marks the regions with values higher (p < 0.05) in the left hemisphere, the
light blue-blue colour marks the regions with values lower (p < 0.05) in the left hemisphere. The bottom row shows enlarged images
localised by the red frame at AWF map. The symmetrised skeleton is marked by the green colour.

Table 1
A comparison of spatial patterns obtained by TBSS asymmetry analysis (p < 0.05). In upper diagonal cells we present pairwise SSIM
estimations between the skeleton regions with significant differences. In bottom diagonal cells we present the pairwise ratio of voxel
numbers N: (NA\NB)/NA, where NA,B is the number of voxel with significant difference from metrics A or B.

Values in the left hemisphere higher than in the right hemisphere

AWF intra icvf ICVF UICVF

AWF 1 0.9824 0.9819 0.9823 0.9608
intra 0.7809 1 0.9852 0.9860 0.9616
icvf 0.8017 0.8699 1 0.9972 0.9616
ICVF 0.8076 0.8797 0.9777 1 0.9614
UICVF 0.2068 0.1857 0.1850 0.1837 1
Values in the left hemisphere lower than in the right hemisphere

AWF intra icvf ICVF UICVF
AWF 1 0.9808 0.9804 0.9808 0.9605
intra 0.6006 1 0.9849 0.9857 0.9616
icvf 0.5483 0.6712 1 0.9968 0.9605
ICVF 0.5619 0.6956 0.9718 1 0.9604
UICVF 0.4151 0.4505 0.3530 0.3576 1
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for example, at first 4 ICs in Fig 2a,e). However, several ICs
were also dominated by one or few metrics, in particular
ICVF and UICVF, suggesting unique variance in the
NODDI AMICO maps that was not captured in the original
NODDI implementation. While the total amount of variance
explained by these spatial patterns defined by UICVF or
ICVF is relatively small, they might create spurious findings
in the downstream analysis [16,23,24]. It is particularly
interesting finding, because allows us to suppose a presence
of unique features in ICVF and UICVF maps independently



Figure 5. The result of linear regression of diffusion metrics and their derived AI. The red lines are linear regression fit and intervals of
confidence (95%). The Pearson correlation coefficients are presented on the top of each correlation plot.
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on the used post-processing pipeline, i.e. unique only for
NODDI AMICO approach.

Hence, the LICA findings indicate some inconsistencies
in the derived metrics from the two NODDI implementa-
tions. The voxel-wise TBSS analysis revealed that the
UKB pipeline and the optimised [51] processing pipelines
influenced NODDI AMICO metrics, which for isotropic
water faction and orientation dispersion covered almost all
skeleton voxels and for intra-axonal water fraction showed
more complex patterns with both higher and lower values.



Figure 6. Boxplots of asymmetry index derived from the different diffusion metrics. All AI means are different including and excluding FA
values in accordance with a Kruskal-Wallis test. Three groups, obtained from post hoc analysis, have the equal AI means: a) original and
AMICO NODDI; b) WMTI and SMT mc metrics; and c) WMTI, original and AMICO NODDI metrics. P-values are presented for
supporting H0 hypothesis (all means are equal).
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These findings emphasise the need for harmonised and care-
ful considerations of the different steps in the data process-
ing, cleaning and analysis, including noise correction [1]
and the exact numerical implementation of the diffusion
approaches [13,52].

Although the diffusion metrics reflect important
microstructure brain features on their own, it can be used
for a description of macroscale brain architecture such as
brain asymmetry [17]. Brain asymmetry is a basic feature
of brain organisation and the asymmetry index represents a
potentially useful imaging based biomarker [89], e.g. in rela-
tion to brain development and aging [73,76,5] and mental
disorders [39,84]. The AI values based on different diffusion
approaches and conventional FA using symmetrised TBSS
skeleton revealed some inconsistencies in the results pro-
duced by the different metrics, in particular, for UICVF
(see Fig. 4).

The correlation between the mean skeleton metrics and
their corresponding AI was negligible for icvf, ICVF, and
UICVF, and low for FA, AWF, and intra metrics. While
the correlations were low, icvf and UICVF metrics exhibited
correlations with opposite signs. These results showed that
AI represent an imaging derived phenotype that is largely
independent from the overall value of the corresponding
metric. Importantly, the mean AI metrics are different
derived from all axonal water fraction approaches.

Linear models revealed similar associations with age for
all neurite density metrics, and we found no significant dif-
ferences in the slopes between metrics. The low regression
slope for FA partially reproduces previous results [86].
The associations between global AI and age were overall
weak, suggesting no dramatic age-related differences in
brain asymmetry in the sampled age range. In order to vali-
date this finding and to increase the statistical power in
future work, we plan to perform a more accurate analysis
of brain asymmetry using a larger portion of the UKB data
with regional parcellation [53]. In accordance with our expe-
rience, the averaged diffusion metrics associated with AI
might be less sensitive markers in contrast to the voxel-
wise or region-of-interest methods of analysis [45]. In turn,
it stimulates an application of the advanced methods of anal-
ysis such as deep learning networks or FEMA (Parekh et al.,
2023).

Some methodological considerations are worth mention-
ing. In contrast to the assumptions in WMTI, NODDI, and
SMT, recent results suggest that intra-axonal diffusivity is
higher than extra-axonal diffusion [14,35,46,27]. Thus, an
alternative implementation of the standard diffusion model,
for instance, WMTI modification suggested by Jespersen
and colleagues, 2018, should be superior. Future work
should evaluate such approaches in large population cohorts
(see, for example [45]). In turn, recent results in artefact cor-
rection and development of pre-processing pipeline [1,55]
should bring higher accuracy in the statistical analysis. For
example, the used step such as smoothing with the Gaussian
kernel equals to half of spatial resolution improved numeri-
cal estimations in many diffusion approaches, in particular,
in DKI and NODDI. Although, the spatial smoothing



Figure 7. The results of GLM fit of age and AI dependencies. The parameters of GLM fits are presented in Tab. 2. The red lines are linear
regression fit and interval of confidence (CI = 95%).

Table 2
Parameters of regression fits for AI dependence on age using different diffusion metrics (see Fig. 6). The GLM is AI = b0 + b1 Age + b2
Sex. RMSE is the root mean squared error, R-squared is the coefficient of determination, CI is the confidence interval. Coefficients b0/b1
significantly different from zero (p < 0.05) are marked by red bold font.

Intercept, b0 [CI] Slope, b1 [CI] RMSE R-squared F-statistics

FA �7.6880�10�4 4.1383�10�5 0.0042 0.0207 1.89
[�4.4; 2.9]�10�3 [0; 1]�10�3

AWF 0.0108 �7.7402�10�5 0.0035 0.0427 3.99
[0.0078; 0.0138] [�1; 0]�10�3

intra 0.0157 �1.4689�10�4 0.0060 0.0512 4.83
[0.0105; 0.0210] [�2; �1]�10�4

icvf 0.0069 �2.2013�10�5 0.0035 0.0036 0.32
[0.0039; 0.0099] [�1; 0]�10�4

ICVF 0.0080 �3.2509�10�5 0.0036 0.0071 0.63
[0.0048; 0.0111] [�1; 0]�10�4

UICVF �0.0049 �1.5223�10�4 0.0066 0.0504 4.75
[�0.0106; 0.0009] [�3; 0]�10�4
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brought slightly negative effect such as image blurring
which is not very important in the case of skeleton analysis
as we already demonstrated in [51,53]. Nevertheless, we
hope that new developing approaches in diffusion artefact
clearance would avoid demands for any kind of smoothing
steps in the future.

In conclusion, our analysis suggests that NODDI scalar
metrics are dependent on numerical algorithm and post-
processing pipeline. The AWF metrics derived from the
standard diffusion model are different and depending on
the used assumptions, in particular, in the case of NODDI
AMICO approach as revealed by LICA analysis. In turn, a
reproducibility of NODDI metrics should be considered very
carefully, in particular, in a consequential statistics, even
after an application of proxy measures such as AI. We found
that the brain asymmetry derived from neurite density met-
rics represents a potentially useful biomarker that can be
used as an additional imaging based phenotype, in particular,
for brain aging studies due to decreasing AI along the
ageing.
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