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Abstract

infiltration in an IL-1B-independent manner.

provide new therapeutic approaches to SE or epilepsy.

Background: In the present study, we investigated the roles of P2X7 receptor in recruitment and infiltration of
neutrophil during epileptogenesis in rat epilepsy models.

Methods: Status epilepticus (SE) was induced by pilocarpine in rats that were intracerebroventricularly infused with
either saline, 2',3'-O-(4-benzoylbenzoyl)-adenosine 5-triphosphate (BzATP), adenosine 5-triphosphate-2',3™-
dialdehyde (OxATP), or IL-1Ra (interleukin 1 receptor antagonist) prior to SE induction. Thereafter, we performed
immunohistochemical studies for myeloperoxidase (MPQO), CD68, interleukin-1p (IL-1B), monocyte chemotactic
protein-1 (MCP-1) and macrophage inflammatory protein-2 (MIP-2).

Results: In saline-infused animals, neutrophils and monocytes were observed in frontoparietal cortex (FPC) at 1 day
and 2 days after SE, respectively. In BzATP-infused animals, infiltrations of neutrophils and monocytes into the FPC
were detected at 12 hr and 1 day after SE, respectively. In OxATP-infused animals, neutrophils and monocytes
infiltrated into the FPC at 1 day and 2 days after SE, respectively. However, the numbers of both classes of
leukocytes were significantly lower than those observed in the saline-infused group. In piriform cortex (PC), massive
leukocyte infiltration was detected in layers Ill/IV of saline-infused animals at 1-4 days after induction of SE. BzATP
or OxATP infusion did not affect neutrophil infiltration in the PC. In addition, P2X7 receptor-mediated MCP-1
(released from microglia)/MIP-2 (released from astrocytes) regulation was related to SE-induced leukocyte

Conclusions: Our findings suggest that selective regulation of P2X7 receptor-mediated neutrophil infiltration may

Background

Epilepsy is a chronic condition characterized by the pre-
sence of spontaneous episodes of abnormal excessive neu-
ronal discharges that result in specific patterns of neuron
loss in various brain regions, particularly in the hippocam-
pus [1,2]. Recent reports have emphasized that chronic
epilepsy is a prolonged inflammatory condition, and that
epileptic activity rapidly increases synthesis and release of
various cytokines in rodent brain involved in seizure onset
and generalization [3-7]. Release of cytokines affects turn-
over and release of various neurotransmitters and expres-
sion of neuropeptides and neurotrophic factors, and alters
synaptic transmission and ionic currents in several rodent
forebrain regions; and therefore appears to be directly
involved in neuronal network excitability [6,7]. On the
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other hand, cytokines act on endothelial cells to change
the permeability of the blood-brain barrier (BBB), with
resulting significant effects on neuronal viability and excit-
ability [8-11].

Pilocarpine (PILO) acts on muscarinic receptors. Both
M1 and M2 receptors appear to be involved, however
M1 receptors mediate most proepileptogenic actions
[12]. The PILO-induced status epilepticus (SE) model
replicates the cell type-specific pattern of neuron loss
and axon reorganization found in many patients with
temporal lobe epilepsy [13,14]. It also replicates a com-
mon clinical history of patients with temporal lobe epi-
lepsy [15], in that a brain injury precedes a seizure-free
latent period before spontaneous, recurrent seizures
begin. Furthermore, PILO-induced SE affects WBC infil-
tration, cytokine levels, and BBB integrity [16]. Therefore,
this model is useful for study not only epileptogenesis,
but also inflammatory responses induced by SE.
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The immune system in the brain is in part isolated
from the systemic immune system by the BBB, and
microglia are generally the only inflammatory cells within
the brain. However, recent reports suggest that blood-
derived inflammatory cells, including neutrophils and
monocytes, infiltrate the brain under certain pathological
conditions [17-20]. Infiltrating leukocytes accelerate local
inflammatory processes through generation of toxic free
radicals, release of proteolytic enzymes, and generation of
proinflammatory cytokines [21-24]. Chemokines contri-
bute to recruitment of leukocytes [25-27]. Chemokines
such as monocyte chemotactic protein-1 (MCP-1) and
macrophage inflammatory protein-2 (MIP-2) are unde-
tectable or present at low levels under physiological con-
ditions, and show transient increases under pathological
conditions. Neurons, microglia and astrocytes produce
MCP-1 or MIP-2 when incubated with pro-inflammatory
cytokines, such as tumor necrosis factor-a. (TNF-a) and/
or interleukin-1f (IL-1B) or after injury [28-30]. The
P2X7 receptor, an ATP-ligand channel, has attracted
much attention as a modulator of inflammatory pathways
in the brain, since the P2X7 receptor is upregulated after
acute brain injury and in chronic neurological diseases
[31-34], and releases cytokines/chemokines from neuro-
glia [35-37]. With respect to these P2X7 receptor func-
tions, P2X7-mediated chemokine release is likely
involved in neutrophil infiltration, although the mechan-
isms of neutrophil infiltration into brain parenchyma are
still unknown. Therefore, we investigated the roles of the
P2X7 receptor in recruitment and infiltration of neutro-
phil during epileptogenesis in rat epilepsy models pro-
voked by PILO-induced SE.

Methods

Experimental animals

This study utilized the progeny of Sprague-Dawley (SD)
rats (male, 9 - 11 weeks old) obtained from the Experi-
mental Animal Center, Hallym University, Chunchon,
South Korea. The animals were provided with a com-
mercial diet and water ad libitum under controlled tem-
perature, humidity and lighting conditions (22 + 2°C,
55 + 5% and a 12:12 light/dark cycle with lights). Proce-
dures involving animals and their care were conducted
in accord with our institutional guidelines that comply
with NIH Guide for the Care and Use of Laboratory
Animals (NIH Publications No. 80-23, 1996). In addi-
tion, we have made all efforts to minimize the number
of animals used and their suffering.

ICV drug infusion

Rats were divided into four groups treated with: (1) vehi-
cle (saline), (2) 2’,3’-O-(4-benzoylbenzoyl)-adenosine
5’-triphosphate (BzATP, P2X7 receptor agonist, 5 mM,
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Sigma), (3) adenosine 5’-triphosphate-2’,3’-dialdehyde
(OXATP, P2X7 receptor antagonist, 5 mM, Sigma) and
(4) interleukin 1 receptor antagonist (IL-1Ra, 5 ug/ml,
R&D systems). The dosage of each compound or IL-1Ra
was determined as the highest dose that induced SE of
comparable severity in 100% of animals with 5% mortal-
ity in a preliminary study. Animals were anesthetized
(Zolretil, 50 mg/kg, I.M. Virbac Laboratories, France) and
placed in stereotaxic frames. For osmotic pump implan-
tation, holes were drilled through the skull to introduce a
brain infusion kit 1 (Alzet, USA) into the right lateral
ventricle (1 mm posterior; 1.5 mm lateral; - 3.5 mm
depth; flat skull position with bregma as reference),
according to the atlas of Paxinos and Watson [38]. The
infusion kit was sealed with dental cement and connected
to an osmotic pump (1007D, Alzet, USA). The pump was
placed in a subcutaneous pocket in the dorsal region.
Animals received 0.5 pl/hr of vehicle or compound for
1 week [39-41]. Therefore, the doses of BZATP, OxATP
and IL-1Ra were 43 pg, 30 pg and 0.06 pg/day per ani-
mal, respectively. The compounds were infused begin-
ning immediately after surgery. Since the number of
neutrophils in brain parenchyma peaked at 2-3 days after
SE in our preliminary study, we chose this time point.
Thus, our experimental schedules were designed to inhi-
bit the function of P2X7 receptor and IL-1p from at least
3 days prior to SE to at least 4 days after SE, when neu-
trophil infiltration peaked.

Seizure induction

Three days after surgery, rats were treated with PILO
(380 mg/kg, i.p.) 20 min after methylscopolamine (5
mg/kg, i.p.). Using this treatment paradigm, behavioral
seizures typically began within 20-40 min. Approxi-
mately 80% of PILO-treated rats showed acute beha-
vioral features of SE (including akinesia, facial
automatisms, limbic seizures consisting of forelimb clo-
nus with rearing, salivation, masticatory jaw movements,
and falling). We used a 2-hr SE rat model, because >
90% of rats that we monitored in previous studies
[42-44] displayed spontaneous, recurrent seizures within
1-3 months after PILO-induced SE. Diazepam (10 mg/
kg, i.p.) was administered 2 hours after onset of SE and
repeated, as needed. The rats were then observed 3 - 4
hours a day in a vivarium for general behavior and
occurrence of spontaneous seizures. At designated time
points (12 hrs, 1, 2, 3 and 4 days after SE; n = 30,
respectively), animals were killed and used for immuno-
histochemistry. Rats not expriencing SE (those which
showed only acute seizure behaviors during 10 - 30 min,
n = 22) and age-matched normal rats were used as con-
trols (n = 15).
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Tissue processing

Animals were perfused transcardially with phosphate-
buffered saline (PBS) followed by 4% paraformaldehyde
in 0.1 M phosphate buffer (PB, pH 7.4) under urethane
anesthesia (1.5 g/kg, i.p.). The brains were removed, and
postfixed in the same fixative for 4 hrs. The brain tissues
were cryoprotected by infiltration with 30% sucrose over-
night. Thereafter, the entire hippocampus was frozen and
sectioned with a cryostat at 30 pm and consecutive sec-
tions were placed in six-well plates containing PBS. For
stereological study, every sixth section in a series through
the entire hippocampus was used in some animals.

Immunohistochemistry

The sections were first incubated with 3% bovine serum
albumin in PBS for 30 min at room temperature. Sec-
tions were then incubated in rabbit anti-myeloperoxi-
dase (MPO) IgG (diluted 1:100, Thermo fisher scientific,
USA), mouse anti-CD68 IgG (diluted 1:100, Abcam,
USA), goat anti-IL-1p IgG (diluted 1:100, R&D system),
rabbit anti-MCP-1 IgG (diluted 1:100, Abcam, USA) or
rabbit anti-MIP-2 IgG (diluted 1:100, Invitrogen, USA)
in PBS containing 0.3% Triton X-100 overnight at room
temperature. The sections were washed three times for
10 min with PBS, incubated sequentially, in biotinylated
goat anti-rabbit IgG, anti-mouse IgG or rabbit anti-goat
IgG (Vector, Burlingame, CA, USA) and in an avidin-
biotin-complex (ABC, Vector Laboratories, Burlingame,
CA, USA), diluted 1:200 in the same solution as the pri-
mary antiserum. Between incubations, the tissues were
washed with PBS three times for 10 min each. The sec-
tions were visualized with 3,3’-diaminobenzidine (DAB)
in 0.1 M Tris buffer and mounted on gelatin-coated
slides. The immunoreactions were observed under the
Axiophot microscope (Carl Zeiss, Germany). All images
were captured using an Axiocam HRc camera and Axio
Vision 3.1 software.

Multiple immunofluorescence staining

To identify the morphological changes induced by SE in
the same hippocampal tissue, double immunofluorescent
staining was performed. Brain tissues were incubated in
mixture of rabbit anti-Iba-1 IgG (diluted 1:100, Biocare
medical, USA)/goat anti-IL-1B IgG (diluted 1:100), rab-
bit anti-MCP-1 IgG (diluted 1:100)/rabbit anti-Iba-1 IgG
(diluted 1:100), rabbit anti-GFAP (diluted 1:200,
Chemicon, USA)/goat anti-MIP-2 IgG (diluted 1:500) or
rabbit anti-CCR2 IgG (dilution 1:100, Abcam, USA)/
goat anti-MIP-2 IgG (diluted 1:500) overnight at room
temperature. After washing three times for 10 minutes
with PBS, sections were also incubated in a mixture of
FITC- and Cy3-conjugated secondary antisera (1:200,
Amersham, USA) or streptavidin (1:200, Vector, USA)
for 1 hr at room temperature. For detection of rabbit
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anti-MCP-1 and rabbit anti-Iba-1, we applied tyramide
amplification methods [45]. The sections were washed
three times for 10 min with PBS, and mounted on gela-
tin-coated slides. For nuclei counterstaining, we used
Vectashield mounting medium with DAPI (Vector,
USA). All images were captured using an Axiocam HRc
camera and Axio Vision 3.1 software (Carl Zeiss,
Munchen-Hallbergmoos, Germany). Figures were com-
piled using Adobe PhotoShop 7.0 (San Jose, CA).
Manipulation of the images was restricted to threshold
and brightness adjustments to the entire image.

Quantification of data and statistical analysis

For quantification of immunohistochemical data, areas
were selected from brain tissues approximately 0.2 - 3.8
mm from bregma based on the rat brain in stereotaxic
coordinates [38]. Cells in 2 - 4 regions (1 x 10° um?)
from each section were counted on 20x images. Results
are presented as means + SD of 15 - 25 regions from
five animals. All immunoreactive cells were counted
regardless the intensity of labeling. Cell counts were
performed by two different investigators who were blind
to the classification of tissues. All data obtained from
the quantitative measurements were analyzed using
one-way ANOVA to determine statistical significance.
Bonferroni’s test was used for post-hoc comparisons.
A p-value below 0.05 or 0.01 was considered statistically
significant [42,43].

Results

Restricted blood-derived leukocyte infiltration was
observed in the frontoparietal cortex (FPC) and piriform
cortex (PC) during the time-window applied in the pre-
sent study. Therefore, we describe the infiltration pat-
terns of blood-derived leukocyte in both cortical regions.

Neuronal damage

In saline-infused animals, no apparent neuronal loss was
observed in the FPC at 1 day after SE (Figure 1A1).
Two days after SE, neuronal loss was detected in layers
IV-V (Figure 1A2). Three-four days after SE, widespread
neuronal damage was detected in layers II-V of the FPC
(Figure 1A3-4). In BzATP-treated animals, neuronal loss
was detected at 1 day after SE (Figures 1B1-4). In
OxATP-treated animals, neuronal loss was detected at 4
days after SE (Figures 1C1-4). In contrast to FPC, neu-
ronal damage in the PC was similarly observed in every
group. Briefly, severe neuronal loss accompanied by ede-
matous findings was detected in layers II-IV of the PC
at 1 day after SE (Figures 1A5-6, 1B5-6 and 1C5-6).

Neutrophil infiltration after SE
In saline-infused animals, MPO-positive neutrophils were
observed in the perivascular parenchyma of the FPC at
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Figure 1 Neuronal damage following SE. (A) Saline-infused animal, (B) BzATP-infused animal, (C) OxATP-infused animal. In saline-infused
animals, no apparent neuronal loss is observed in the FPC at 1 day after SE (A1). Two days after SE, neuronal loss is detected in layers V-V (A2).

Three-to-four days after SE, widespread neuronal damage is detected in the layers |-V of the FPC (A3-4). In BzATP-treated animals, neuronal loss

is detected at 1 day after SE (B1-4). In OxATP-treated animals, neuronal loss is detected at 4 days after SE (C1-4). In PC, the severe neuronal loss

accompanied by edematous findings is detected in layers II-IV at 1 day after SE in every group (A5-6, B5-6 and C5-6). Bar = 100 um.
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1 day after SE (Figure 2A1). Two-three days after SE, the
number of MPO-positive neutrophils had increased in
this region (Figures 2A2-3 and 3A). Four days after SE,
the number of MPO-positive neutrophils was markedly
reduced (Figure 2A4 and 3A). In BZATP-infused animals,
infiltration of MPO-positive neutrophils into the FPC
was detected at 12 hr after SE (Figures 2B1). At 1-3 days
after SE, the number of MPO-positive neutrophils had
increased (Figures 2B2-3 and 3A). Four days after SE, the
number of MPO-positive neutrophils was markedly
reduced (Figures 2B4 and 3A). In OxATP-infused ani-
mals, MPO-positive neutrophils showed infiltration into
the FPC at 1 day after SE (Figure 2C1). Two-to-three
days after SE, the number of MPO-positive neutrophils
was increased in the FPC (Figure 2C2-3). Four days after
SE, the number of MPO-positive neutrophils was mark-
edly reduced (Figures 2C4 and 3A). Although the
temporal patterns of neutrophil infiltration were similar,
the number of MPO-positive neutrophils was signifi-
cantly lower than that observed in saline-infused group
(Figure 3A). In the PC, massive neutrophil infiltration
was detected in layer III/IV of saline-infused animals at
1-2 days after SE (Figures 2A5 and 3B). BzZATP or
OxATP infusion did not affect neutrophil infiltration in
the PC (Figures 2B5, 2C5 and 3B). These findings indi-
cate that P2X7 receptor activation may play an important
role in neutrophil infiltration into the FPC after SE.

Monocyte infiltration after SE

In saline-infused animals, a few round-shaped CD68-
positive monocytes were observed near blood vessels in
the FPC at 2 days after SE (Figure 4A1). Three-to-four
days after SE, the number of CD68 positive cells had sig-
nificantly increased in the FPC (Figures 4A2-3 and 4D).
Furthermore, the shape of the CD68-positive cells had
changed to a ramified form (Figures 4A2-3). In BzZATP-
infused animals, CD68-positive monocytes were observed
in the FPC at 1 day after SE (Figure 4B1). Two-to-three
days after SE, the number of CD68-positive cells had sig-
nificantly increased, and their morphology had changed
to a ramified form (Figures 4B2-3 and 4D). In OxATP-
infused animals, CD68-positive monocytes were observed
in the FPC at 2 days after SE (Figure 4C1). Three-to-four
days after SE, the shape of CD68-positive cells had chan-
ged to a ramified form, while the number of CD68-posi-
tive monocytes in this group was smaller than that in
saline-infused animals (Figures 4A2-3 and 4D). In
the PC, CD68-positive cell infiltration was detected in
layer III/IV of saline-infused animals at 3 days after SE
(Figures 4E). The morphology of the CD68-positive cells
had changed from a round shape to a ramified form at
4 days after SE (data not shown). BZATP or OxATP infu-
sion did not affect CD68-positive monocyte infiltration in
the PC (Figures 4E). These findings indicate that P2X7
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receptor activation may also play a role in monocyte infil-
tration into the FPC after SE.

The effect of IL-1Ra on leukocyte infiltration into

the FPC after SE

In the present study, saline-infused animals showed
IL-1B-immunoreactive cell in the FPC at 1 day after SE
(Figures 5A1-2). Double immunofluorescent study
revealed that IL-1B-immunoreactive cells were Iba-1-
positive microglia (Figures 5D1-3). In the BzATP-
infused group, IL-1B-immunoreactive microglia were
observed at 12 hr after SE (Figures 5B1-2). Furthermore,
the number of IL-1B-immunoreactive microglia was
higher than that observed in saline-infused animals at 1
day after SE (Figures 5E). In OxATP-infused animals,
IL-1B-immunoreactive microglia were observed at 1 day
after SE (Figures 5C1-2). However, the number of
IL-1B-immunoreactive microglia was lower than that
observed in saline-infused animals (Figures 5E). These
findings simply indicate that P2X7 receptor antagonist
may inhibit leukocyte infiltration via an IL-1p-mediated
pathway. Therefore, in order to confirm a direct effect
of the IL-1B system on neutrophil infiltration, we
applied IL-1 receptor antagonist (IL-1Ra) prior to SE
induction. Unexpectedly, IL-1Ra infusion did not affect
neutrophil infiltration after SE (Figures 6A1-3 and 6C).
Furthermore, IL-1Ra infusion did not attenuate SE-
induced neuronal damages in the FPC, compared to sal-
ine-infused animals (data not shown). In IL-1Ra-infused
animals, similar to saline-infused animals, MPO-positive
neutrophils were observed in the perivascular parench-
yma of the FPC at 1 day after SE. One-to-three days
after SE, the number of MPO-positive neutrophils had
increased in this region. Similar to neutrophil infiltra-
tion, IL-1Ra infusion did not affect CD68-positive cell
infiltration. Briefly, a few round-shaped CD68 positive
monocytes were observed near blood vessels in the FPC
at 2 days after SE (Figure 6B1). Three-to-four days after
SE, the number of CD68-positive cells had significantly
increased in the FPC (Figures 6B2-3 and 6D). Further-
more, the shape of these CD68-positive cells had chan-
ged to a ramified form (Figures 6B2-3). These findings
indicate that activation of the P2X7 receptor accelerates
leukocyte infiltration into brain parenchyma in an
IL-1B-independent manner.

MCP-1 and MIP-2 expression after SE

In saline-infused animals, MCP-1 immunoreactive cells
were detected in the FPC at 1 day after SE (Figure 7A1).
Double immunofluorescent studies revealed that MCP-1-
immunoreactive cells were Iba-1-positive microglia (Fig-
ures 7D1-3). The number of MCP-1-immunoreactive
microglia increased at 2 days after SE, compared to that
observed at 1 day after SE (Figures 7A2 and 7E).
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Figure 2 MPO-positive neutrophil infiltration following SE. (A) Saline-infused animal, (B) BzATP-infused animal, (C) OxATP-infused animal. In
saline-infused animals, neutrophils are observed in the perivascular parenchyma of the FPC at 1 day after SE (A1). Two-to- three days after SE,
the number of neutrophils is increased in this region (A2-3). Four days after SE, the number of neutrophils is markedly reduced (A4). In BzATP-
infused animals, infiltration of neutrophils into the FPC is detected at 12 hr after SE (B1). At 1-3 days after SE, the numbers of neutrophils is
increased (B2-3). Four days after SE, the number of neutrophils is markedly reduced (B4). In OxATP-infused animals, neutrophils infiltrate into the
FPC at 1 day after SE (C1). Two-to-three days after SE, the number of neutrophils is increased in the FPC (C2-3). Four days after SE, the number
of neutrophils is markedly reduced (C4). In PC, massive neutrophil infiltration is detected in the layer Ill/IV of the saline-infused animals at 1-2
days after SE (A5). BzATP or OxATP infusion did not affect neutrophil infiltration in the PC (A5, BS and C5). Bar = 50 um.
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Figure 3 Quantitative analysis of neutrophil infiltration in FPC (A) and PC (B) following SE. Significant differences from saline-infused
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Thereafter, the number of MCP-1-immunoreactive micro-
glia showed a reduction at 3 days after SE (Figures 7A3
and 7E). In BZATP-infused animals, MCP-1 immunoreac-
tivity was observed at 12 hr after SE (Figure 7B1). Further-
more, the number of MCP-1-immunoreactive microglia
had increased at 1-2 days after SE (Figures 7B2-3 and 7E).
In OxATP-infused animals, changes in MCP-1 expression
were similar to those in saline-infused animals (Figures
7C1-3), while the number of MCP-1-immunoreactive
microglia in this group was smaller (but not significantly)
than that in saline-infused animals (Figure 7E). IL-1Ra
infusion did not affect MCP-1 immunoreactivity after SE
(data not shown).

In saline-infused animals, astrocytes showed MIP-2
immunoreactivity at 1 day after SE (Figures 8A1 and
8D1-3). At 2-3 days after SE, both astrocytes and neurons
showed MIP-2 immunoreactivity, which were colocalized
with CCR2 (receptor for MCP-1) immunoreactivity
(Figures 8A2-3 and 8E1-3). In BZATP infused animals,
MIP-2 immunoreactivity was observed in astrocytes at 12
hr after SE (Figure 8B1). At 1-2 days after SE, both astro-
cytes and neurons showed MIP-2 immunoreactivity
(Figures 8B2-3). In OXATP infused animals, MIP-2 immu-
noreactivity was observed in astrocytes at 1 day after SE
(Figure 8C1). At 2-3 days after SE, both astrocytes and
neurons showed MIP-2 immunoreactivity, while the num-
ber of MIP-2 immunoreactive cells in this group was smal-
ler than that in saline-infused animals (Figures 8C2-3 and
9). IL-1Ra infusion did not affect MIP-2 immunoreactivity
after SE (data not shown). These findings indicate that
P2X7 receptor activation may accelerate up-regulation of
MCP-1 and MIP-2 expression in the FPC, resulting in leu-
kocyte infiltration.

Discussion

SE rapidly increases synthesis and release of cytokines in
various areas of rodent brain [3-7]. Furthermore, blood-
derived leukocyte infiltration appears in brain parench-
yma after SE. Neutrophil infiltration into brain

parenchyma is transiently observed during the acute
phase of SE (4 - 36 hr after SE) disappearing thereafter.
Later, monocytes are found in brain parenchyma, and
persist during epileptogenesis. However, B- and T-lym-
phocytes and NK cells are found strictly associated with
brain microvessels and rarely in brain parenchyma after
SE [46]. In the present study, apparent neuronal loss
was observed in the FPC of saline-infused animals at 2-
4 days after SE, when neutrophil infiltration was
detected. BzZATP infusion exacerbated neuronal death
accompanied by acceleration of neutrophil infiltration,
while OxATP infusion attenuated them. Leukocyte infil-
tration induces generation of reactive oxygen species
(ROS), release of proteolytic enzymes, and synthesis of
proinflammatory cytokines [21,47], which result in cell
injury by peroxidation of polyunsaturated lipids, DNA
damage, inhibition of glycolysis, oxidative phosphoryla-
tion by NADPH oxidase and myeloperoxidase, depletion
of intracellular ATP and alterations of ATP-dependent
ion pumps [48-52]. Therefore, our findings suggest that
P2X7 receptor-mediated leukocyte infiltration (particu-
larly neutrophil infiltration) may be a crucial factor in
neuronal damage in the FPC following SE.

MCP-1 is primarily credited with recruitment of
macrophage populations to sites of expression, but is
also capable of acting as a T-cell and dendritic cell che-
motactic stimulus [53,54]. In contrast, MIP-2 is required
for efficient neutrophil or lymphocyte recruitment to
brain parenchyma [55]. In the present study, MCP-1
immunoreactivity was detected in microglia, and CCR2
immunoreactivity was colocalized with MIP-2 immunor-
eactivity in astrocytes and neurons after SE. Further-
more, these SE-induced changes in chemokine
expression were correlated with P2X7 receptor-mediated
leukocyte infiltration and neuronal damage in the FPC.
Indeed, recent studies have reported that MCP-1
recruits neutrophils into brain parenchyma via an
unknown pathway [56,57] and that inhibition of P2X7
receptor reduces neutrophil infiltration [58]. Taken
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Figure 4 CD 68-positive monocyte infiltration following SE. (A) Saline-infused animal, (B) BzATP-infused animal, (C) OxATP-infused animal. In
saline-infused animals, a few round-shaped monocytes are observed near blood vessels in the FPC at 2 days after SE (A1). Three-to-four days
after SE, the number of CD68-positive cells is significantly increased in the FPC, and the shape is changed to a ramified form (A2-3). In BzATP-
infused animals, monocytes are observed in the FPC at 1 day after SE (B1). Two-to-three days after SE, the number of CDé8-positive cells is
significantly increased, and their morphologies are changed to a ramified form (B2-3). In OxATP-infused animals, monocytes are observed in the
FPC at 2 days after SE (C1). Three-to-four days after SE, the shape of the CD68-positive cells is changed to ramified forms, while the number of
CD68-positive monocytes in this group is smaller than that in saline-infused animals (C2-3). Bar = 25 um. (D-E) Quantitative analysis of monocyte
infiltration in FPC (D) and PC (E) following SE. Significant differences from saline-infused animal, *P < 0.05 and **P < 0.01.
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Figure 5 IL-1P expression following SE. (A) Saline-infused animal, (B) BzATP-infused animal, (C) OxATP-infused animal. In saline-infused animals,
IL-1B-immunoreactive cells are detected in the FPC at 1 day after SE (A1-2). In BzATP-infused animals, IL-1B-immunoreactive microglia are
observed at 12 hr after SE (B1-2). In OxATP-infused animals, IL-1B-immunoreactive microglia are observed at 1 days after SE (C1-2). Double
immunofluorescent study shows that IL-1B-immunoreactive cells are Iba-1-positive microglia (D1-3). Bar = 50 (panels A, B and C) and 25 (panels

D) um. (D) Quantitative analysis of IL-1B-immunoreactive cells in FPC following SE. Significant differences from saline-infused animals, *P < 0.05
and **P < 0.01.
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together, our findings indicate that P2X7 receptor may
regulate MCP-1 expression/release in microglia, which
may modulate MIP-2 expression/release in neurons and
astrocytes via CCR2.

Since CD68 is a commonly used marker for peripheral
monocytes and activated microglia [59-61], we cannot
exclude the possibility that the CD68-positive cells with
“ramified” morphologies are activated microglia. In the
present study, however, spheroid CD68-positive cells are
likely peripherally-derived monocytes in the early time
windows. Therefore, it is obvious that P2X7 receptor
activation may accelerate monocyte infiltration in the
brain parenchyma following SE.

Recently, Peng et al. [58] reported that systemic
administration of Brilliant blue G (BBG), a selective
P2X7 receptor antagonist, resulted in improved motor
recovery without evident toxicity. In addition, BBG
directly reduced local activation of astrocytes and micro-
glia, as well as neutrophil infiltration. They have sug-
gested that attenuation of neutrophil invasion by BBG
may be due to blockade of the P2X7 receptor in neutro-
phils themselves. Similar to this, the present study
shows that OXxATP infusion attenuates neuronal damage
and leukocyte infiltration following SE. However, con-
sidering the inability of OXATP to cross the blood-brain
barrier, it is unlikely that OxATP infusion could directly
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Figure 7 MCP-1 expression following SE. (A) Saline-infused animal, (B) BzATP-infused animal, (C) OxATP-infused animal. In saline-infused
animals, MCP-1 immunoreactive cells are detected in the FPC at 1 day after SE (A1). The number of MCP-1-immunoreactive microglia is
increased at 2 days after SE compared to that observed 1 day after SE (A2). The number of MCP-1-immunoreactive microglia is reduced at 3
days after SE (A3). In BzATP-infused animals, MCP-1 immunoreactivity is observed at 12 hr after SE (B1). The number of MCP-1 immunoreactive
microglia is increased at 1-2 days after SE (B2-3). In OxATP-infused animals, changes in MCP-1 expression are similar to those in saline-infused
animals (C1-3). Double immunofluorescent study shows that MCP-1 immunoreactive cells are Iba-1-positive microglia (D1-3). Bars = 50 pm
(panels A, B and C) and 25 um (panel D). (E) Quantitative analysis of MCP-T-immunoreactive cells in FPC following SE. Significant differences
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Figure 8 MIP-2 expression following SE. (A) Saline-infused animal, (B) BzATP-infused animal, (C) OxATP-infused animal. In saline-infused
animals, astrocytes show MIP-2 immunoreactivity at 1 day after SE (A1 and D1-3). At 2-3 days after SE, both astrocytes and neurons show MIP-2
immunoreactivity (A2-3). In BzATP-infused animals, MIP-2 immunoreactivity is observed in astrocytes at 12 hr after SE (B1). At 1-2 days after SE,
both astrocytes and neurons show MIP-2 immunoreactivity (B2-3). In OxATP-infused animals, MIP-2 immunoreactivity is observed in astrocytes at
1 day after SE (C1). At 2-3 days after SE, both astrocytes and neurons show MIP-2 immunoreactivity (C2-3). Double immunofluorescent study
shows that astrocytes contain both MIP-2 (D1-3) and CCR2 (E1-3) immunoreactivities. Bars = 50 um (panels A, B and C) and 25 um (panels D
and E) um.
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Figure 9 Quantitative analyses of MIP-2 immunoreactivity in astroglial cells (A) and neurons (B) following SE. Significant differences
from saline-infused animal, *P < 0.05 and **P < 0.01.

affect neutrophils in blood vessels. Therefore, P2X7
receptor-mediated chemokine release/expression may
play a role in leukocyte infiltration rather than the direct
effect of BZATP or OXxATP on leukocytes.

IL-1PB plays a role in development of neuronal cell
death after traumatic, ischemic, excitotoxic, and seizure-
induced brain injury [62-64]. IL-1B alone is capable of
overriding the intrinsic resistance of the brain to leuko-
cyte infiltration, resulting in acute cellular recruitment
to brain parenchyma [65-69]. In the present study,
BzATP infusion increased IL-1f expression induced by
SE, compared to saline infusion. Since the P2X7 recep-
tor modulates IL-1pB release from glial cells [70-72], it is
likely that inhibition of IL-1B by IL-1Ra infusion would
reduce SE-induced neuronal death or neutrophil infiltra-
tion. Indeed, sustained IL-1f expression is able to drive
localized, persistent leukocyte infiltration of brain par-
enchyma [56]. In the present study, unexpectedly, IL-
1Ra infusion did not affect SE-induced leukocyte infil-
tration, even though IL-1B is a powerful regulator of
chemokines in the rat brain [73]. Furthermore, com-
pared to saline infusion, IL-1Ra infusion was not effec-
tive against SE-induced neuronal damage. These
findings indicate that SE-induced leukocyte infiltration
into brain parenchyma may be induced in an IL-1B-
independent manner. However, it cannot be excluded
that the dose of IL-1Ra used was insufficient to prevent
SE-induced neuronal death and leukocyte infiltration.
Because of the anti-convulsive effect of IL-1Ra [74], we
applied the maximal dose of IL-1Ra that did not affect
the PILO-induced seizure threshold in the present
study. IL-1f inhibits astroglial glutamate re-uptake in an
interleukin-1 receptor I- (IL-1RI) dependent manner
[75-77]. Indeed, IL-1RI expression increases in neurons
following SE [78]. Furthermore, IL-1B increases
N-methyl-D-aspartate (NMDA) receptor activity through
IL-1RI-mediated activation of Src kinase family-

mediated tyrosine phosphorylation of NR2A/B, which
results in increased intracellular Ca’** through an
increase of its channel gating properties [74,79]. There-
fore, IL-1P induces neuronal death in an NMDA recep-
tor-dependent manner [7], promoting cross talk
between proinflammatory and excitatory pathways [80].
Indeed, IL-1fB expression is not capable of neurotoxicity
by itself, but serves to lower the threshold for additional
injury [81-84]. With respect to the previous studies
described above, it is likely that below-anti-convulsive
doses of IL-1Ra would be insufficient for prevention of
SE-induced neuronal death and leukocyte infiltration.
Therefore, the neuroprotective effect of IL-1Ra may be
based on an anti-excitotoxic mechanism rather than
anti-inflammatory pathways. Further studies are needed
to elucidate the role of IL-1Ra in SE-induced neuronal
damage and leukocyte infiltration.

In the present study, massive leukocyte infiltration was
detected in the PC. However, BzZATP, OXxATP or IL-1Ra
infusion did not affect leukocyte infiltration in this
region. After SE, severe edema accompanied by neuro-
nal and astroglial damage occurred in the PC [85]. In
our preliminary study (Kim et al., in preparation for
submission), because severe serum-protein extravasation
was observed in layers III/IV and had spread to layer II
at 3 days after SE, neuronal and astroglial damage in the
PC was related to vasogenic edema. Therefore, it is
likely that leukocyte infiltration in the PC may be
related to vasogenic edema.

Conclusions

Our findings suggest that inflammatory responses by
leukocyte infiltration into the brain may be one of the
crucial factors in SE-induced brain damage, and that
P2X7 receptor-mediated MCP-1/MIP-2 regulation may
play an important role in SE-induced leukocyte infiltra-
tion in an IL-1B-independent manner. Therefore, our
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findings suggest that selective regulation of P2X7 recep-
tor functions may provide new therapeutic approaches
to SE or epilepsy.
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