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Abstract 

Clear cell renal cell carcinoma (ccRCC) is the most prevalent type of malignancy in adults. However, the clinical 
significance of tumor suppressor genes (TSG) is largely elusive. Herein, the expression profile TSGs and its 
clinical response in ccRCC were investigated. A total of 603 ccRCC samples from two cohorts (TCGA and 
ICGC) were retrieved in this study. Three molecular subtypes (C1, C2, and C3) were identified based on the 
TSGs expression profile in the TCGA dataset. Through Weighted Gene Correlation Network Analysis 
(WGCNA), six modules associated with three subtypes were identified. Pathway enrichment for the modules 
revealed that crucial pathways including p53 signaling and immune-related pathways were significantly enriched. 
We further focused on the relationship between immune infiltration level and subtypes, and found that subtype 
C1 was associated with higher immune infiltration level, subtype C2 was corresponding with medium immune 
infiltration level, whereas subtype C3 was correlated with lower immune infiltration level. Interestingly, C2 
have a better survival outcome, while C1 and C3 showed a poor prognosis. Considering their survival 
difference, we then performed a differentially expression analysis between C2 and C1&3, and a total of 99 
differentially expressed tumor suppressor genes (DETSGs) were identified. According to these DETSGs, 59 
potential compounds with 28 mechanisms of action (MOA) were predicted using the Connectivity Map (CMap) 
database. Among these compounds, leflunomide, naftopidil, and ribavirin were the most prospective 
compounds for the treatment of ccRCC. In addition, we found that subtype C2 is more sensitive to sorafenib 
and sunitinib drugs, and C2 have more likelihood to be responded to immunotherapy. In summary, the three 
subtypes hinged on the tumor suppressor gene expression for ccRCC might contribute to understanding the 
underlying molecular mechanisms of ccRCC. Also, its potential compounds might offer guidelines for 
developing a novel treatment strategy of ccRCC. 

Key words: clear cell renal cell carcinoma; tumor suppressor genes; molecular subtype; tumor 
microenvironment; compounds; drug sensitivity; immunotherapy 

Introduction 
Renal cell carcinoma (RCC) is listed among the 

10 most common types of tumors in adults, 
responsible for 2%-3% of adult malignancies [1]. Clear 
cell renal cell carcinoma (ccRCC) forms the vast 
majority of RCC accounting for 70% of RCC cases. The 
remaining include papillary (10-15%), and 
chromophobe (5%) carcinomas [2, 3]. Using 
abdominal imaging, patients with ccRCC can be 
detected [4]. However, the treatment for ccRCC 
through radiation and chemotherapy is insensitive 
and the survival rate of 5-years in advanced stage is < 

10%, particularly in metastatic ccRCC cases [5]. In 
metastatic ccRCC, immunotherapy with interleukin-2 
(IL-2) and interferon (IFN) are conventional 
treatments despite exhibiting many side effects and 
limited efficacy [6]. In 2005 and 2006, sorafenib and 
sunitinib were approved as targeted therapy for 
metastatic ccRCC, and so far, they have achieved 
some progress [7, 8]. However, they are limited for 
target therapies and prone to drug resistance [9]. 

Recently, with the advent of next-generation 
sequencing and microarray technologies, several 
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tumor suppressor genes (TSGs) were identified via 
the bioinformatics analysis and series of experiments. 
Tumor suppressor genes maintain genome integrity, 
regulates cell proliferation, differentiation, and 
apoptosis [10]. Numerous studies reported that a 
combination of TSGs and conventional therapies 
achieved significant progress, particularly the p53 
gene, which yielded synergistic therapeutic benefits 
[11, 12]. Nonetheless, given the large number of TSGs, 
the subject on relationship between TSGs and cancers 
is largely understudied. 

In this work, we aimed to comprehensively 
investigate the association between TSG phenotype 
and ccRCC. The consensus clustering algorithm was 
applied to categorized 512 patients into three 
molecular subtypes and further validated in the ICGC 
cohort. Through WGCNA analysis, six modules were 
identified then their potential roles were evaluated via 
GO and KEGG enrichment analysis. Additionally, the 
relationship between tumor microenvironment and 
subtypes was investigated, and we found that 
subtype C1 corresponded to high immune infiltration 
level, subtype C2 was associated with mid immune 
infiltration level, whereas subtype C3 related to lower 
immune infiltration level. Moreover, potential 
compounds between subtype C2 and subtype C1&3 
were predicted using the CMap database, and three 
compounds including ribavirin, leflunomide, and 
naftopidil were considered as promising drugs to the 
treatment of ccRCC. These findings might help in the 
identification of novel markers to subdivide ccRCC 
patients more precisely and enhance the treatment of 
ccRCC patients. 

Materials & Methods 
Extraction of tumor suppressor genes and 
ccRCC samples 

1217 TSGs were downloaded from the TSGene 
database (https://bioinfo.uth.edu/TSGene/) [13]. 
The RNA data, clinical data, and TSGs in ccRCC were 
retrospectively collected from the TCGA database 
(https://cancergenome.nih.gov/) [14]. The 
expression of TSGs with 512 ccRCC samples were 
screened via the following criteria: (a) patient with 
complete clinical information, (b) patients with 
survival time need > 30 days, and (c) genes with 
expression levels >0 in each ccRCC sample. In 
addition, a total of 91 samples with expression data of 
TSGs in the validation dataset were collected. 

Identification of ccRCC subtypes based on the 
expression of tumor suppressor genes 

The “ConsensusClusterPlus” package was used 
to identify the potential molecular subtypes of ccRCC 

based on the expression of TSGs in the TCGA dataset 
and ICGC dataset, respectively [15]. The similarity 
distance between samples was calculated according to 
the Euclidean distance and the k-means method was 
used for clustering [16]. The clustering was conducted 
using 1000 iterations, each iteration containing 80% 
samples, and the optimal cluster number was selected 
based on cumulative distribution function (CDF) 
curves of the consensus score [17]. The top 100 
variance of TSGs were selected to perform PCA 
analysis in the TCGA dataset and ICGC dataset 
respectively. In addition, the probability of clinical 
response to immunotherapy and immune checkpoint 
blockade was predicted by the Tumor Immune 
Dysfunction and Exclusion (TIDE, http://tide.dfci. 
harvard.edu/) analysis and subclass mapping 
(SubMap, https://cloud.genepattern.org/gp/pages/ 
index.jsf) analysis. To further explore the genomic 
alteration among the three subtype, we applied to the 
“maftools” R package to investigate the SNP density 
of the subtypes (https://www.bioconductor.org/ 
packages/release/bioc/html/maftools.html). The 
molecular function of the subtype was further 
identified using the “GSVA” R package (https:// 
bioconductor.org/packages/release/bioc/html/GSV
A.html). 

Gene co-expression network analysis 
Using the “WGCNA” R package, the common 

pathways associated with gene modules were 
identified [18]. The network construction and module 
determination were performed using an unsigned 
type of topological overlap matrix (TOM) where the 
soft power of β value was 3, the selected minimal 
module size was 30, and the branch merge cutoff 
height was 0.25. GO annotation and KEGG 
enrichment were conducted through R package 
“clusterProfiler” and the significant pathway or 
function was selected with the criterion: adjusted p 
value <0.05 [19]. 

Exploring the association between subtype and 
immune infiltration level 

In our previous work, we uncovered that the 
pathways in the gene module were enriched in 
immune-related crosstalk. And here, we first 
quantified the enrichment score of 29 immune 
signature in each patient by the single-sample gene- 
set enrichment analysis (ssGSEA) algorithm. Then, 
ESTIMATE algorithm was adopted to approximate 
the immune cell infiltration levels (immune score), 
tumor purity, and stromal content (stromal score) of 
ccRCC sample (https://bioinformatics.mdanderson. 
org/estimate/rpackage.html). The Immune 
infiltration level (immune score, tumor purity, and 
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stromal score) of distinct subtypes was compared 
through the Kruskal-Wallis test. In addition, we also 
investigate the expression level of the immune check 
point in the three subtypes. 

Identification of candidate small molecules 
The Connectivity Map (CMap) database 

(http://www.broadinstitute.org) was used to predict 
the potential compounds that might reverse or induce 
biological states encoded in specific gene expression 
markers [20]. To explore the potential activity of small 
molecules from CMAP database in different subtypes, 
the up-regulated and down-regulated differentially 
expressed TSGs (DETSGs) were screened between 
subtype C2 and subtype C1&3. The up-regulated 
DEGs and down-regulated DEGs were uploaded to 
the CMAP database for gene set enrichment 
respectively. Finally, small molecules with enriched 
values were ranked from -1 to 1 by calculation. The 
positive connectivity value (close to +1) suggesting 
that corresponding small molecules induce subtype 
gene expression, while negative connectivity value 
(close to -1) implied that corresponding small 
molecules could reverse subtype gene expression. 

Prediction of chemotherapeutic response 
Genomics of Drug Sensitivity in Cancer (GDSC, 

https://www.cancerrxgene.org/) database was used 
to predict the chemotherapeutic response for each 
ccRCC samples. The two drugs including Sorafenib 
and Sunitinib that have been approved for the 
treatment of RCC cases were selected. Through ridge 
regression analysis in pRRophetic R package, the 
half-maximal inhibitory concentration (IC50) was 
calculated and the prediction accuracy was 
determined by 10-fold cross-validation according to 
the GDSC training set. 

Statistical analysis 
The relationship between clinical traits and 

subtype was analyzed using chi-square test or Fisher’s 
exact test. Multiple testing was corrected by 
Benjamini-Hochberg’s FDR. Kaplan-Meier curves and 
log-rank tests were used to evaluate the overall 
survival (OS) rate of the three hub genes. Wilcox test 
was used to compare the expression value of the hub 
genes between normal and tumor tissue. 

Results 
Identification and validation of ccRCC 
subtypes based on the tumor suppressor genes 

First, the gene expression profile of TSGs was 
used to explore the potential ccRCC subtypes from 
the TCGA cohort. All the ccRCC samples were 
separated into k (k = 2, 3, 4, 5, 6, 7, 8, 9) clusters using 

“ConsensusClusterPlus” R package. The optimal k 
value was selected 3 based on the Cumulative 
Distribution Function (CDF) curves of the consensus 
score (Figure 1A). Besides, sigClust analysis showed 
that the consensus cluster (k =3) was significant in all 
pairwise comparisons (Figure 1B). Therefore, the 512 
ccRCC samples extracted from the TCGA cohort were 
further subdivided into three subtypes underlying the 
TSGs expression profile (Figure 1C). The top 100 
variance of TSGs were further selected for 
two-dimensional PCA analysis and top two principal 
components (PC1 and PC2) were extracted and 
visualized on a scatter plot. As showed in Figure 1D, 
there are a striking differences in the three clusters. In 
addition, the results of Kaplan-Meier curve showed 
that the three subtypes have a significant survival 
divergence (p < 0.01) (Figure 1E). To further evaluate 
and validate the stability of the subtypes, an external 
validation dataset with 91 ccRCC samples was 
retrieved from the International Cancer Genome 
Consortium (ICGC) database. By performing the 
consensus clustering analysis, we further selected k = 
3 as the optimal cluster number on the basis of 
sigClust result and CDF curves (Figure S1). The PCA 
result suggested that subtype designations were 
largely consistent with two-dimensional PCA 
distribution patterns. However, due to the small 
sample size of the validation dataset, the overall 
survival rate in the three subtypes was not significant 
(p > 0.05). To further investigate the clinical 
significance of clinical traits i.e., age, gender, stage, 
race, radiation, pharmaceutical, grade, smoking, 
tumor (T), node (N), metastasis (M), and staging in the 
three subtypes, chi-SquareTest or Fisher test was 
performed for each clinical characteristic in the three 
subtypes. As shown in Table 1, the clinical traits i.e., 
race, stage, grade, gender, node, and tumor staging 
showed a significant divergence in subtypes ( p < 
0.05), whereas age, radiation, pharmaceutical, 
smoking have no distinct difference (p >0.05). 
Moreover, we also discovered that subtype C1 mainly 
enriched in grade 3 and grade 4 patients, as well as 
stage III and stage IV patients, comparing with 
subtype C2 and C3, while the expression level of TSGs 
were relatively low in subtype C3 (Figure 2). Similar 
result was also identified in the validation dataset 
(Figure S2). In addition, we also observed that the 
subtype C2 account for the most SNP alteration, and 
C1 ranked second, while C3 have the relative few SNP 
alteration (Figure S3). Considering subtype C2 have a 
better survival outcome compare to subtype C1 and 
C3, we further performed a GSVA analysis between 
subtype C2 and subtype C1&3 to investigate the 
potential function of the subtype. We discovered that 
subtype C2 was associated with the metabolism- 
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related pathway, while subtype C1&3 was related to 
p53 signaling pathway, ECM receptor interaction 
(Figure S4). 

Gene co-expression network construction and 
module annotation 

Gene co-expression network was constructed to 
identify biologically significant gene modules and 
understand the association between genes and ccRCC 
subtypes. After eliminating outlier samples and 
excluding low expression level TSGs, a total of 847 
TSGs were subjected to cluster analysis and placed in 
a module (Figure S5). The value of β was selected to 3 
(scale-free R2 = 0.90) as the soft threshold to construct 
a scale-free network (Figure 3A-B). The expression 
matrix was further converted into adjacency matrix 
and topological matrix (TOM). According to the TOM, 
the genes were clustered using the average linkage 
hierarchical clustering method in accordance with the 
hybrid dynamic cut tree, the minimum gene size of 
module was selected 30. The eigengenes were 
calculated for each module using a dynamic shear 
method and the closer modules were merged into a 
new module by setting height =0.25, deepSplit = 2, 
and minModuleSize = 30. As a result, 7 modules with 

TSGs were identified using WGCNA methods (Figure 
3C). Specifically, the gray module containing genes 
were not assigned to other modules. Then, the 
correlation coefficient between modules and three 
subtypes was calculated. As showed in the Figure 3D, 
the brown module was most positively correlated 
with subtype C3 (cor =0.64, p = 1e-60), while the red 
module was most negatively correlated with C2 (cor = 
-0.42, p =4e-23). 

For screening key genes associated with subtype, 
a threshold was set at: cor. MM > 0.8 and cor. GS > 0.4. 
Finally, we screened three genes (NEDD4L, PACRG, 
and THRB) from the modules (Figure 3E). Further 
survival analysis result revealed that the three 
protective genes have a significant survival 
divergence after being grouped based on their 
expression levels (p < 0.01) (Figure 4A-C). Moreover, 
the expression level of the three key genes showed a 
significant difference in the three subtypes. As 
showed in Figure 4D-F, the expression level of the 
three genes presented an upward trend in three 
subtypes, whereby the expression level was highest in 
the C3, and lowest in the C1. 

 

 
Figure 1. Identification of tumor suppressor gene-related subtypes of ccRCC in TCGA dataset. (A) The cumulative distribution function (CDF) curves, which can described the 
probability distribution of a real random variable, and established using consensus clustering approach. CDF curves of consensus scores was calculated according to the different 
subtype number (k = 2, 3, 4, 5, 6, 7, 8, 9). (B) The CDF Delta area curve of ccRCC samples when k=3. (C) The heatmap of consensus matrix for three subtypes obtained by 
estimating of CDF curves. (D) Principal component analysis (PCA) of gene expression profile of the top 100 variance genes. Each sample is represented with a single point, with 
different color for each of the three subtypes. (E) Survival analysis for the three subtypes. 
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Figure 2. Heatmap and clinical features of the three subtypes in TCGA dataset. 

 
To investigate the biological functions of the six 

modules (blue, brown, green, red, turquoise, and 
green), KEGG and GO enrichment analysis were 
performed. Results from GO analysis revealed that 
the blue module was mainly enriched in 
DNA-binding transcription activator activity, RNA 
polymerase II-specific, cell adhesion molecular 
binding, the brown module was characterized by the 
cell adhesion molecular binding, cadherin binding 
function, the green module was primarily enriched in 
DNA-binding transcription activator activity, RNA 
polymerase II-specific, Lys63-specific deubiquitinase 
activity, the red module was mostly enriched in 
Wnt-protein binding and insulin-like growth factor 
binding, the turquoise module was mainly enriched 
in p53 binding, histone binding, ubiquitin-protein 
ligase activity and ubiquitin-like protein ligase 
activity, while the transcription coactivator activity, 
histone binding and p53 binding were mainly 
enriched in the yellow module (Figure 5A). Again, 

results from KEGG analysis showed that the blue 
module was enriched in MAPK signaling pathway, 
Axon guidance, transcriptional misregulation in 
cancer and TGF-beta signaling pathway, the brown 
module mainly enriched in transcriptional 
misregulation in cancer and citrate cycle (TCA cycle), 
the green module mainly enriched in transcriptional 
misregulation in cancer, NF-kappa B signaling 
pathway, B cell receptor signaling pathway, PD-L1 
expression and PD-1 checkpoint pathway in cancer, 
Th1, Th2 cell differentiation, Th17 cell differentiation, 
and C-type lectin receptor signaling pathway, the red 
module was mainly enriched in wnt signaling 
pathway, cell cycle, and p53 signaling pathway, the 
turquoise module was majorly enriched in the cell 
cycle, p53 signaling pathway, hippo signaling 
pathway, FoxO signaling pathway, apoptosis, and 
ubiquitin-mediated proteolysis pathway, and the 
yellow module mainly enriched in p53 signaling 
pathway (Figure 5B). 
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Figure 3. Weighted gene co-expression network of tumor suppressor genes in ccRCC. Analysis of network topology for various soft threshold powers (A, B). (C) Identification 
of a co-expression module in ccRCC. The branches of the cluster dendrogram correspond to the 7 different modules. Each piece of the leaves on the cluster dendrogram 
corresponds to a gene. (D) Correlation between the gene module and molecular subtypes. The correlation coefficient was calculated and displayed in each cell between module 
and subtypes. The corresponding P-value is also annotated. (E) Scatter plot of module eigengenes in the brown module. 

 
Figure 4. Comprehensive analyses of the three hub genes. (A-C) Kaplan-Meier curves show that the higher expression of hub genes induced better survival outcomes. (D-F) 
Hub gene expression was compared between three subtypes. 
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Figure 5. Function enrichment analyses for the gene modules. (A) GO annotation enrichment analyses for the gene modules. (B) KEGG pathway enrichment analysis for the 
gene modules. 

 

Table 1. Clinical statistics of the 512 ccRCC patients among the 
three subtypes in TCGA dataset. The p value was calculated by 
performing chi-square test or fisher test and further corrected by 
Bonferroni test 

Clinical parameters Molecular subtypes (n, %) p value FDR 
C1 C2 C3   

Age      
<60 99 121 22 0.3902838 0.4878548 
≥60 116 138 16   
T stage      
T1-2 119 180 29 0.0015863 0.0044308 
 T3-4 96 79 9  
Race      
White 194 234 25 0.0002154 0.0010770 
Asian 4 2 2   
Black or African American 17 23 11   
Stage      
Stage I 87 147 22 0.0017723 0.0044308 
Stage II 24 26 6   
Stage III 62 54 2   
Stage IV 42 32 8   
Radiation      
Yes 2 3 0 0.7913667 0.7913667 
NO 213 256 38   
Pharmaceutical      
Yes 32 34 7 0.644558 0.7161756 
NO 183 225 31   
Grade      
G1 2 8 1 < 0.0001 < 0.0001 
G2 77 129 13   
G3 81 108 14   
G4 54 14 5   
GX 1 0 5   
Smoking      
1-year 106 131 28 0.1266751 0.2111252 
2-year 13 9 3   
3-year 80 97 6   
4-year 11 14 1   
5-year 5 8 0   
Gender      
FEMALE 51 112 13 4.90E-05 0.0004796 
MALE 164 147 25   

Clinical parameters Molecular subtypes (n, %) p value FDR 
C1 C2 C3   

N      
N0 91 115 22 0.03698 0.0739600 
N1 11 3 2   
NX 113 141 14   
M      
M0 163 215 28 0.1552 0.2217143 
M1 41 30 7   
MX 11 14 3   

 
 
Subsequently, the relationship network of the 

enriched pathways in these modules was further 
visualized. As shown in Figure S6, 92 pathways were 
enriched in these modules. The red and turquoise 
module has the most common pathways and few 
interactions of the pathways were enriched in other 
modules, implying that the red and turquoise 
modules might have similar functions and molecular 
mechanism. 

Exploring the relationship between subtype 
and immune infiltration 

Since we have demonstrated that the TSGs in the 
module involved in the immune crosstalk and 
cancer-related pathways, a comparison between the 
immune infiltration in the three subtypes was further 
conducted. First, 29 immune-associated gene sets 
including diverse immune cell types, functions, and 
pathways were analyzed. Then, the ssGSEA score was 
utilized to quantify the activity or enrichment levels of 
immune cells, functions, or pathways in the ccRCC 
samples, and assigned the ssGSEA score to the three 
subtypes. Interestingly, the three subtypes separated 
the immune infiltration level, whereby subtype C1 
corresponded to high immune infiltration level, 



 Journal of Cancer 2021, Vol. 12 

 
http://www.jcancer.org 

2366 

subtype C2 corresponded to moderate immune 
infiltration level, while subtype C3 corresponded to 
low immune infiltration level (Figure 6). Thereafter, 
the ESTIMATE algorithm was used to calculate the 
immune score, stromal score, and tumor purity for 
each ccRCC sample. As shown in Figure 7A and B, the 
immune score and stromal score was significantly 
higher in the subtype C1, while showed a significantly 
lower level in the subtype C3 (Kruskal-Wallis test, p< 
0.01). In addition, a comparison of the tumor purity in 
the three subtypes presented an opposite trends i.e, 
the tumor purity was decreasing from subtype C1 to 
subtype C3 (Kruskal-Wallis test, p< 0.001) (Figure 7C). 
In summary, these results imply that subtype C1 
holds the highest number of immune cells and 
stromal cells, whereas subtype C3 carries the highest 
tumor cells. Moreover, we also compared the 
expression level of several known immune check 
point among the three subtypes. Interestingly, the 
overall expression level of immune checkpoint were 

highly expressed in the C1, while showed a relatively 
low level in C2 and C3 (Figure S7). 

Connectivity map analysis identifies potential 
compounds/inhibitors capable of molecular 
subtypes 

In our previous studies, we reported that C3 and 
C1 were corresponded to poor survival outcomes, 
while C2 corresponded to better survival outcomes. 
Therefore, we try to identify the potential compounds 
or inhibitors for the ccRCC subtypes patients (C2 VS 
C1&3). First, differential expression analysis between 
C2 group and other groups (C1&3) was performed 
using the “limma” R package. The results including 
55 up-regulated and 44 down-regulated differentially 
expressed TSGs (DETSGs) with the cutoff 
|logFC|>0.58 and FDR < 0.05, respectively (Figure 
S8). Then, the up-regulated genes and 
down-regulated genes were uploaded to the CMAP 
database. As a result, 59 candidate compounds were 

 

 
Figure 6. Immune profiles of the three ccRCC subtypes in the TCGA dataset. 

 
Figure 7. Vioplot for the comparisons of three molecular subtypes in immune score (A), tumor purity (B) and stromal score (C). 
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screened with an absolutely enrichment score of ≥ 0.50 
and a p-value < 0.05 (Table S1). Among them, 
leflunomide, naftopidil, and ribavirin were predicted 
as promising compounds for the treatment of ccRCC. 
Further, through CMap mode-of-action (MoA) 
analysis, a total of 28 compounds with 24 mechanisms 
of action were enriched (Figure 8). 

Immuno/chemotherapies for three molecular 
subtypes 

As earlier mentioned, the sorafenib and sunitinib 
drugs were approved to be used in the treatment of 
RCC in 2005 and 2006, respectively. Here, we estimate 
the sensitivity of the two chemo drugs in three 
molecular subtypes. The ridge regression was used to 
train the prediction model on the GDSC cell line 
dataset and the prediction accuracy was calculated via 
10-fold cross-validation. According to the prediction 
model, the half-maximal inhibitory concentration 
(IC50) value for each ccRCC sample in the TCGA 
dataset was calculated. It was found that subtypes C2 

and C3 are more sensitive to sorafenib and sunitinib 
drugs compared to subtype C1, meaning that 
subtypes C2 and C3 benefit from chemo drug 
treatment (Figure 9). Moreover, we probed the 
likelihood of immunotherapy response by subtypes, 
and the result revealed that subtype C2 (90/259 = 
0.347) and C3 (25/38 = 0.658) are likely to respond to 
immunotherapy compared to C1 (34/215 = 0.149) 
(Fisher’s Exact Test P-value = 1.424e-11). Notably, due 
to the small sample size of subtype C3, the accuracy of 
these findings needs to be further validated. 

Discussion 
Previous studies are mainly based on the 

immune genomic profiling to reveal ccRCC molecular 
subtypes, and no studies using the tumor suppressor 
gene expression to explore the classification of ccRCC 
[21]. Therefore, to fill this knowledge gap, we 
narrowed on identifying the potential molecular 
subtypes of the tumor suppressor gene based on the 
genomic expression profile. Our findings 

 

 
Figure 8. The heat map shows each compound of the shared action mechanism (row) in CMap, sorted in descending order of the shared action mechanism. 
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demonstrated that ccRCC can be categorized into 
three stable molecular subtypes based on the TSGs 
i.e., C1, C2 and C3. Moreover, using WGCNA 
analysis, a total of six significant modules were 
identified. Results from GO and KEGG enrichment 
analysis showed that the green module which 
positively associated with C1 and negatively 
associated with C2 and C3, was enriched in immune- 
related pathways, such as B cell receptor signaling 
pathway, Th1, and Th2 cell differentiation and Th17 
cell differentiation. In addition, cancer-related (the 
p53 signaling), cell cycle, Hippo signaling, FoxO 
signaling and Wnt signaling pathways were enriched 
in other modules. These results suggesting that the 
genes of modules associated with distinct subtypes 
influence the development of ccRCC. 

The tumor microenvironment (TME), which 
consists of malignant tumor cells, a variety of 
infiltrating immune cells, fibroblasts, and numerous 
chemokines, is a complex biological process [22]. In 
the TME, immune response regulates tumor growth, 
invasion, and metastasis, hence, it is an alternative 
therapeutic target other than radiation and 
chemotherapy [23, 24]. Our previous findings 
demonstrated that the immune-related pathways 
were enriched in the subtypes. Therefore, we further 
investigate the relationship between subtypes and 
immune infiltration levels. Surprisingly, subtype C1 
was found to exhibit an enhanced immunity whereas 
subtype C3 harbored limited immunity in the TME of 
ccRCC. Moreover, the correlation between subtype 
and immune/stromal score were analyzed and 
discovered an increasing trend from C3 to C1 in the 
immune score and stromal score. Importantly, the 
subtype survival result showed that C3 and C1 

corresponded to a poor survival outcome, while C2 
corresponded to a better survival outcome implying 
that high levels of infiltrating immune cells contribute 
to the poor outcomes in ccRCC. 

Conventionally, depending on the stage and site, 
treatment of ccRCC involved surgery, radiation, and 
chemotherapy. Whilst acknowledging the steady 
enhancement of treatment methods, the curative 
effect is limited, especially in recurrent and metastasis 
of ccRCC. This calls for further research to unearth the 
potentiality of target compounds in ccRCC treatment. 
To identify potential compounds for the treatment of 
ccRCC, 99 DETSGs (55 up-regulated and 44 
down-regulated) were uploaded to the CMAP 
database, and 59 compounds were obtained. Among 
the 59 compounds, a few have been confirmed to be 
associated with the treatment of RCC. The 
leflunomide (LEF) is an inhibitor of dihydroorotate 
dehydrogenase (DHODH) that broadly used in the 
prevention and treatment of autoimmune disorders 
and allograft rejection, also approved for the 
treatment of rheumatoid arthritis [25]. For instance, a 
study by Chen et al reported that LEF significantly 
minimizes cell proliferation of renal carcinoma cells in 
a manner dependent on concentration [26]. Moreover, 
LEF treatment significantly inhibits the FZD10 
(receptor mediating WNT/β-catenin activation) 
expression level and elsewhere, vivo xenograft 
experiment demonstrated inhibitory effects of LEF on 
tumor growth and Wnt/β-catenin signaling [26]. 
Naftopidil is an adrenergic receptor antagonist which 
possesses growth inhibitory effects on human 
prostate cancer cells [27]. A study by Iwamoto et al 
discovered that naftopidil promotes G1 cell-cycle 
arrest and decreases microvessel density in renal cell 

 

 
Figure 9. Differential putative chemotherapeutic response to subtypes. (A) The box plots of the estimated IC50 for Sorafenib in subtypes. (B) The box plots of the estimated 
IC50 for Sunitinib in subtypes. 
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carcinoma, which might act as a novel anticancer 
agent for RCC [28]. Ribavirin is an antiviral that has 
been reported to hinder proliferation, migration, and 
induced apoptosis in RCC by inhibiting translation 
and activity of eIF4E-regulated protein [29]. Despite 
the potential use and pharmacological features of the 
three compounds being validated, the chemotherapy 
impacts to ccRCC patients need to be investigated 
through clinical trials. 

The clinical application of chemotherapy drugs 
including Sorafenib and Sunitinib that is broadly 
applied in the treatment of metastatic RCC patients. In 
that respect, we further estimated the sensitivity of the 
two drugs using the GDSC database, and imputed 
that subtype C2 is more sensitive to these drugs 
compared to subtype C1. Furthermore, we probed the 
probability of immunotherapy response by the three 
subtypes. Delightfully, we discovered that subtype C2 
is likely to respond to immunotherapy than subtype 
C1. Therefore, these findings might partially give 
reasons why subtype C2 exhibits a better prognosis in 
ccRCC. 

Generally, we uncovered 3 robust subtypes of 
ccRCC based on the expression of TSGs, which might 
offer guidance to clinicians in providing customized 
treatment and better understand the prognostic 
difference of various subtypes. However, several 
limitations are worth noting. First, the sample size of 
each subtype was small in the external validation 
dataset, resulting in an insignificant survival result or 
high false rate. Therefore, a larger sample size dataset 
needs to validate the reliability in future studies. 
Secondly, more experimental evidence is necessary to 
boost the reliability and stability of the subtypes, 
pathways, and expression of the TSG genes. 
Additionally, the sample size of subtype C3 was 
relatively low, which might invalidate the results of 
drug sensitivity and immunotherapy. Hence, we need 
to expand our sample size to verify these findings. 

In conclusion, we discovered and verified three 
subtypes of ccRCC hinged on expression profiles of 
TSGs. These subtypes were associated with distinct 
immune infiltration levels and the outcomes of 
patients. As we know, this is an inaugural study to 
systemically elaborate the relationship between 
molecular subtypes of TSG and ccRCC. Besides, 59 
potential compounds were predicted using the CMAP 
database whereby leflunomide, naftopidil, and 
ribavirin were the most prospective compounds for 
the treatment of ccRCC. We also discovered subtype 
C2 was more sensitive to sorafenib and sunitinib than 
other subtypes. These findings will provide critical 
guidance to clinicians regarding the prognosis of 
different molecular subtypes for developing novel 
strategies for the treatment of ccRCC. 
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