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Delivery of bioactive factors is a very valuable strategy for articular cartilage repair. Nevertheless, the direct supply of such
biomolecules is limited by several factors including rapid degradation, the need for supraphysiological doses, the occurrence of
immune and inflammatory responses, and the possibility of dissemination to nontarget sites that may impair their therapeutic
action and raise undesired effects.Theuse of controlled delivery systems has the potential of overcoming these hurdles by promoting
the temporal and spatial presentation of such factors in a defined target. Hydrogels are promising materials to develop delivery
systems for cartilage repair as they can be easily loaded with bioactive molecules controlling their release only where required.This
review exposes the most recent technologies on the design of hydrogels as controlled delivery platforms of bioactive molecules for
cartilage repair.

1. Introduction

Articular cartilage is an avascular tissue that lines the weight-
bearing surface of joints, formed of organized populations
of chondrocytes surrounded by their extracellular matrix
(ECM) (proteoglycans, type II collagen) and regulated by a
metabolic balance that involves diverse signaling molecules,
growth factors, and cytokines [1]. Due to the lack of access
to blood supply, the cartilage has a limited ability to self-
heal and full repair of cartilage defects is thus a major
clinical challenge that may progress to osteoarthritis [2–
4], a critical disorder affecting a large number of patients.
While various options are available to repair injured cartilage
(marrow-stimulating techniques, transplantation of tissue
or cells as autologous chondrocytes or mesenchymal stem
cells (MSCs), and replacement surgery) [5–8], still none of
them are capable of reproducing the natural functions of the
native, hyaline cartilage, rather leading to the formation of
a poorly mechanically functional fibrocartilaginous surface
(type I collagen). In this sense, large efforts are ongoing to
improve these procedures and considerable progress has been
made in the last few years by identifying novel methods

and factors that may stimulate the reparative activities in sites
of cartilage injury. Nevertheless, regenerating the desirable
phenotypic response from host and/or codelivered progen-
itor cells remains a major issue in orthopaedics.

Tissue engineering and regenerative medicine ap-
proaches based on the design of biomaterials scaffolds reflec-
ting the properties of the native cartilage may provide potent
alternatives to restore a healthy and fully functional articular
cartilage. Thus far, advances in biomedical devices for
controlled drug delivery platforms support a new generation
of products to treat such disorders where a temporal control
over the pharmacokinetic profiles is required [9]. Hence,
the use of biomaterials as controlled delivery systems has
shown to be a powerful strategy to improve the temporal and
spatial presentation of therapeutic agents in a defined target
protecting the cargo from physiological degradation [10, 11].
Most advanced tissue engineering approaches for cartilage
repair involve a combination of scaffolds with optimal
properties, cells relevant to the tissue (chondrocytes, MSCs),
and biological cues (growth factors/cytokines or therapeutic
gene transfer vectors). Hydrogel-based biomaterials are
promising compounds for cartilage repair not only because
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of their high water content like in the native cartilage but
also because they can be typically fabricated under mild
conditions, enabling the encapsulation of labile biomolecules
such as growth factors [12].

The goal of the present work is to provide an overview
of the most recent advances in the preparation of polymeric
hydrogel networks as controlled delivery systems of the most
relevant bioactive molecules involved in articular cartilage
repair.

2. Hydrogels in Cartilage Tissue Engineering

2.1. Features of Hydrogels. Hydrogels are polymeric networks
consisting of cross-linked hydrophilic polymers able to swell
and retain a significant fraction ofwaterwithin their structure
but will not dissolve in water [13]. The ability of hydrogels
to absorb water arises from hydrophilic functional groups
attached to the polymeric backbone while their resistance
to dissolution is a result of the cross-links between network
chains. In general, hydrogels are characterized by good
biocompatibility, high permeability for oxygen and nutrients,
production undermild conditions, and ease of cell encapsula-
tion resulting in a homogeneous distribution [12]. Hydrogels
are particularly attractive biomaterials for cartilage repair as
they reflect the diverse properties of native cartilage and can
be provided in a minimally invasive way to fill defects of any
size [14].

Hydrogels can be classified into physical and chemi-
cal systems based on their cross-linking mechanism [15,
16]. While physical cross-links involve the entanglement of
the chains by hydrogen bonding, hydrophobic interaction,
and crystallite formation, chemical (or covalent) cross-links
are permanent junctions formed by covalent bonds [16].
Regarding their nature, hydrogels can be categorized as
natural, synthetic, or natural/synthetic hybrid biomaterials
as a function of the origin from the polymers used for their
fabrication [15]. Natural hydrogels have high biocompatibility
and inherent biodegradability and are commonly used in
cartilage tissue engineering due to intrinsic prochondrogenic
properties and involvement in native cellular processes [16,
17]. The most widely exploited natural polymers for cartilage
tissue engineering include alginate [18–22], hyaluronic acid
(HA) [23, 24], and fibrin [25–30]. Synthetic hydrogels have
more reproducible physical and chemical properties than
natural polymers but they lack such cell bioactivity properties
[16]. Synthetic hydrogels can be designed to be “smart” or
stimuli-sensitive polymers, having the ability to swell or
deswell in response to small changes in the environment
such as temperature, pH, or ionic strength [31, 32]. Some
of the most extensively used synthetic polymers for carti-
lage repair include polyester copolymers from poly(lactic
acid) as poly(lactide-co-glycolide) (PLGA) [33, 34], self-
assembling peptides [35–37], nonbiodegradable polymers as
polyethylene glycol (PEG) [38–42], thermoreversible poly-
mers such as poly(N-isopropylacrylamide) (pNIPAAm) [43],
and polyethylene oxide (PEO) and polypropylene oxide-
(PPO-) based copolymers (poloxamers or Pluronic� and
poloxamines or Tetronic�) [22, 44].

2.2. Hydrogels as Controlled Delivery Systems for Cartilage
Repair. The use of hydrogels as controlled delivery systems
of bioactive molecules in strategies of cartilage repair aims
at reproducing the complexmicroenvironment that naturally
occurs in articular cartilage in an artificial setting [45]. Con-
trol over delivery of the therapeutic factors can be achieved
by tuning physical properties from the hydrogels such as
pore size and degradation kinetics [16]. Appropriate pore size
and density are key parameters to modulate the release of
the bioactive molecules and to ensure the accommodation
of viable cells for cartilage tissue engineering approaches,
involving the immobilization of cells within the scaffold.
Biodegradability of the hydrogels is also another essential fea-
ture as it should be orchestrated by the new tissue formation
rate.

Controlled delivery systems have been conceived to
modify certain parameters of the biomolecule to be deliv-
ered including its release profile, ability to cross bio-
logical barriers, biodistribution, clearance, and stability
(metabolism) [46]. Hence, the therapeutic efficiency of
the bioactive molecule will strongly depend on the suc-
cess rate of the active substances to reach the target
site. While the easiest way to achieve cartilage repair is
probably based on the direct intra-articular injection of a
therapeutic composition, the frequency and (supraphysio-
logical) levels of the therapeutic dose required, plus the
possible diffusion of the treatment to nontarget sites and
potential neutralization by host inflammatory or immune
responses, often hinder the overall efficacy of the approach
[11, 47].

Another key parameter when designing a hydrogel-
based controlled delivery system for cartilage repair is the
mechanism of loading of the bioactive substance into the
hydrogel network, having a strong influence on its release
profile and subsequently on its therapeutic action. Incor-
poration of bioactive substances within hydrogel networks
can be performed by physical encapsulation, physical or
chemical immobilization of the biomolecules to the poly-
meric network, and electrostatic interaction [45]. Physical
encapsulation is a mild approach to load a molecule into
the polymeric network preventing its denaturalization [48].
By this method, the release profile of the bioactive factor
is mainly controlled by diffusion of the molecule through
the pores of the hydrogel network but often results in a
short-term release. Chemical or physical immobilization of
biomolecules in a hydrogel network involves a release profile
controlled by polymer degradation, linker, or by dissociation
from the gel matrix. Even though a long-term release profile
of the therapeutic molecule is usually achieved with this
method, the harsh conditions involved here to immobilize
the molecule within the hydrogel network can produce its
denaturalization. Thus far, strong chemical bonds can lead
to an incomplete release of the molecule from the hydrogel
[45, 49].

An overview of the most relevant strategies used for the
fabrication of hydrogels for controlled release of bioactive
substances for cartilage repair is presented in the following
section (Figure 1).
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Figure 1: Overview of the main strategies used to design hydrogel-based delivery systems for cartilage repair. Chondroreparative factors
(growth factors, nonviral gene transfer vectors including naked DNA or DNA complexed in lipo/polyplexes, and viral gene transfer vectors)
may be encapsulated or immobilized into hydrogel networks by exploiting different properties from the biomolecule itself, as the affinity for
heparin from growth factors. Delivery systems can be endowed with relevant populations for cartilage repair such asMSCs and chondrocytes
or directly implanted as cell-free constructs into the cartilage defects providing a sustained release profile of the therapeutic factor.

3. Controlled Delivery of Bioactive Factors
from Hydrogels for Cartilage Repair

Hydrogel-based delivery systems have been used for the
controlled release of bioactive factors, having a pivotal role in
cartilage regeneration processes such as growth factors [12]
and gene transfer vectors [47].

3.1. Growth Factors. Growth factors are polypeptides
involved in the cellular communication system, capable of
transmitting signals that modulate cellular activity by either
stimulating or inhibiting cellular proliferation, migration,
differentiation, and/or gene expression [50, 51]. Growth
factors have a pleiotropic nature; that is, the same growth
factor may act on different cell types inducing similar or
different effects. Growth factors are usually produced by
the cells as inactive or partially active precursors. They can
be activated upon proteolytic cleavage or by binding to
the ECM [50, 51]. Hence, growth factors must be delivered

into the target place to be active as their rapid inactivation
in physiological conditions (half-life in range of minutes)
compromises their capacity to reach the cellular ECM. As
a matter of fact, single doses of growth factors are often
ineffective and large supraphysiological doses with the
subsequent risks of severe adverse effects are required to
initiate the healing of cartilage defects [12, 52, 53]. Thus, the
use of hydrogels that provide a temporal or spatiotemporal
control of the growth factor may be a valuable strategy to
circumvent such limitations. Among the most widely used
growth factors involved in cartilage repair are members of
the transforming growth factor (TGF-𝛽) superfamily [12] or
bone morphogenetic proteins (BMP) [54], basic fibroblast
growth factor (FGF-2) [55], and insulin-like growth factor I
(IGF-I) [56].

Controlled delivery of growth factors from hydrogels
may occur over an extended time, reducing the need for
additional applications of the protein. Moreover, strictly
localized release of growth factors may confine their activity
to a distinct location in the proximity of the defect site
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reducing potential side effects [57]. Delivery of growth factors
from hydrogels can be modulated by tuning different prop-
erties from the biomaterial as cross-linking density changes
the free space for diffusion of the bioactive molecule [58].
Other strategies include the modification of the interaction
of the growth factor with the hydrogel network as charge
interactions [58, 59]. Controlled release of growth factors
for cartilage repair focuses on the targeting of relevant
cell populations involved in cartilage regenerative processes,
specifically chondrocytes and MSCs. A compilation of the
main biomaterials used to produce hydrogels in cartilage
repair as well of the strategies involved to incorporate the
growth factors and their release profile from the polymeric
network is given in Table 1.

Natural polymers such as alginate [18, 19], fibrin [25–
28, 30], HA [23, 24], and chitosan [60] have been widely
used to produce hydrogel-based delivery systems of growth
factors due to the optimal properties from these biomaterials
mimicking the natural ECM from cartilage. Encapsulation
into fibrin hydrogels is a valuable strategy to develop con-
trolled delivery systems for cartilage repair as diffusion from
the biomolecules can be modulated by modifying some
parameters from the hydrogel network as fibrinogen com-
ponent or thrombin concentration [26] and has been used
for controlled release of IGF-I [25, 27] and TGF-𝛽1 [26] both
in vitro to target MSCs [26] or in an osteochondral defects
model in vivo [25, 27], showing effectiveness in promoting
cartilage regenerative processes. An advantageous strategy
for controlling the delivery of growth factors involves the
heparinization of hydrogel to immobilize the growth factor by
binding to their heparin-binding domains that enable linkage
with their receptors [61]. This strategy has been used for
immobilization of TGF-𝛽1 [28] or BMP-2 [23] in fibrin [28]
and HA [23] hydrogels.

Synthetic polymers such as PEG [33, 38–40, 42], self-
assembling peptides [35, 36], pNIPAAm [43], and poly(vinyl
alcohol) (PVA) [34] have been used to prepare hydrogels as
delivery systems of growth factors in cartilage tissue engi-
neering approaches. PEG is the most investigated polymer
for hydrogel production due to its good solubility in water
and in organic solvents and lack of toxicity [33, 38–40,
42]. Incorporation of growth factor loaded in microspheres
into interconnected PEG-based hydrogels is an attractive
strategy to simultaneously achieve a sustained release of the
protein and an adequate microenvironment for chondroge-
nesis [62]. Park et al. [39] embedded bovine chondrocytes
into oligo(poly(ethylene glycol) fumarate) (OPF) composite
hydrogels coencapsulating gelatinmicroparticles loaded with
TGF-𝛽1. Controlled release of TGF-𝛽1 from the constructs
increased cellularity with maintenance of the cell phenotype
[39].

Most advanced strategies focused on the dual release
of growth factors to achieve a synergistic effect on the
enhancement of chondrogenic differentiation and on the
maintenance of their phenotype. Holland et al. [40] investi-
gated the local delivery of TGF-𝛽1 and IGF-I incorporated
into biocompatible hydrogels based on OPF with gelatin
microparticles. When delivered to osteochondral defects
in rabbits, the best histological result was observed after

3 months in vivo with IGF-I-treated defects, while these
benefits were not maintained when codelivered with TGF-
𝛽1 or when TGF-𝛽1 was delivered alone, suggesting that in
this in vivo model IGF-I was superior to TGF-𝛽1 [40]. In
the most recent work, the same authors found that while
delivery of BMP-2 enhanced subchondral bone formation,
dual delivery of IGF-I and BMP-2 in separate layers did not
improve cartilage repair but theymay synergistically enhance
the degree of subchondral bone formation [42].

3.2. Nonviral Gene Delivery of Factors. Gene transfer via
nonviral vectors (transfection) is based on the incorporation
of DNA, either naked or complexed with cationic polymers
or with cationic lipids (in polyplexes and lipoplexes), into
the target population. Though considered as a safe method
as it avoids the risk of acquiring replication competence
and of insertional mutagenesis without inducing immune
responses in the host, its use is limited by the low transfection
efficiencies (40–50% maximum) and short-term transgene
expression levels achieved [63–65]. While the use of hydro-
gels for controlled delivery of growth factors has been
broadly exploited in the context of cartilage repair, their
application as controlled delivery systems of gene trans-
fer vectors has been mainly focused on the improvement
of the efficiency of transfection and the durability of the
expression of transgene in tissue engineering approaches
in general, with a very limited number of studies report-
ing their use on cartilage repair [41]. An overview of the
main materials used for the fabrication of hydrogels for
controlled delivery of nonviral vectors is summarized in
Table 2.

Local gene delivery via hydrogel scaffolds has been stud-
ied through the encapsulation of nakedDNAduring hydrogel
formation [66, 67] using synthetic polymers such as PLGA
[66] or pNIPAAm [67]. Although naked DNA achieved gene
expression and guided repair in vivo [76], its low gene transfer
efficiency and rapid diffusion of the DNA from the hydrogel
network urged searching for alternative gene delivery systems
like those based on the controlled release of DNA complexed
in lipoplexes or polyplexes [74]. Gene delivery of polyplexes
[41, 70–75] or lipoplexes [68, 69] has been studied by using
different hydrogel systems including fibrin [69, 72], HA
[70, 72–75], and PEG [41, 68, 70, 71] to target different cell
populations including MSCs [71, 74, 75] in a variety of tissue
engineering approaches (Table 2).

An important limitation of the incorporation of nonviral
gene transfer vectors into hydrogels is the failure of loading
high DNA concentrations because of their tendency to
aggregate. Incorporation of nonviral vectors into hydrogel
networks often results in their aggregation as a result of
the soft, loose, and charged structures of polyplexes and
lipoplexes [70, 73]. To solve such issues, a caged nanoparticle
encapsulation technology has been designed [70, 73, 74].
Incorporation of lyophilized powder of polyplexes suspended
in a medium containing sucrose and agarose into HA
hydrogels significantly prevented their aggregation compared
with direct encapsulation of DNA/polyethylene imine (PEI)
control polyplexes [70, 73, 74].
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The use of hydrogels as controlled gene delivery systems
for cartilage repair is a very valuable but still developing
strategy. Osteochondral and chondral units are especially
promising tissues for polymeric gene delivery approaches
because of the limited blood flow to the region which could
cause problems in DNA polymer complex delivery and the
potential for the delivered genes to induce differentiation of
infiltrated MSCs [41]. Needham et al. [41] recently described
an innovative approach by delivering DNA polyplexes from
OPF hydrogel scaffolds for osteochondral injury repair. An
OPF layered scaffold mimicking the native osteochondral
tissue organization was simultaneously loaded with DNA
polyplexes encoding the runt-related transcription factor 2
(RUNX2) or sex determining region Y-box 5, 6, and 9 (SOX
trio) to generate bone and cartilage tissues, respectively, in
a rat osteochondral defect model. At 6 weeks after implan-
tation, combination of RUNX2 and SOX trio DNA led to a
significantly improved healing ability compared with empty
hydrogels or each factor alone [41].

3.3. Viral Gene Delivery of Factors. Gene transfer using
viral vectors (transduction) is based on the natural cellular
entry pathways of viruses from which they are derived,
resulting in higher gene transfer efficiencies compared with
nonviral vectors (80–90%) [47, 65, 77, 78].Themost common
virusesmanipulated for gene transfer purposes include aden-
oviruses [79–81], herpes simplex virus (HSV) [82], retro- and
lentiviruses [83–85], and adeno-associated virus (AAV) [86–
89]. Although gene transfer via viral vectors is highly efficient,
the existence of patient-associated factors and physiological
barriers (existence of neutralizing antibodies against the
viral capsid and inhibition of transduction in the presence
of specific anticoagulants) may interfere with the effective
delivery, processing, and expression of transgene inside the
target cells [47, 90]. Also, intra-articular injection of viral
vectors can result in the rapid dispersion of the particles from
the joint space and diffusion to nontarget sites, leading to
reduced gene transfer efficiencies in cells recruited in the
lesions [29, 91].

Controlled release of viral vectors from hydrogels allow-
ing for a release pattern via a diffusion process may help
overcome these issues. A summary of the main biomaterials
used to produce hydrogels for controlled release of viral
vectors in different tissue engineering approaches is shown
in Table 3. Most of the work reporting the use of hydrogels
as controlled delivery systems of viral vectors aimed at
overcoming the limitations associated with these types of
vectors in different tissue engineering approaches, with only
a few publications focusing on cartilage repair [22, 29, 37].

Adenoviral, lentiviral, and rAAV vectors have been
encapsulated in fibrin hydrogels, taking advantage of the
low immunogenicity and biodegradability of this compound
and showing sustained release profiles of the vectors and
expression of the transgenes of interest in different cell targets
[29, 93–95]. Most interestingly, Lee et al. [29] reported that
release of an rAAV carrying TGF-𝛽 from diluted fibrin glue
hydrogels resulted in enhanced production of TGF-𝛽 and
higher levels of cartilage-specific gene expression in human

MSCs (hMSCs) compared with undiluted hydrogels. This
fact was attributed to the more open network structure from
diluted fibrin glue hydrogels compared with undiluted ones
resulting in the most efficient release of rAAV TGF-𝛽 vectors
[29].

Self-assembling peptides RAD16-I in a pure (RAD) form
or combined with HA (RAD-HA) have been also employed
to release rAAV vectors as a means of genetically modify-
ing hMSCs [37]. Such systems were capable of efficiently
encapsulating and releasing rAAV in a sustained, controlled
manner to effectively transduce the cells (up to 80%) without
deleterious effects on cell viability (up to 100%) or on their
potential for chondrogenic differentiation of the cells over
time (up to 21 days) [37].

PEO- and PPO-based “smart” or “intelligent” self-
assembling, temperature-sensitive copolymers have been also
utilized as efficient rAAV-mediated delivery systems due to
their capacity to form polymeric micelles and to undergo sol-
to-gel transition upon heating [96, 97]. Specifically, encapsu-
lation of rAAV vectors in poloxamer PF68 and poloxamine
T908 polymeric micelles allowed for effective, durable, and
safe modification of hMSCs via rAAV to levels similar to or
even higher than those noted upon direct vector application
(up to 95% of gene transfer efficiency) [44]. Of further note,
these copolymers were capable of restoring the transduc-
tion of hMSCs with rAAV in conditions of gene transfer
inhibition like in the presence of heparin or of a specific
antibody directed against the rAAV capsid, enabling effective
therapeutic delivery of a chondrogenic sox9 sequence leading
to enhanced chondrocyte differentiation of the cells [44].
Furthermore, various hydrogel composite structures based
on alginate (AlgPH155) and poloxamer PF127 were prepared
by cross-linking at either high (50∘C; AlgPH155+PF127 [H])
or room temperature (AlgPH155+PF127 [C]) to encapsulate
and release rAAV vectors [22]. Strikingly, hydrogels based
on AlgPH155 alone had the highest initial burst of rAAV
release while those cross-linked as AlgPH155+PF127 [C]
had the most sustained release pattern, all leading to high
transduction efficiencies in hMSCs (∼80%) over an extended
period of evaluation (up to 21 days) [22].

4. Conclusions and Outlook

The use of hydrogels as controlled delivery systems of
bioactive molecules is a valuable strategy to achieve appro-
priate levels of a therapeutic factor into target places, cir-
cumventing possible limitations associated with their direct
administration (frequency and amounts of required doses,
inflammatory and host immune responses, and possible
diffusion to nontarget locations). Hydrogel delivery plat-
forms can be modulated by tuning some specific parameters
from the hydrogel networks as composition, cross-linking
density pore size, and degradation kinetics. Hydrogel net-
works are promising systems for cartilage tissue engineering
approaches as they exhibit many intrinsic featuresmimicking
the ECM from cartilage showing in many studies biocom-
patibility with key cell populations involved in cartilage
regenerative processes as chondrocytes and MSCs.
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Although promising technological advances have been
reported to produce hydrogels as delivery systems of car-
tilage reparative factors, large efforts are still necessary to
obtain adapted hydrogel-based delivery systems that may
lead to successful clinical translation in patients integrating
conditions of efficacy, durability, and safety. In this sense,
many relevant parameters from the hydrogel platforms such
as encapsulation efficiency, interaction with and stability of
the biomolecule cargo, tensile strength, resistance against
dilution, gene transfer efficiency, and biocompatibility need
to be accurately optimized. It will be also very important
to keep in mind that a successful system in vitro might
not generate similar/sufficient or adapted effects in a native
environment in vivo. It will thus be fundamental to test the
adaptability of the hydrogel systems in sites of tissue damage
using clinically relevant, complex orthotopic animal models
of cartilage defect as a means of enhancing the natural repair
processes. Yet, despite remaining challenges, recent advances
in the development of hydrogels as controlled release delivery
systems of cartilage reparative factors are promising, new
avenues of research that may clearly improve cartilage repair
in patients in a close future.
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