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ABSTRACT

Previously, we developed jumping profile hidden
Markov model (jpHMM), a new method to detect
recombinations in HIV-1 genomes. The jpHMM
predicts recombination breakpoints in a query
sequence and assigns to each position of the
sequence one of the major HIV-1 subtypes. Since
incorrect subtype assignment or recombination pre-
diction may lead to wrong conclusions in epidemio-
logical or vaccine research, information about the
reliability of the predicted parental subtypes and
breakpoint positions is valuable. For this reason,
we extended the output of jpHMM to include such
information in terms of ‘uncertainty’ regions in the
recombination prediction and an interval estimate
of the breakpoint. Both types of information are
computed based on the posterior probabilities of
the subtypes at each query sequence position.
Our results show that this extension strongly
improves the reliability of the jpHMM recombination
prediction. The jpHMM is available online at http://
jphmm.gobics.de/.

INTRODUCTION

Viruses of the so-called M (Major) Group of HIV-1 are
mainly responsible for the HIV pandemic. This clade has
been divided into nine genetic subtypes, A–D, F–H, J, K
and four sub-subtypes (A1, A2, F1, F2) (1). Among these
subtypes, recombination is extremely common (2).
Recombinants that have been epidemiologically successful
are called ‘circulating recombinant forms’ (CRF). Up to
now, >40 CRFs and many ‘unique recombinant forms’
(URF) have been identified and the number is increasing
(http://hiv.lanl.gov/). The accurate classification of HIV-1

genomes and the identification of recombinants, including
precise breakpoint definitions, is important in many
aspects, such as the design of potential vaccines and treat-
ment strategies against HIV, as well as for epidemiological
monitoring of HIV-1. For this challenging task, a wide
variety of recombination detection tools has been devel-
oped. The most widely used HIV subtyping tool is Simplot
(3), which has also been applied to many other viruses.
For a query sequence it provides a graph reflecting the
similarity of the sequence to a panel of reference sequences
and predicts recombination breakpoints. RIP 3.0 (http://
www.hiv.lanl.gov/content/sequence/RIP/RIP.html) also
identifies recombination in a query sequence by calculat-
ing its similarity to a background alignment of HIV-1
sequences of different subtypes in a sliding window.
Depending on how significantly better the ‘best matching’
background sequence is than the second best match,
‘uncertainty regions’ in the recombination prediction can
be defined. The REGA HIV-1 subtyping tool (4) uses
phylogenetic methods to identify the subtype of a query
sequence and further analyses the sequence for recombi-
nation using bootscanning methods. Exact recombination
breakpoint positions are not predicted, but the assignment
to known CRFs is possible.
Previously, we developed jpHMM (jumping profile

hidden Markov model), a method to detect genomic
recombinations in HIV-1 (5,6) and to accurately locate
recombination breakpoints. The jpHMM is a probabilistic
generalization of the jumping alignment algorithm pro-
posed by Spang et al. (7). For an HIV-1 genomic
sequence, jpHMM predicts whether it is a recombinant
of different subtypes. If so, it estimates the recombination
breakpoint positions and assigns to each segment in
between two breakpoints a parental subtype among the
major HIV-1 subtypes. The predicted recombination pat-
tern is represented graphically in addition to a list of frag-
ment coordinates and their HIV-1 subtypes. The jpHMM
was previously tested on a large set of real and simulated
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HIV-1 data (5). The evaluation of its prediction accuracy
showed that jpHMM is more accurate than competing
methods for phylogenetic breakpoint detection.
Nevertheless, it is indispensable to know how reliable

the predicted recombination breakpoints and parental
subtypes in a particular sequence or a particular region
of a sequence are. For this reason, we extended the
output of jpHMM to include a tagging of regions where
the model is ‘uncertain’ about the predicted parental sub-
type and provide an ‘interval’ estimate for each predicted
breakpoint in addition to predicting its precise position.
Similar approaches to assess the robustness of predicted
breakpoint positions and parental subtypes (or sequences)
have been developed in other recombination detection
tools: TOPALi v2 (8,9) is a tool for the evolutionary ana-
lysis of multiple sequence alignments. It comprises three
recombination detection tools, that look for changes in
phylogenetic tree topologies moving along an alignment.
Statistical significance is assessed by posterior probabil-
ities assigned to each topology for each position in the
alignment. The cBrother (10) estimates the recombinant
structure of a query sequence and provides posterior sup-
port for each genotype at each query sequence position
and each breakpoint position. Recco (11) provides a
very good visualization tool for locating recombination
breakpoints (or breakpoint intervals) in a query sequence.
It identifies the parental sequences within a given set of
sequences and indicates robust sequence positions.

METHODS

jpHMM

The recombination prediction of jpHMM is based on a
pre-calculated multiple sequence alignment of the major
HIV-1 subtypes. Each subtype in the alignment is modeled
as a profile HMM (12). In addition to the usual state
transitions within these profile HMMs, transitions,
called ‘jumps’, between the different profile HMMs are
allowed at almost any position in the alignment. Thus,
the model can jump between states corresponding to dif-
ferent subtypes, depending on which subtype is locally
most similar to the query sequence. The recombination
prediction for a query sequence is then defined by a
most probable path through the model that generates
the sequence, the so-called Viterbi path. Since each state
of the model only belongs to one profile HMM and each
sequence position is generated by one state of the model,
each position of the sequence is assigned to exactly one
parental subtype. Positions of jumps between different
subtypes define recombination breakpoints.

Uncertainty regions and breakpoint intervals

The new version of jpHMM presented here additionally
calculates the so-called ‘posterior probability’ for each
base of the query sequence and each subtype in the
given alignment. This quantity denotes the probability
that the base belongs to the subtype in our probabilistic
recombinant model. The posterior probabilities are calcu-
lated using the well-known Forward and Backward algo-
rithms (13). Based on these probabilities, ‘uncertainty

regions’ in the recombination prediction and interval
estimates of breakpoints, i.e. intervals where breakpoints
can be expected to be located, are defined.

Uncertainty region. If at a certain position of the query
sequence the posterior probability of the parental subtype,
that was predicted by jpHMM for this position, is
lower than a certain threshold 0� tUR< 1, this position
is marked as ‘uncertain’ (Figure 1). This classification
accounts for the fact that there is a significant
(�1� tUR) probability that the predicted subtype is
wrong according to the probabilistic model.

For uncertainty regions, no parental strain can confi-
dently be determined. However, by examining the graph
of the posterior probabilities, the user can see which sub-
types are closest related in these regions. In the case that
an uncertainty region is equally close to two subtypes, the
user cannot distinguish whether the uncertainty region is
close to both subtypes or far away from them. In this case,
we recommend to use the branching index method (14),
which quantifies how closely a query sequence clusters
with a subtype clade.

Breakpoint interval. An interval estimate of a breakpoint,
called ‘breakpoint interval’, is defined as an interval
around a predicted breakpoint position where the poste-
rior probabilities of the predicted subtypes to the left and
to the right of the breakpoint, are lower than a certain
threshold 0� tBPI< 1, but higher than the posterior prob-
abilities of all other subtypes (Figure 1). If the posterior
probability of a third subtype is higher than the posterior
probability of one of the two predicted subtypes in this
region, the whole region is marked as ‘uncertain’, since
this indicates the possibility of an undetected recombina-
tion segment.

The length of a predicted breakpoint interval depends
on how precisely the breakpoint can be located reliably. A
large interval is the consequence of the uncertainty of the
model to locate the exact breakpoint position between two
subtypes. Thus, the user can see which breakpoints can be
located relative precisely or which breakpoints are
approximate.

Web server

The jpHMM is available online at http://jphmm.go
bics.de/. The user can paste or upload up to five full-
length HIV-1 genomic sequences or fragments at a time
in FASTA format. A hyperlink to the results of the pro-
gram run, which are stored on the server for 2 days, is
returned to the user by e-mail. The result contains for each
sequence the predicted recombination, including uncer-
tainty regions and breakpoint intervals, in text format as
well as a graphical representation of the predicted recom-
binant fragments within the HIV-1 genome. Additionally,
the posterior probabilities of the subtypes for each
sequence position are plotted. For uncertainty regions
the originally predicted parental subtype is also provided.
As thresholds for uncertainty regions and breakpoint
intervals we use tBPI= tUR=0.99. For each query
sequence, the predicted recombination with precise break-
point positions as well as the predicted recombination
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including uncertainty regions and breakpoint intervals, a
list of the breakpoint intervals and uncertainty regions
and the posterior probabilities of the subtypes can be
downloaded. Additionally, the alignment of each input
sequence to the HXB2 sequence (15), defined by
jpHMM, is provided for download. HXB2 is the most
commonly used HIV-1 reference sequence and is part of
the multiple sequence alignment we use to build the
model. Figure 1 shows an excerpt of the jpHMM output
for an artificial recombinant HIV-1 sequence.

Evaluation

The accuracy of the new extension of jpHMM was eval-
uated on 40 semi-artificial near full-length inter-subtype
recombinant sequences. For evaluation, we considered
the accuracy of the predicted breakpoint intervals and
the accuracy of the predicted parental subtypes at posi-
tions outside uncertainty regions and breakpoint intervals.
As customary, and in lack of real recombinant sequences
with exactly known breakpoint positions, these test
sequences are real HIV-1 sequences but with artificially
introduced breakpoints. Each of the test sequences is a
recombination of two ‘real-world’ parental sequences
from two different HIV-1 (sub-)subtypes. Hereby, we
chose every possible pair of the subtypes A1, B, C, D,
F1, G and CRF01 as parental subtypes. To simulate
unknown sequences that also differ by mutations from
the known sequences, the parental sequences of all test
sequences are not contained in the multiple sequence
alignment we use to build the model.

The parental sequence pairs were used in three different
datasets. In the first dataset, we introduced breakpoints at

every 1000th position in the sequences. So, segments
of length 1000 nt of one subtype were interrupted by seg-
ments of length 1000 nt of another subtype. In the second
and third datasets, we used simulated recombinants where
alternating long segments (1500 nt) from one subtype are
interrupted by short segments (500 and 300 nt, respec-
tively) from another subtype. So, in total, jpHMM was
tested for 120 artificial recombinant sequences, each
having eight to ten recombination breakpoints.

RESULTS

We determined for different thresholds tBPI the number of
real breakpoints detected by the predicted breakpoint
intervals for each data set. A breakpoint is defined as
‘detected’, when the breakpoint interval contains the
true breakpoint and the two neighboring subtypes are pre-
dicted correctly. In Table 1, the results are shown for the
first dataset (1000/1000 nt fragments). For each threshold
the average, the minimal and the maximal length of the
predicted breakpoint intervals, and the percentage of
detected breakpoints is given. For example for the default
threshold tBPI=0.99, 92.50% of the real breakpoints
could be detected (Table 1, column 4). The average
length of the predicted breakpoint intervals for this thresh-
old is 48.58 nt, the minimal length is 5 nt and the maximal
length is 233 nt.
Besides the accuracy of the predicted breakpoint inter-

vals, we were also interested in the ability of jpHMM to
predict the true recombination pattern, i.e. the correct
sequence of subtypes. Please note, that the recombination
pattern of a sequence can be predicted correctly, even if
not all breakpoints were detected, according to our defi-
nition of a detected breakpoint. For the first dataset, for
39 of the 40 test sequences the recombination pattern was
predicted correctly, only in one sequence one recombinant
segment was not identified.
For the test sequences containing segments of length

1500/500 nt, 82.72 % of all breakpoints could be detected
(with an average breakpoint interval length of 43.73 nt),

Figure 1. Part of the jpHMM web server output for an artificial recom-
binant containing alternating B/F1 fragments of lengths 1500/300 nt.
Above the genome map of the predicted recombination is shown
(drawn with the HIV Sequence Locator Tool, http://hiv.lanl.gov/),
below the posterior probabilities of the subtypes. Breakpoint intervals
are shown by an interfingering of the colors of the two predicted
subtypes, uncertainty regions by an interfingering of grey and the
color of the predicted subtype. For the uncertainty region around
position 3438 the posterior probabilities give a hint to the correct sub-
type F1.

Table 1. Comparison of the accuracy of breakpoint intervals (BPI)

predicted by jpHMM and the accuracy of BPI of fixed length

Threshold tBPI BPI length Percentage of BP found using

Average Minimum/
Maximum

Ppost Fixed
BPI length

0.75 16.12 0/113 54.17 50.28
0.85 22.46 0/121 68.06 56.39
0.90 26.89 2/135 74.72 59.44
0.95 34.05 2/202 81.11 65.00
0.99 48.58 5/233 92.50 71.94
0.9999 84.77 11/492 98.06 81.39

Results are shown for the first dataset. In column 1, the threshold tBPI
is given. The average length of the BPI defined by tBPI is given in
column 2, the minimal and maximal length in column 3. In column
4, the percentage of real breakpoints detected with these BPI is shown,
in column 5 the percentage of breakpoints using the average length of
the predicted BPI as fixed BPI length (naı̈ve method). For each thresh-
old the highest value is marked in bold face.
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and for the sequences containing segments of length
1500/300 nt, 87.50% (average breakpoint interval
length is 41.24 nt). The near full-length sequences used in
the input multiple alignment are not always complete at
the end regions, and therefore, the multiple sequence
alignment we use is ‘frayed’ and less informative at the
sequence ends. jpHMM is thus often not able to assign
any subtype to positions located near the ends of the
genome. For 33 of the 40 sequences containing segments
of length 1500/500 nt, one short segment (500 nt) at
the sequence end was not assigned to the correct subtype,
since jpHMM was not able to assign any subtype
in this region. So, 9.35% (33 out of 353) of the real break-
points could not be detected, only because they
were located within an unclassified region. Apart from

these 33 breakpoints, the predicted recombination pattern
was correct. In contrast, in eight sequences of the third
dataset (1500/300 nt), in fact one short segment (300 nt)
was not assigned to the correct subtype. Five of these
eight segments were classified as uncertainty region, the
other three segments were predicted to have the same sub-
type as their neighbors, i.e. they could not be identified as
a recombinant segment. For the remaining 32 sequences
the recombination pattern was also predicted correctly.

Using tUR= tBPI as threshold for the uncertainty
regions, for all given thresholds (0.75–0.9999),
92.44–92.68% of the positions outside breakpoint inter-
vals and uncertainty regions were assigned a subtype
and classified correctly. Additionally, 6.74% of the
positions at the sequence ends were not assigned to any

Figure 2. Extract of the jpHMM web server output for an artificial recombinant. The output contains a list of fragments from the input sequence
that are assigned to different HIV-1 subtypes, including predicted breakpoint intervals and uncertainty regions. In the center, a graphical represen-
tation of the predicted recombinant fragments within the HIV-1 genome is given. At the bottom, the posterior probabilities of all HIV-1 subtypes are
plotted.
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subtype, so the total percentage of positions outside
breakpoint intervals and uncertainty regions that were
classified incorrectly is only 0.58–0.82%. For precise
recombination prediction with jpHMM, i.e. including pre-
cise breakpoint estimates and no uncertainty regions, this
is 1.51%. For the other two datasets, 0.66–0.99% (1500/
500 nt) and 0.75–1.08% (1500/300 nt) of those positions
were predicted incorrectly, compared with 1.55% and
1.97%, respectively, for precise jpHMM recombination
prediction.

Comparison to a naı̈ve approach

The accuracy of the predicted breakpoint intervals was
compared with the accuracy of a naı̈ve method, that pre-
dicts breakpoints in a symmetric interval of fixed length,
centered around the predicted breakpoint position. This
naı̈ve approach is the most obvious method to define
breakpoint intervals around predicted breakpoint posi-
tions, if no further information is provided. For a direct
comparison, we used the average length of the predicted
breakpoint intervals as the fixed interval length in the
naı̈ve method, rounded to the nearest even number.

Table 1 shows that for all tested thresholds tBPI, espe-
cially for high thresholds, the number of breakpoints
detected with breakpoint intervals defined by the posterior
probabilities is much higher than when using breakpoint
intervals of fixed length (Table 1, column 5). For example,
for the default threshold, only 71.94% of all breakpoints
could be detected with the naı̈ve method, compared
with 92.50%. So, the sensitivity of our method is up to
20 percentage points higher than that of the naı̈ve method.
For the other two datasets, the results are similar. For the
sequences containing segments of length 500 nt, for the
default threshold only 62.04% of all breakpoints could
be detected using breakpoint intervals of fixed length,
compared with 82.72% with our method. For segments
of length 300 nt this is 73.75% compared with 87.5%.

CONCLUSIONS

We extended the jpHMM output to include information
about the reliability of the predicted recombination break-
points and parental subtypes. Our results show that
breakpoint intervals defined by the posterior probabilities
of the subtypes are far more accurate than breakpoint
intervals of fixed length as used in naı̈ve approaches.
Additionally, <1% of all positions outside uncertainty
regions and breakpoint intervals were classified incor-
rectly, so the user can now be more confident in the
predicted parental subtypes outside these regions. The def-
inition of uncertainty regions helps researchers to avoid
drawing wrong conclusions based on doubtful, uninfor-
mative regions, such as the postulation of a new CRF.
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