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Background: Gait impairments are common in healthy older adults (HOA) and people

with Parkinson’s disease (PwPD), especially when adaptations to the environment are

required. Traditional rehabilitation programs do not typically address these adaptive gait

demands in contrast to repeated gait perturbation training (RGPT). RGPT is a novel

reactive form of gait training with potential for both short and long-term consolidation

in HOA and PwPD. The aim of this systematic review with meta-analysis is to determine

whether RGPT is more effective than non-RGPT gait training in improving gait and

balance in HOA and PwPD in the short and longer term.

Methods: This review was conducted according to the PRISMA-guidelines and pre-

registered in the PROSPERO database (CRD42020183273). Included studies tested the

effects of any form of repeated perturbations during gait in HOA and PwPD on gait speed,

step or stride length. Studies using balance scales or sway measures as outcomes were

included in a secondary analysis. Effects of randomized controlled trials (RCT) on RGPT

were pooled using a meta-analysis of final measures.

Results: Of the 4421 studies, eight studies were deemed eligible for review, of which

six could be included in the meta-analysis, totaling 209 participants (159 PwPD and

50 HOA). The studies were all of moderate quality. The meta-analysis revealed no

significant effects of RGPT over non-RGPT training on gait performance (SMD = 0.16;

95% CI = −0.18, 0.49; Z = 0.92; P = 0.36). Yet, in some individual studies, favorable

effects on gait speed, step length and stride length were observed immediately after the

intervention as well as after a retention period. Gait variability and asymmetry, signifying

more direct outcomes of gait adaptation, also indicated favorable RGPT effects in some

individual studies.

Conclusion: Despite some promising results, the pooled effects of RGPT on gait and

balance were not significantly greater as compared to non-RGPT gait training in PwPD

and HOA. However, these findings could have been driven by low statistical power.

Therefore, the present review points to the imperative to conduct sufficiently powered

RCT’s to verify the true effects of RGPT on gait and balance in HOA and PwPD.

Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_rec

ord.php? Identifier: CRD42020183273.
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INTRODUCTION

Gait impairments in the aging population are related to falls
and have other serious repercussions, such as that they are
associated with reduced physical activity levels (Campbell et al.,
1989; Seematter-Bagnoud et al., 2006). Gait impairments and
their negative consequences are further exacerbated in people
with Parkinson’s disease (PwPD) (Bouça-Machado et al., 2020).
The neuropathology of PD progressively affects the locomotor
network, particularly the striatal circuitry and alters the cerebellar
involvement in adapting gait to environmental changes (la
Fougère et al., 2010; Bohnen and Jahn, 2013; Hinton et al., 2019).
Gait adaptation is required when the gait pattern needs to be
adjusted, for instance, during the transition from straight walking
to a turn. Adjusting one’s gait to unexpected environmental
changes additionally involves reactive postural control, which
is also compromised in older adults and especially in PwPD
(Benatru et al., 2008; Süptitz et al., 2013). Impairments to
adjust gait become more and more apparent in PwPD with
disease progression. These impairments also frequently trigger
episodes of freezing of gait (FOG) in PwPD (Nutt et al., 2011),
thereby further increasing the risk of falling (Deandrea et al.,
2010; Weaver et al., 2016). Falls are a major burden for the
aging population and more so in PwPD, where approximately
60% experience repeated falls (Wood et al., 2002; Balash et al.,
2005). This poses one of the most important hurdles for clinical
management of PwPD, as falls and FOG are largely refractory
to medication (Curtze et al., 2015; McKay et al., 2019). All
of the above stresses the need for training interventions to
safely improve adaptive mobility in PwPD and healthy older
adults (HOA).

Several training modalities can improve ambulation and
thereby decrease the risk of falling (Canning et al., 2015;
Sherrington et al., 2017). Regular treadmill training has been
shown to be effective in improving gait parameters, such as speed
and stride length in both HOA and PwPD (Tomlinson et al.,
2012;Mehrholz et al., 2016), especially when a cognitive challenge
is added to the motor training (Mirelman et al., 2016). Moreover,
combining balance and strength training has shown to bring
benefits for mobility and falls (Sherrington et al., 2020). However,
these traditional rehabilitation programs do not directly address
the typical demands of ambulation in natural environments,
particularly with regard to adapting to asymmetrical demands
induced by the need to make turns and directional changes
(Mehrholz et al., 2016).

Repeated gait perturbation training (RGPT) is a relatively

novel training concept that addresses gait adaptation and reactive

balance. RGPT consists of unexpected perturbations, such as

push and pulls, applied by a trainer or a cable system during

walking. Additionally, novel concepts of treadmill training have

emerged under the impetus of technological advances. These
modalities include the ability to offer translations of the walking
surface (Mansfield et al., 2010), acceleration and deceleration of
the treadmill or changes in gait asymmetry imposed by split-belt-
treadmills, whereby the gait speed of each leg can be controlled
independently (Seuthe et al., 2019). Repeated exposure to such

perturbations may have lasting effects on the ability to modulate
walking and reduce falls (Gerards et al., 2017). Encouragingly,
our group recently evaluated a single session of split-belt training
in HOA and PwPD, showing beneficial effects on gait adaptation
and turning performance that were retained for at least 24 hours
(D’Cruz et al., 2020; Seuthe et al., 2020).

Apart from mimicking daily life mobility, RGPT may prove
beneficial by tapping into a more reactive and subconscious way
of motor learning. Indeed, PwPD and HOA to a lesser degree,
rely heavily on attentional strategies during gait performance
as a result of reduced motor automaticity (Montero-Odasso
et al., 2012; Wu et al., 2015). Consequently, they become less
able to deal with consecutive attention-requiring environmental
demands (Hausdorff et al., 2006). A reactive training strategy,
such as RGPT, whereby participants need to adapt their gait
to sudden perturbations without prior awareness of the precise
timing of perturbations is thought to modulate gait automatically
via cerebellar locomotor circuits, rather than overloading the
cortical frontal and anterior-basal ganglia (BG) attentional
reserves (Hausdorff et al., 2006; Sarter et al., 2014). In line with
this notion, Marinelli et al. (2017) proposed that training, which
is not relying on attentional strategies or conscious awareness
of the learning process, may still be preserved in PwPD (in
some paradigms) due to cerebellar compensatory contributions
(Marinelli et al., 2017). As such, RGPT training may boost the
compensatory cerebellar circuits, reducing attentional demand
during adaptive gait in PwPD and HOA.

Following the initial reactive response to the perturbation,
conscious awareness of the perturbation likely becomes involved
to some degree in the control of the subsequent gait cycles. This
goal-directed aspect of RGPT likely taps into the anterior BG
circuits that are relatively spared in PwPD and may assist in the
acquisition of new adaptive gait strategies (Marinelli et al., 2017).
Unfortunately, consolidation of new motor engrams is rather
impaired in PwPD due to altered processing in the posterior BG
circuits (Marinelli et al., 2017), and it therefore remains to be
determined how well PwPD can retain the beneficial effects of
RGPT training. All in all, the training of both reactive and goal-
directed processing of gait via RGPT has potential to herald larger
effects on gait in PwPD than non-RGPT types of gait training. In
the present review, we therefore reviewed the literature to explore
the notion that RGPT may lead to improved gait and retention
in PwPD and HOA by boosting “adaptive learning” pathways
(Jayaram et al., 2011; Marinelli et al., 2017).

Previous reviews summarizing the effects of perturbation
training focused mainly on young and older healthy adults
and a combination of neurological populations (e.g., stroke,
Parkinson’s disease) (Mansfield et al., 2015; Gerards et al., 2017;
Papadimitriou and Perry, 2017). The meta-analysis conducted by
Mansfield et al. (2015), including both older adults and patients
with varying neurological disorders, showed that perturbation
training could significantly reduce falls when compared to
control interventions without perturbation training (RR = 0.54;
95% CI = 0.34,0.85; P = 0.007) (Mansfield et al., 2015).
These results were corroborated by Gerards et al. (2017) who
concluded in their review that perturbation training is effective
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in reducing falls, and that treadmill-based systems and therapist-
applied perturbations are likely the most feasible approaches
for perturbation training (Gerards et al., 2017). The meta-
analysis by Papadimitriou and Perry (2017) further showed
that perturbation training reduced falls in the laboratory for
both older and younger adults 6-fold compared to the non-
perturbation control groups (Papadimitriou and Perry, 2017).
Taken together, prior reviews indicated beneficial effects of
perturbation training for reducing falls. However, no review
has focused specifically on gait perturbation training in PwPD.
Given that PD is a complex multi-system disorder affecting
both motor and non-motor symptoms that respond variably
to therapy, generalizability of findings from prior reviews on
healthy adults or other neurological disorders to PD is limited.
As such, in this systematic review we set out to evaluate the
evidence for immediate and long-term effects of repeated gait
perturbation training (i.e., RGPT) on gait outcomes in PwPD
and HOA. Therefore, the aim of this systematic review with
meta-analysis is to ascertain whether RGPT is more effective in
improving gait performance, expressed here as improvements in
gait speed, step or stride length, in HOA and PwPD, as compared
to other non-perturbation-based gait interventions. In addition,
we aim to assess the impact of RGPT on balance performance as
a secondary endpoint. We hypothesized that, via the modulation
of “adaptive learning” circuits and eventually reduced needs
for attentional processing, RGPT would prove more efficacious
for improving gait performance (i.e., gait speed, step length or
stride length), and balance (i.e., MiniBESTest, Berg Balance Scale
or postural sway) than non-RGPT gait training in both HOA
and PwPD.

METHODS

Search Strategy and Included Databases
A systematic search of the literature was conducted on 27 April
2020 in the PubMed, Embase, Medline, Web of Science and
Google Scholar databases without date restriction (Bramer et al.,
2017). A final screening for eligible studies was performed on 10
February 2021. The following search syntax was used (Google
Scholar example): (gait OR locomotion OR walk OR walking)
AND (split-belt OR split belt OR splitbelt OR balance loss OR
dynamic balance OR dynamic stability OR surface translation
OR trip OR tripping OR slip OR slipping OR pull OR push
OR perturbation OR perturbations OR perturbed OR perturb)
AND (rehabilitation OR repeated OR repetition OR training OR
program) AND (Parkinson’s Disease OR aging OR elderly OR
older adults). The exact search syntax used for each of the other
databases is presented in the Supplementary Materials. As no
consensus exists in the current literature on how to describe
“perturbation” and “training,” we used a broad range of terms
in our search syntax to avoid missing eligible studies (McCrum
et al., 2017). The review protocol was prospectively registered
in PROSPERO (CRD42020183273) and the review conducted in
accordance with the Preferred Reporting Items for Systematic
Reviews and Meta-analyses (PRISMA) statement (Moher et al.,
2009).

STUDY SELECTION

The inclusion criteria for the selected studies were: (1) written
in the English or Dutch language; (2) intervention study (RCT
and non-RCT) assessing the effect of any type of repeated,
and unexpected, perturbations during walking, hereafter called
RGPT; (3) presenting outcomes on HOA (mean age ≥65 years)
and/or PwPD; (4) measurement of effects right after the last
training session and/or retention of effects (≥24 h after the
last training session); and (5) gait speed, step length or stride
length obtained as either the primary or secondary outcome.
Exclusion criteria were: (1) not peer-reviewed; (2) conference
abstracts; (3) reviews of the literature, with or without meta-
analysis or commentaries without original data; (4) perturbations
not given during gait (e.g., static or optical); (5) gait only assessed
during the baseline assessment without a retest after the last
training session; (6) effect of training on gait speed, step length
or stride length only measured during the intervention, not in
separate assessment after the last training session. Since this
review focuses on the effects of perturbations during gait, all
other forms of perturbation training, such as perturbations in
a static context or optical instead of mechanical perturbations
were excluded. Studies without a randomized controlled design
(RCT) were excluded from the meta-analysis. However, because
of the novelty of this field, studies with repeatedmeasures designs
with or without a control group but without randomization were
included in the qualitative (i.e., descriptive) analysis. This enables
the evaluation of promising paradigms not yet tested in a RCT.
Two reviewers independently and sequentially screened titles and
abstracts (FH, BV) and full texts (FH, VR) for eligibility. Any
disagreements regarding eligibility were discussed amongst the
reviewers after screening, until mutual agreement was achieved
and verified by a third independent reviewer (MG).

Data Extraction and Quality Assessment
A standardized form for data extraction was used (Microsoft
Excel, version 2019, Microsoft Corp. Redmond, WA) to
record information about: the study population, participant
demographics, details of the intervention and control conditions,
study design, primary outcome measures (e.g., gait speed, step
length, stride length), secondary outcome measures (e.g., balance
or postural sway), and main conclusions by the study authors. In
addition, information was collated to assess the studies’ internal
validity using theNIHNational Heart, Lung, and Blood Institute’s
Quality Assessment Tool for Controlled Intervention Studies.
This tool uses 14 criteria for assessing internal validity and
potential risk of bias (National Institutes of Health, 2019). Two
reviewers independently scored the internal validity (FH, VR).

Data Synthesis and Analysis
The primary outcome measure was gait performance, expressed
as the pooled outcomes of the following gait measures: gait
speed, step length or stride length. When several of the outcome
measures were present, only one was included in the meta-
analysis based on the following predefined prioritization: (1) gait
speed, (2) step length and (3) stride length. Secondary outcomes
included other gait measures (i.e., asymmetry, variability),
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Center of Mass (CoM) measures (i.e., sway speed) and balance
performance [i.e., Mini-BESTest and the Berg Balance Scale
(BBS)]. If included studies had these data available in secondary
analyses, these were also included in the analysis. Three

secondary analyses were performed: (1) including only studies
that used regular treadmill training as an active comparator
to RGPT; (2) including only studies that assessed PwPD; and
finally (3) including only balance outcomes. Additional data were

FIGURE 1 | Flowchart of systematic search with the in- and exclusion and reasons per phase of the screening process. RGPT, Repeated Perturbation Training.
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requested from the corresponding authors if not reported in the
original publication. Authors were given at least 2 weeks’ time to
respond to this request before the data was labeled as missing.
A meta-analysis of final measures was conducted for the post
and retention scores separately, in which the means and standard
deviations of the scores were used to compare the pooled
effects of the different interventions in the pooled population
(PwPD and HOA). If only change scores were reported and the
corresponding authors did not respond to the data request, the
mean was determined based on the baseline mean added to the
change score of the post and/or retention timepoint. This was
the case for one study (Shen and Mak, 2015). Here, the standard
deviation at baseline was entered as the estimate of the standard
deviation at post and/or retention.

The standardized mean difference (SMD) between the
intervention and control group was calculated with a random
effects model using Reference Manager (RevMan, v5.4), which
accounts for inter-study variance in the methods and outcome
measures. Based on the SMD corresponding 95% confidence
intervals, two-sided P-values and the main effect sizes (Z-scores)
were calculated. P-values < 0.05 were considered statistically
significant. Heterogeneity between study effects was assessed
using both the χ

2 test and I2 statistic (Higgins et al., 2003). I2

values < 25%, between 50 and 75%, and > 75% were considered
as low, moderate or large heterogeneity, respectively (Higgins
et al., 2003). The results were displayed in forest plots. Possible
publication and selection bias were assessed using funnel plots.
Where possible, effect sizes (ES) were calculated using Cohen’s d.

RESULTS

Study Selection
The search and selection procedure are outlined in Figure 1.
The systematic search identified 4421 potential records. After
duplicate removal, 3,076 titles were screened and 2,916 records
excluded. A total of 160 abstracts were screened for eligibility,
resulting in the exclusion of 109 records. Of the remaining 51
full-text records, ten met the inclusion criteria (Cakit et al.,
2007; Bhatt and Yang, 2012; Yang and Pai, 2013; Harro et al.,
2014a; Shen and Mak, 2015; Klamroth et al., 2016; Martelli
et al., 2017; Steib et al., 2017; Gimmon et al., 2018; Rieger
et al., 2020), of which two were not included as we received
no response to our data requests (Bhatt and Yang, 2012; Yang
and Pai, 2013). Consequently, eight studies were included in
the qualitative review and six could be included in the meta-
analysis for having applied an RCT design and providing use-
able data (Cakit et al., 2007; Shen and Mak, 2015; Klamroth
et al., 2016; Steib et al., 2017; Gimmon et al., 2018; Rieger
et al., 2020). Reasons for exclusions are described in Figure 1.
Two out of the eight included studies (Harro et al., 2014a;
Gimmon et al., 2018) had additional data available on balance
outcomes in other secondary analyses papers, which were also
considered in this review (Harro et al., 2014b; Kurz et al., 2016). A
summary of characteristics of the included studies can be found
in Table 1.

Summary of Study Characteristics
A total of eight studies were considered eligible for qualitative
review (Cakit et al., 2007; Harro et al., 2014a; Shen and
Mak, 2015; Klamroth et al., 2016; Martelli et al., 2017; Steib
et al., 2017; Gimmon et al., 2018; Rieger et al., 2020), of
which six could be included in the meta-analysis (Cakit
et al., 2007; Shen and Mak, 2015; Klamroth et al., 2016;
Steib et al., 2017; Gimmon et al., 2018; Rieger et al., 2020).
Information about participants, modes of RGPT, training design,
control groups, retention periods and main gait outcomes
are presented in Table 1. Table 1 also illustrates the different
forms of perturbations delivered while walking, including 3D
tilting (Klamroth et al., 2016; Steib et al., 2017) or sudden
translations of the treadmill (Steib et al., 2017; Gimmon et al.,
2018), sudden acceleration or deceleration of the treadmill
(Cakit et al., 2007; Harro et al., 2014a; Shen and Mak, 2015;
Rieger et al., 2020), manual perturbations by the trainer (Shen
and Mak, 2015), and push and pulls from a cable system
during treadmill walking (Martelli et al., 2017). Six out of
the eight studies compared RGPT with an active control
intervention in an RCT design (Harro et al., 2014a; Shen and
Mak, 2015; Klamroth et al., 2016; Steib et al., 2017; Gimmon
et al., 2018; Rieger et al., 2020). Five studies used regular
treadmill training (Harro et al., 2014a; Klamroth et al., 2016;
Steib et al., 2017; Gimmon et al., 2018; Rieger et al., 2020)
and one used strength training (Shen and Mak, 2015) as
comparison. The study of Cakit et al. (2007) did not specify their
control intervention.

Duration of the training sessions differed between studies.
Three studies consisted of a single session (Klamroth et al., 2016;
Martelli et al., 2017; Rieger et al., 2020), two studies had 16
sessions (Cakit et al., 2007; Steib et al., 2017), and the other
studies provided 18 (Harro et al., 2014a), 24 (Gimmon et al.,
2018) and 44 sessions, respectively (Shen and Mak, 2015), with
an average of 2-3 sessions per week. The total length of the
intervention period ranged from 1 day to 4 months. Retention
of training effects was acquired in three studies. These studies
measured retention after 1 week (Rieger et al., 2020) and 3
months (Harro et al., 2014a; Steib et al., 2017). The study of
Shen and Mak (2015) measured retention effects at 3 different
time points: 3, 6 and 12 months after training. To reduce
heterogeneity, we included the data obtained at the 3-month
time point into the retention, as this matches the retention
period in two of the three studies. Five studies included PwPD
(Cakit et al., 2007; Harro et al., 2014a; Shen and Mak, 2015;
Klamroth et al., 2016; Steib et al., 2017), two studies included
HOA (Gimmon et al., 2018; Rieger et al., 2020), and one study
compared PwPD and HOA (Martelli et al., 2017). Data of
both groups were pooled in the current primary meta-analysis
including a total of 209 participants (159 PwPD and 50 HOA).
The mean ages of PwPD and HOA differed significantly across
studies [PwPD 66.4 (3.6) and HOA 76.2 (5.1), t = −2.807,
P = 0.048]. The gait parameters most frequently used as an
outcome were comfortable gait speed in four studies (Harro
et al., 2014a; Shen and Mak, 2015; Klamroth et al., 2016;
Steib et al., 2017), followed by fast gait speed in three studies
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TABLE 1 | Characteristics of included studies.

References Participants age (SD) Perturbation training Control intervention Retention Gait outcome Balance

outcome

Cakit et al. (2007) N = 31 PwPD

71,8 (6,4)

HY: 2–3

UPDRSII: 18.14 (9.32)

16 sessions, 30min for 8 wks speed

dependent treadmill training with

unexpected speed increments or

decrements (0.6 km/h)

Control group

mentioned but content

not specified

None Max gait speed on

treadmill

Berg Balance

Scale

Gimmon et al. (2018) N = 53 HOA

IG: 78.2 (5.6)

CG: 81.4 (4.3)

24 sessions, 20min for 3 mo of

treadmill at comfortable speed with

unexpected perturbations of platform

in random directions

24 sessions, 20min for

3 mo of treadmill

walking at comfortable

speed

None Stride length on

treadmill (1.9 mph

speed)

Postural sway (EC)

Klamroth et al. (2016) N = 39 PwPD

IG: 64.8 (10.3)

HY: 2.4 (0.6)

UPDRSIII: 16.7 (5.5)

CG: 64.2 (8.5)

HY: 2.2 (0.9)

UPDRSIII: 17.7 (8.7)

1 session, 20min of treadmill walking

with small 3D tilting movements of the

walking surface

1 session, 20min of

regular treadmill

walking at comfortable

speed

10min Comfortable

overground gait

speed, CoV and

asymm of stride

length

Postural sway (EO)

Rieger et al. (2020) N = 30 HOA

72.6 (5.4)

1 session, 16 perturbations of

treadmill walking with sudden

acceleration or decelerations

1 session, 8min of

conventional treadmill

walking

1 week Step length on

treadmill

None

Shen and Mak (2015) N = 45 PwPD

IG: 63.3 (8.0)

HY: 2.43 (0.47)

UPDRSIII: 24.0 (8.3)

CG: 65.3 (8.5)

HY: 2.48 (0.49)

UPDRSIII: 23.2 (6.5)

44 sessions, 20–60min, 12 wks total,

2 × 4wks 60min of lab

technology-assisted gait and balance

training with volitional stepping,

leaning, unexpected treadmill

deceleration or manual perturbations

and 1wk 20min self-supervised

training.

44 sessions, 20–60min

of strength training of

the lower extremity with

dynamometers/leg

press machines,

rowing, cuff weight

3 mo (6

mo/12 mo)*

Comfortable

overground gait

speed

None

Steib et al. (2017) N = 38 PwPD

IG: 67.6 (8.2)

HY: 2.43 (0.47)

UDRSIII: 24.0 (8.3)

CG: 62.5 (7.9)

HY: 2.48 (0.49)

UPDRSIII: 23.2 (6.5)

16 sessions, 30min for 8 wks of

treadmill walking with 3D movements

of tilting platform

16 sessions, 30min for

8 wks of conventional

treadmill walking

3 months Comfortable and

fast overground

gait speed

Mini-BESTest,

Postural sway (EO

and EC)

Paradigms without RCT design or control group

Harro et al. (2014a,b)** N = 20 PwPD

IG: 67.3 (11.47)

HY: 1.9 (0.57)

UPDRSIII: /

CG: 64 (9.58)

HY: 2.0 (0.67)

UPDRSIII: /

18 sessions, 30min for 6 wks of

rhythmic auditory cued over-ground

walking, walking to the beat of music

with incremental BPM to increase gait

speed

18 sessions, 30min for

6 wks of speed

dependent treadmill

training, unexpected

increase of speed every

+/- 2.5-5min and

decreases to

comfortable speed

3 months Comfortable and

fast overground

gait speed

Berg Balance

Scale

Martelli et al. (2017) N = 18,

9 PwPD + 9 HOA

PwPD: 64,3 (7,4)

HY: 1.78 (0.44)

UPDRSIII: 14.44 (6.44)

HOA: 64,7 (7,3)

1 session, 30min, 9 blocks of 8 AP or

ML pull or push perturbations by

external cables during walking on a

treadmill

None None Step length of

walking on

treadmill

None

RCT, Randomized Controlled Trial; CC, Case Control Study; IG, Intervention Group; CG, Control Group; PwPD, People with Parkinson’s Disease; HOA, Healthy Older Adults; HY, Hoehn

and Yahr stage; UPDRSIII, Movement Disorder Society Unified Disease Rating Scale part III; Mo, months; Wks, weeks; CoM, Center of Mass; EO, Eyes Open; EC, Eyes Closed; BPM,

Beats Per Minute; AP, Anterior-Posterior; ML, Medio-Lateral; CoV, Coefficient of Variance; Asymm, asymmetry. *These timepoints were also collected but not used in this meta-analysis,

**only control group was suitable for inclusion in qualitative analysis.

(Cakit et al., 2007; Harro et al., 2014a; Steib et al., 2017), step

length in two studies (Martelli et al., 2017; Rieger et al., 2020),

and stride length in one study (Gimmon et al., 2018). The study

of Klamroth et al. (2016) also includedmeasures of gait variability

and asymmetry (see Table 1).

Results of the Individual Studies -
Qualitative Review
Cakit et al. (2007) found a significant improvement of 0.20 m/s
in maximum tolerated walking speed on the treadmill in PwPD
compared to the control group (unspecified), immediately after a
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TABLE 2 | Qualitative description of studies not included in meta-analysis.

References Main finding on gait outcome pre-post Main finding on gait outcome pre-ret

Harro et al. (2014a) Comfortable gait speed (m/s) did improve with 4.53% after training

1.30 (0.19) vs. 1.36 (0.21), however non-significantly (p = 0.13). Fast

gait speed (m/s) did significantly improve by 7.45% after training 1.69

(0.27) vs. 1.82 (0.30), p = 0.01.

Comfortable gait speed (m/s) remained increased at retention, 1.39

(0.24) vs. 1.30 (0.19), however these improvements were

non-significant (p = 0.12). Improvements in fast gait speed retained

after 3 months, 1.69 (0.27) vs. 1.80 (0.33), p = 0.05.

Martelli et al. (2017) Step length (mm) increased over time in the pooled groups [HOA 14.59

(23.70), PwPD 21.78 (17.09)] (p = 0.003) after 30min of perturbation

training, but no group x time effect was observed (p = 0.497)

Not measured

HOA, Healthy Older Adults; PwPD, People with Parkinson’s Disease.

training with sudden accelerations and decelerations (ES = 2.15,
p < 0.01). In addition, an improvement in balance, measured
with the Dynamic Balance Scale (ES = 6.21, p < 0.01) and the
Berg Balance scale (ES = 9.32, p < 0.01), and a reduction in
fear of falling (p < 0.01) were observed (Cakit et al., 2007). Shen
and Mak (2015) did not find an improvement in over-ground
gait speed, but did find a significant increase in stride length
in PwPD immediately (ES = 0.968, p = 0.003), 6 months (ES
= 0.643, p = 0.038) and 12 months (ES = 0.783, p = 0.013)
after their technology-assisted balance and gait training including
sudden decelerations during treadmill walking (Shen and Mak,
2015). Moreover, they reported a significantly lower number of
fallers after RGPT compared to the control intervention, which
was retained for 12 months (p = 0.047) (Shen and Mak, 2015).
Klamroth et al. (2016) compared 3D tilting perturbations of the
treadmill platform during treadmill walking to regular treadmill
walking and found a group (RGPT vs. control) by time (pre, post,
retention) effect for over-ground walking speed in PwPD (ES =

0.41, p = 0.014). In addition, they reported a decrease in gait
variability in the intervention group (ES = −0.34, p = 0.048),
suggesting a more stable gait pattern (Klamroth et al., 2016). The
studies of Steib et al. (2017), Gimmon et al. (2018), and Rieger
et al. (2020) found no improvement in gait (i.e., gait speed, stride
length and step length respectively) after RGPT compared to
regular treadmill walking.

Two studies were not suitable for inclusion in the

meta-analyses. One did not have a RCT design (Martelli
et al., 2017), and the other compared two interventions of
which only the control intervention matched our RGPT

criteria. Here, the intervention group was focused on cueing

and therefore not suitable as comparison in the meta-analysis

(Harro et al., 2014a). Regardless, both studies showed a
positive effect of RGPT on gait outcomes when comparing

pre-post results (see Table 2). Harro et al. (2014a) found

an improvement in fast gait speed directly after a training

with sudden accelerations and decelerations, compared to
the pre-measurement (ES = 0.46, p = 0.01), which was
retained after 3 months (ES = 0.36, p = 0.05). Martelli

et al. (2017) found an effect over time in step length after
training participants with a push/pull cable system (ES = 0.17,
p = 0.003), but no difference in effects between PwPD and
HOA groups was demonstrated (ES = 0.33, p = 0.497) (Martelli
et al., 2017). Retention of these effects was not measured in
this study.

Effects of RGPT on Gait
Immediate Effects – Meta-Analysis
Figure 2A shows the outcomes of the meta-analysis of
the standardized mean difference (SMD), from six studies
demonstrating no improvement of gait after RGPT training
compared to the control training (SMD = 0.16; 95% CI
= −0.18, 0.49; Z = 0.92; P = 0.36). When pooling the
data of the four studies that compared RGPT with regular
treadmill training (Figure 2B), the SMD and significance
level did not change considerably (SMD = 0.10; 95% CI =

−0.25, 0.45; Z = 0.55; P = 0.58), although heterogeneity
measures decreased (from I2 = 30% to I2 = 0%). When
pooling the four studies including only PwPD, the effect
size and SMD remained the same (SMD = 0.17; 95% CI =

−0.31, 0.64; Z = 0.69; P = 0.49) (Figure 2C). Heterogeneity
increased from 30 to 54%, reducing the robustness of these
results.

Retention Effects – Meta-Analysis
Three studies reported the retention effects of RGPT on gait.
Overall, no gait improvements were retained (SMD = 0.22; 95%
CI=−0.42, 0.85; Z = 0.67; P = 0.50) (Figure 3).

Effects of RGPT on Balance and Postural
Sway
Immediate Effects on Balance Scales
Two studies reported the effect of RGPT on balance assessments.
Cakit et al. (2007) assessed the Berg Balance Scale and Steib
et al. (2017) the Mini-BESTest. Overall, RGPT showed a non-
significant effect on balance assessments immediately after the
training (SMD = 0.09; 95% CI = −0.40, 0.58; Z = 0.36;
P = 0.72, see Supplementary Figures). These results are in
line with the study of Harro et al. (2014b) that could not be
included in this meta-analysis, while also showing no significant
improvement on the Berg Balance Scale after RGPT at the
individual study level.

Immediate Effects on Postural Sway
Three studies assessed velocity of postural sway during quiet
stance (Klamroth et al., 2016; Steib et al., 2017; Gimmon et al.,
2018). Sway was assessed with eyes open and eyes closed in
one study (Steib et al., 2017) and two either assessed with
eyes open (Klamroth et al., 2016) or closed (Gimmon et al.,
2018). A decrease in postural sway velocity points toward better
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FIGURE 2 | (A) Meta-analysis of the effect of RGPT (experimental) vs. non-RGPT (control) training on gait outcomes (i.e., gait speed, step length, or stride length) in

PwPW and HOA immediately after the intervention. (B) Meta-analysis of the effect of RGPT (experimental) vs. regular treadmill training (control) on gait outcomes (i.e.,

gait speed, step length, or stride length) in PwPD and HOA immediately after training. (C) Meta-analysis of the effect of RGPT (experimental) vs. non-RGPT (control)

training on gait outcomes (i.e., gait speed, step length, or stride length) immediately after training in PwPD only.

FIGURE 3 | Meta-analysis of the effects of RGPT (experimental) vs. non-RGPT (control) training on gait outcomes (i.e., gait speed, step length, or stride length) in

PwPD and HOA at retention.

postural control. RGPT significantly decreased postural sway
with eyes open (MD = −1.74; 95% CI = −3.18, −0.29; Z
= 2.35; P = 0.02). Sway with eyes closed did not reduce in

both studies resulting in a non-significant effect of RGPT (SMD
= −1.43; 95% CI = −5.33, 2.48; Z = 0.72; P = 0.47, see
Supplementary Figures).
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TABLE 3 | Quality assessment of included studies.

study

Item Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

Klamroth et al. (2016) 1 1 1 0 0 1 1 1 1 ? 1 0 1 1

Shen and Mak (2015) 1 1 1 0 1 1 0 1 1 ? 1 1 ? 0

Cakit et al. (2007) 1 ? ? ? 1 1 0 0 1 ? 1 0 ? 0

Gimmon et al. (2018) 1 1 ? ? ? 0 0 1 ? ? 1 1 1 ?

Steib et al. (2017) 1 1 1 0 1 1 0 1 1 1 1 0 1 0

Rieger et al. (2020) 1 ? ? ? ? 1 1 1 ? ? 1 0 ? 1

Harro et al. (2014a) 1 ? ? 0 1 1 1 1 1 ? 1 1 ? 1

Martelli et al. (2017) ? ? 1 1 ? 1 0 ? 1

Sum score 7/7 4/7 3/7 0/8 4/8 7/8 3/7 6/7 6/8 1/8 8/8 3/8 3/8 4/8

study

Item Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

Klamroth et al. (2016) 1 1 1 0 0 1 1 1 1 ? 1 0 1 1

Shen and Mak (2015) 1 1 1 0 1 1 0 1 1 ? 1 1 ? 0

Cakit et al. (2007) 1 ? ? ? 1 1 0 0 1 ? 1 0 ? 0

Gimmon et al. (2018) 1 1 ? ? ? 0 0 1 ? ? 1 1 1 ?

Steib et al. (2017) 1 1 1 0 1 1 0 1 1 1 1 0 1 0

Rieger et al. (2020) 1 ? ? ? ? 1 1 1 ? ? 1 0 ? 1

Harro et al. (2014a) 1 ? ? 0 1 1 1 1 1 ? 1 1 ? 1

Martelli et al. (2017) ? ? 1 1 ? 1 0 ? 1

Sum score 7/7 4/7 3/7 0/8 4/8 7/8 3/7 6/7 6/8 1/8 8/8 3/8 3/8 4/8

Green color: low risk of bias, Red color: high risk of bias, Orange color: not reported, Dark gray color: not applicable. Q1: RCT, no/RCT, Q2: randomization quality, Q3: concealed

allocation, Q4: participant blinding, Q5: blinded testers, Q6: similar groups, Q7: drop-out <20%, Q8: differential drop-out rate <15%, Q9: adherence >75%, Q10: similar background

treatments, Q11: valid outcome measures, Q12: power >80%, Q13: preregistration, Q14: intention-to-treat.

Retention Effects on Balance Scales and Postural

Sway
Only Steib et al. (2017) assessed 3-month retention of balance
scales and postural sway. They found a slight, but statistically
non-significant, decrease in Mini-BESTest scores after both the
RGPT interventions in PwPD [mean difference (post-pre) =

−0.1] and non-RGPT control [mean difference (post-pre) =

−0.9], with lower scores indicating better performance (range
from 0 to 28). The decrease in scores appears larger for the
control group over the RGPT group, but no significant group by
time interaction effect was found (P = 0.441), nor a main effect
of time (P = 0.340). In addition, no significant improvements in
postural sway with either eyes open (within group P = 0.862,
between group P = 0.626), or eyes closed (within group P =

0.446, between group P = 0.626) were observed after RGPT.

Risk of Bias in Included Studies
Selection Bias
Funnel plots were generated for the primary outcomes of this
review immediately after the intervention and at retention
and are presented in the Supplementary Materials. Both plots
showed balanced heterogeneous results, pointing toward a low
risk of selection bias. However, the low number of studies
included may have clouded interpretation of the funnel plots.

Within-Study Bias
Table 3 presents the internal validity of the included studies.
All studies had some risk of bias. In particular, blinding of
treatment allocation (Q4) was insufficient or not reported in all
studies. Four of the eight studies did blind the assessors (Q5).
Nearly half of the studies reached 20% or more dropout rates
(Q7), though it should be noted that these rates were often
similar between intervention arms (Q8). Most importantly, only
few studies justified the sample size using an a-priori power
calculation (Q12). Several studies preregistered their protocols
(Q13), but for most studies this was not reported. All studies
assessed their outcomes using valid and reliable measures (Q11).

DISCUSSION

The aim of the present systematic review was to investigate
the short and long-term effects of repeated gait perturbation
training (RGPT) vs. non-RGPT training on gait performance in
healthy older adults and people with Parkinson’s disease. Overall,
no significant additional beneficial effects of RGPT on gait
performance were found when contrasted to regular treadmill
training, especially for retention. Some individual studies did
show favorable pre-post and between-group effects for gait
speed, step length, stride length, gait variability and asymmetry
measures, immediately after RGPT and after a retention period
(Cakit et al., 2007; Harro et al., 2014a; Shen and Mak, 2015;
Klamroth et al., 2016; Martelli et al., 2017).

Our findings are in contrast to our hypothesis and diverge
from previous reviews showing a beneficial effect of repeated
balance and/or gait perturbations in HOA and PwPD on
reducing fall risk and increasing reactive recovery (Mansfield
et al., 2015; McCrum et al., 2017), though these prior
reviews did not assess gait performance. We propose three
complementary explanations for the lack of significant results in
the present review.

First, most of the included studies in this review contrasted
RGPTwith regular treadmill training (Klamroth et al., 2016; Steib
et al., 2017; Gimmon et al., 2018; Rieger et al., 2020). Treadmill
training alone has shown strong positive effects on gait speed and
stride length in several populations, including frail older adults
and PwPD (Van Ooijen et al., 2013; Mehrholz et al., 2016; Ni
et al., 2018; Pereira et al., 2020). The Cochrane review conducted
by Mehrholz et al. (2016) showed substantial effects of treadmill
training in PwPD when compared to other interventions (e.g.,
stretching, dancing, resistance training, conventional therapy)
on both gait speed [Mean difference (post-pre) = 0.09 m/s;
95% CI = 0.03, 0.14; p = 0.001] and stride length [Mean
difference (post-pre) = 0.05m; 95% CI = 0.01, 0.09; p =

0.01] without increased drop-out rates or adverse events. Ni
et al. (2018) found similar results on exercise interventions
including treadmill for PwPD. Given the positive effects of
regular treadmill training, it would require large sample sizes to
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detect a modest effect on gait outcomes in response to RGPT
when contrasted to regular treadmill training. This is supported
by the results of the individual studies included in this review,
showing improvements on gait, however often less than the
regular treadmill control group. As a result, most included
studies were probably underpowered to detect between-group
differences on gait outcomes. Moreover, only 3 out of 8 included
studies determined their sample sizes based on a-priori power
calculation. The outcomes of the present review might help
researchers to perform a power-based sample size calculation for
future intervention trials on RGPT.

Second, the effectiveness of RGPT, as for most training-
based interventions, is likely dependent on the dosage and
task-specificity of the training. Since the dosage of the training
paradigms included in this review varied greatly, this may have
influenced the results and clouded the potential of some specific
perturbation paradigms. Work from Karamanidis et al. (2020)
showed that RGPT could improve balance recovery responses in
HOAwith and without neuropathology, as long as the amount of
perturbations reached a certain critical threshold. This threshold
theory implies that even in neurological populations such as
PwPD, retention and transfer can be achieved as long as there is
sufficient training exposure to reach the optimal dose-response
relationship. Future studies should conduct a meta-regression
analysis to delineate the impact of intervention dosage on RGPT
effectiveness, once the body of work in this domain has grown.
With regard to task-specificity of RGPT, the type of perturbations
may have contributed to the effectiveness of RGPT on some gait
measures. Optimally, the mode of perturbation should resemble
complex gait as performed in daily life, such as turns and
other maneuvers. Moreover, translation should be tested in over-
ground as well as experimental conditions. Seuthe et al. (2020)
compared several split-belt to regular treadmill walking speeds
(i.e., contrasts) in HOA and PwPD gait to see which split-
belt contrasts elicited the largest improvements in step length
asymmetry, which were relevant for turning. They found that
changing the speed ratios between the belts during one session
repeatedly led to a quicker adaptation back to symmetry in step
length, compared to static ratios (i.e., a constant speed reduction
of one treadmill belt with either 25% or 50%). D’Cruz et al. (2020)
also found that specific split-belt perturbations, especially the
“changing ratios” and steady reduction by 50%, led to improved
dual-task gait speed during over-ground walking and turning in
place, when compared to regular treadmill training in PwPD and
HOA. In addition, in both the studies of D’Cruz et al. (2020)
and Seuthe et al. (2020) these improvements in turning and
asymmetry were retained for 24 h. These results suggest that
split-belt training with changing ratio’s, when offered at optimal
dosage and form, could lead to retention and transfer effects
to daily gait challenges. Furthermore, the speed or contrast at
which the perturbation is introduced, appears to play a role in
how people learn to cope with the perturbation, and how well-
they can retain learning effects (D’Cruz et al., 2020; Seuthe et al.,
2020).

Third, valid outcomes that are responsive to gait adaptation,
need to be adopted to capture the potential of RGPT on gait
function. Gait speed, step and stride length are gait outcome

measures that also improve with regular treadmill walking. One
study included in this review reported additional outcomes,
that could be more indicative of gait adaptation and flexibility.
Klamroth et al. (2016) reported on the coefficient of variation
and asymmetry of several gait parameters, including stride length
and step time. Significant reductions in stride length variability
and significant increases of step time symmetry were observed
compared to the control group, who received regular treadmill
training (Klamroth et al., 2016). These results are corroborated
by another study not included in this review from Seuthe
et al. (2020), who reported a significant reduction in asymmetry
following split-belt perturbations after RGPT compared to
regular treadmill training, whereas no improvements in gait
speed were observed. These results suggest that to quantify
gait adaptation, future studies should consider incorporating
gait adaptation tasks and testing the validity of asymmetry and
other variability/adaptation measures of gait as outcomes of
interest. In addition, validity studies are needed to test whether
outcomes, which capture change immediately after imposing
perturbations and after retention, are correlated with ecological
gait measures.

Finally, previous results of RGPT on balance are also in
sharp contradiction to our secondary analysis on balance
outcomes, in which we overall found non-significant results
for both sway and balance scales. However, this is likely
caused by the limited number of studies, as we only included
papers that primarily focused on gait perturbation and
outcomes. Careful interpretation of the secondary analyses is
also warranted, given that these included some of the same
study participants.

The present results challenged our hypothesis that exposing
people to RGPT would lead to additional gait improvements that
were better retained compared to non-RGPT. Gait adaptation
is likely governed by cerebellum-motor cortex connectivity
(Jayaram et al., 2011; Spampinato et al., 2017). When a
discrepancy occurs between the expected and experienced
situation (i.e., sensory prediction error), sensory integration
is facilitated by the cerebellum, allowing adaptation of motor
control (Krakauer et al., 2019). Because the cerebellum is
intact in HOA and not severely affected in the early disease
stages of PwPD (Wu and Hallett, 2013), the functional circuits
related to this structure may still have some capacity to
induce learning effects relevant for gait adaptation training
(Gilat et al., 2019). A recent ALE meta-analysis on fMRI
findings showed that PwPD consistently activate the cerebellar
locomotor region more than HOA during gait, supporting the
view that the cerebellum plays an important compensatory role
in gait processing for PwPD (Gilat et al., 2019). In patients
with cerebellar lesions, Morton and Bastian (2006) showed
that an intact cerebellum is essential for adaptive gait control
during split-belt walking. Moreover, a recent PET imaging
study showed increased lateral cerebellar activity while adjusting
gait during split-belt walking in healthy young adults (Hinton
et al., 2019). These imaging studies further endorse that PwPD
may still be able to train gait adaptation through RGPT,
constituting promising gait rehabilitation strategies for these
fall-prone patients.
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Clinical Implications
Although, the results of this review were negative, it is
interesting to see that five RGPT paradigms resulted in significant
within-group, and sometimes between-group improvements in
gait, albeit in different outcomes. Of these five interventions,
three consisted of sudden accelerations or decelerations of the
treadmill, either at once or in a split-belt context, requiring
an immediate response (Cakit et al., 2007; Harro et al., 2014b;
Shen and Mak, 2015). The similarities in these programs suggest,
that also in regular clinical practice, even without specific
instrumentation, it may be useful to offer training conditions that
require speed changes to improve steady gait and gait flexibility.
In addition, the only study that tested long-term effects showed
retention of up to 12 months following RGPT (Shen and Mak,
2015) and split-belt training (D’Cruz et al., 2020; Seuthe et al.,
2020) demonstrated transfer to an over-ground adaptive task,
namely turning. However, the experiments included were still at
the proof-of-concept stage, as our quality assessment indicated
largely underpowered samples and other potential risks of bias.
Inherently, the present review could thus only include few studies
and with small samples, limiting the statistical power of our
meta-analyses. In addition, for the main meta-analysis, data of
PwPD and HOA were pooled although there was a difference in
mean age, which could have biased the results. This methodology
was based on an a-priory decision (see pre-registration) to not
arbitrarily restrict age for PwPD and allow for optimal power in
the meta-analysis. Taken together, the present review points to
the need for more well-designed, adequately powered RCTs, as
well as, to gap in knowledge on the impact of RGPT on daily-
life ambulation, before wide implementation in the clinical field
can be recommended. Future studies should also elucidate the
specific type of perturbations and dosage for use in rehabilitation,
to improve flexibility of gait and balance performance in older
and neurological populations.

CONCLUSION

This systematic review with meta-analysis on RGPT
showed that despite the promising effects reported in
individual studies, their pooled effects were not helpful in
improving gait outcomes when compared to other training
interventions. The limited number of studies, methodological
heterogeneity in the type and dosage of training and
the varying outcome measures further clouded possible
intervention effects. However, this review also revealed the
potential of RGPT, providing a rationale for conducting

future effect studies in this training concept in HOA and
in PwPD.
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