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Simple Summary: Single Cell RNA Sequencing generates gene expression data at a single cell reso-
lution. While single cell RNA has many applications in biomedical research, the high dimensionality
of the data produced poses a considerable computational challenge. This study proposes a novel
algorithm using penalized regression methods to analyze single cell RNA sequencing data. The
proposed algorithm reduces high dimensionality of the gene expression data using a sequence feature
selection methods such as Ridge regression, LASSO, Elastic Net, Drop LASSO, and Sparse Group
LASSO. The proposed algorithm successfully detected highly differentiated genes, including the
marker genes, for 5 different single cell RNA sequencing datasets associated with the species mouse,
plant, and human.

Abstract: With the emergence of single-cell RNA sequencing (scRNA-seq) technology, scientists are
able to examine gene expression at single-cell resolution. Analysis of scRNA-seq data has its own
challenges, which stem from its high dimensionality. The method of machine learning comes with
the potential of gene (feature) selection from the high-dimensional scRNA-seq data. Even though
there exist multiple machine learning methods that appear to be suitable for feature selection, such
as penalized regression, there is no rigorous comparison of their performances across data sets,
where each poses its own challenges. Therefore, in this paper, we analyzed and compared multiple
penalized regression methods for scRNA-seq data. Given the scRNA-seq data sets we analyzed,
the results show that sparse group lasso (SGL) outperforms the other six methods (ridge, lasso,
elastic net, drop lasso, group lasso, and big lasso) using the metrics area under the receiver operating
curve (AUC) and computation time. Building on these findings, we proposed a new algorithm for
feature selection using penalized regression methods. The proposed algorithm works by selecting a
small subset of genes and applying SGL to select the differentially expressed genes in scRNA-seq
data. By using hierarchical clustering to group genes, the proposed method bypasses the need for
domain-specific knowledge for gene grouping information. In addition, the proposed algorithm
provided consistently better AUC for the data sets used.

Keywords: high-dimensional data; single-cell RNA sequencing; gene expression data; machine
learning; penalized regression; lasso; sparse group lasso; feature selection; R
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1. Introduction

Single-cell RNA sequencing (scRNA-seq) technology is very popular in biomedical
research. This technology examines the gene expressions among different cells in a tissue
and provides the gene expression profile on a cell level [1]. Compared with the traditional
RNA-seq technology, which examines the average gene expressions in a tissue, scRNA-seq
is a recent development and a very advanced technology.

scRNA-seq technology is also useful for identifying cellular heterogeneity. On the other
hand, scRNA-seq has low capture efficiency and high dropouts compared with regular
RNA-seq technologies. Yet, quality control is necessary for removing technical noise from
scRNA-seq data [2]. scRNA-seq protocols can be classified into two categories, full-length
transcript sequencing approaches and 3′-end or 5′-end transcript sequencing [2]. In addi-
tion, 3′-end or 5′-end transcript sequencing are known as unique molecular identifier (UMI)
tag-based protocols, and full-length transcript sequencing is known as a non-UMI-based
protocol [3]. UMI tag-based scRNA-seq protocols uses UMI tags for different transcript
molecules. During the scRNA-seq process, the transcript molecules get attached with their
respective UMI tags, and then these UMIs are counted to obtain the number of transcripts
for each gene [4]. UMI tag-based protocols include Drop-seq and 10× Genomics Chromium.
Compared with UMI tag-based sequencing, the Non-UMI-based scRNA-seq protocols se-
quence whole transcripts [2]. Non-UMI-based protocols include Smart-seq2, MATQ-seq,
and Fluidigm C1 [3].

One of the many applications of scRNA-seq technology is differentiating cell groups by
comparing their molecular signatures, for instance, identifying highly differentiated genes
to cluster knockout and wild type cells. Similarly, by comparing the gene expression profile
of cancer cells with that of healthy cells, one can identify genes with altered expression
that might be responsible for cancer. The applications of scRNA-seq technology are nu-
merous and of high impact in genomic research. However, the scRNA-seq data come with
certain challenges as well [5], especially requiring high computation time and resources.
Methods dealing with these challenges typically include shifting and scaling, batch effect
correction, dimensionality reduction, missing data imputation, and selection of important
features. High dimensionality is a major computational challenge in analyzing scRNA-seq
data. Therefore, dimensionality reduction methods such as principal component analysis
(PCA), T-distributed stochastic neighbor embedding (t-SNE), and feature selection are often
performed in scRNA-seq data analysis [2].

scRNA-seq data usually contain a larger number of features (genes) than the number
of samples (cells). People typically represent p as the dimension of features and n as
the dimension of samples. When p >> n, we call the data having the “large-p-small-n”
problem. Statistical models could result in poor prediction performance due to over-fitting
when training data contain fewer samples compared to the number of features [6]. There
are several methods to deal with the “large-p-small-n” problem in Machine Learning (ML),
of which feature selection is the most useful.

Feature selection is the method of selecting variables that contain better signal than
the noise variables for the target variable of interest Random forests, Recursive Feature
Elimination (RFE), and penalized regression are often used for feature selection in ML.

In this research, we explored the penalized regression methods to select feature vari-
ables over RFE and random forest. The rationale behind this choice is that RFE is compu-
tationally expensive when applied to high-dimensional data[7]. Therefore, RFE is not an
ideal choice for feature selection in scRNA-seq data. Random forest and its application
on scRNA-seq data have been examined thoroughly in other studies [8–11]. Moreover,
some penalized regression methods are worth exploring to compare their performances for
feature selection in scRNA-seq data because these methods were developed primarily for
tackling the challenges of “large-p-small-n” problems [12].

Some popular variants of penalized regression in machine learning are ridge regres-
sion, least absolute shrinkage and selection operator (lasso) [13], and elastic net regres-
sion [14], where the latter is a combination of ridge and lasso. The applicability of these
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methods depends on the problem one is addressing in modeling scRNA-seq data. Ridge
regression reduces the dimension of feature variables by making their coefficients closer
to 0. The features for which the coefficients are close to zero are forced to be excluded
while the remaining features are retained in the model. This notion of feature selection
using ridge regression is known as hard thresholding. Lasso regression [13] implements
soft thresholding for feature selection. In soft thresholding, the regression coefficients are
made exactly equal to zero. The limitation of penalized regression such as ridge, lasso,
and elastic net regression is that these algorithms do not consider any previously known
relationships between the features, such as the grouping information of the genes in the
scRNA-seq data, while selecting them [15,16]. There are improved lasso methods such as
group lasso [17] and sparse group lasso [18] that allow us to use grouping information of
features, which could account for the interrelationship of variables. Drop lasso [12] and big
lasso [19] are two other interesting variants of penalized regression. Our primary objective
in this article is to explore scRNA-seq data specific to different species using the collection
of penalized regression methods, and determine which method is more suitable for the
problem under study.

There are some other variants of lasso regression such as nuisance penalized regres-
sion [20], fused lasso [21], adaptive lasso [22], and prior lasso [23]. Nuisance penalized
regression is suitable when some of the feature variables are of particular interest and
others are considered noise (nuisance). However, this distinction between genes is not
always known in advance. In this study, we are comparing methods that do not require
prior knowledge of genes for feature selection. Therefore, nuisance penalized regression
is not selected for analysis in our research. While prior lasso can be applied to biological
data, it requires prior information to be incorporated [23]. Fused lasso was proposed for
processing image-based time series data, which is very different from scRNA-seq applica-
tion. Meanwhile, adaptive lasso incorporates penalty to proportional hazards regression.
These methods may not be suitable for our applications. Therefore, they are excluded from
our study.

There exist studies in penalized regression methods for high-dimensional data [24,25].
However, these studies did not include a performance comparison of some of the selected
methods for our research. The performance of all the methods are thoroughly investigated
in our research, which may not have been done in scRNA-seq data before. The compelling
rationale for our research is to fill this gap in knowledge and form a general recommen-
dation on the performance of these methods. Furthermore, we propose a new method
(an algorithm for feature selection using penalized regression methods) that uses fewer
genes to execute the best of the selected methods and improve its prediction performance
measured via AUC. This study is an extension of the research presented at the Comparative
Genomics: 19th International Conference, RECOMB-CG 2022, La Jolla, CA, USA, 20–21
May 2022, Proceedings [26]. The R codes for the analysis are provided in Appendix A.

The rest of this article is organized as follows. Section 2 explains different methods and
metrics used in this study. Section 3 introduces the scRNA-seq data sets and the research
design. Sections 4 and 5 showcase the results, discuss the findings and their biological
interpretations, and briefly introduce potential future directions for this research.

2. Methods

To reach our objectives, we used several penalized regression methods in this pa-
per. These regression methods and the performance metrics suitable for this study are
described below.

2.1. General Representation of Penalized Regression

Penalized regression methods select important feature variables available in high-
dimensional data obtained from scRNA-seq technologies by producing sparse solutions
that may result into better predictive models by simplifying the expression using a limited
number of genes. Mathematically speaking, a penalized method solves an optimization
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criterion, which usually comprises two components: a loss function plus a penalty term.
Let the regression equation be

Y = Xβ + ε, (1)

where Y is a n-vector of response variable, X is a n× p matrix for the predictor variables,
β is a p-vector for the regression coefficients, and ε ∼ N(0, σ2 I) is the random error term.
We consider that both X and Y are centered and scaled in Equation (1). The penalized
regression method estimates the regression coefficients by minimizing the penalization
criterion as follows:

β̂ = argmin
β

(
1
n
||Y− Xβ||2 + λ||β||), (2)

where ||β|| is the norm of coefficient vector β and λ ≥ 0 is the tuning parameter to be
optimized using cross-validation. The first term ||Y− Xβ||2/n is called the loss function
and the second term λ||β|| is the regularization term often called penalty. The main
difference between different penalized regressions methods stems from different forms
of regularization used as the penalty. The most frequently used L1 and L2 norms are the
popular choices for the penalty [12], which are defined as

L1 norm = ||β||1 =
p

∑
i=1
|βi|, (3)

L2 norm = ||β||22 =
p

∑
i=1

β2
i , (4)

respectively.

2.1.1. Ridge Regression

Ridge Regression is a penalized regression method where the penalty term is the
sum of squared coefficients (Equation (4)). Regression methods usually suffer from ill
conditioning due to high correlation between predictor variables. The method of ridge
regression appears handy, reducing the large absolute coefficients towards zero, a problem
incurred from the high correlation between predictors. Ridge regression has been used
to model gene expression data in many studies [27–29]. The estimates of the regression
coefficients obtained from ridge regression are expressed as

β̂Ridge = argmin
β

(
1
n
||Y− Xβ||2 + λ||β||22), (5)

where the penalty term ||β||22 is the L2 norm of the regression coefficients.

2.1.2. Least Absolute Shrinkage and Selection Operator Regression

The Least Absolute Shrinkage and Selection Operator (lasso) regression [13] minimizes
the residual sum of squares subject to the constraint of the sum of the absolute coefficients
being less than the tuning parameter. As obvious from the above sentence, lasso uses
L1 norm (Equation (3)) as the penalty. Compared with the ridge regression, which can
only shrink coefficients towards 0, lasso can make some of the coefficients exactly equal
to zero, thereby producing a simpler model by including only those predictors for which
the coefficients are not zero. By ignoring feature variables for which the coefficients are
zero, lasso produces a more interpretable model. The estimator of lasso regression is is
obtained as

β̂Lasso = argmin
β

(
1
n
||Y− Xβ||2 + λ||β||1), (6)

where the penalty term ||β||1 is known as the L1 norm of the regression coefficients.
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2.1.3. Elastic Net Regression

Elastic net regression, proposed by [14], is a method of estimating regression parame-
ters by regularizing the coefficients using a convex combination of the L1 and L2 norms. As
a result of using both of the L1 and L2 norms, the elastic net regression enjoys the properties
of both ridge and lasso. Using elastic net, a large regression coefficient can be shrunk
towards zero while forcing some of the other regression coefficients to becoming exactly
zero. The estimates of the regression coefficients using elastic net can be expressed as

β̂EN = argmin
β

(
1
n
||Y− Xβ||2 + λ1||β||1 + λ2||β||22). (7)

The L1 norm part of the penalty generates a sparse model and the L2 norm part of the
penalty encourages greater shrinkage to large coefficients [30].

2.1.4. Group LASSO

Yuan and Lin [17] proposed group lasso, which allows selecting subsets of important
variables. Unlike the lasso, which selects individual variables, group lasso select groups
of feature variables in the form of subsets. The selection of subsets of features is useful
in scRNA-Seq data as one may wish to include or exclude the subsets of genes that are
associated with a pathway related to an outcome, which is practically important to an
application. Let j ∈ {1, 2, · · · , J} represent the indices for the groups of variables and n be
the number of observations. For each group j, let Xj be n× pj submatrix of X with columns
corresponding to predictor variables in group j and βj be the corresponding coefficient
vector of length pj. Then, the regression equation for the group lasso can be written as

Y =
J

∑
j=1

Xjβj + ε. (8)

Here, the vector of regression coefficients is β = (β′1, β′2, · · · , β′J)
′, and the design

matrix can be written as X = (X1, X2, · · · .XJ). When X′jXj = Ipj ∀j ∈ {1, 2, · · · , J}, the
above regression equation simplifies to Equation (1). For a symmetric and positive definite
kernel matrix Kj = pj Ipj , the estimates of the regression coefficients from group lasso can
be expressed as

β̂GL = argmin
β

(
1
n
||Y−

J

∑
j=1

Xjβj||
2 + λ

J

∑
j=1
||β′jKjβj||

1
2 ), (9)

where λ ≥ 0 is the penalty coefficient.

2.1.5. Sparse Group LASSO

One possible limitation of group lasso is that while it selects a collection of subsets
of features, all of the estimated regression coefficients in a selected subset of features will
be nonzero. That means there is no variable selection within a selected subset or group
of features. Often, both sparsity of subsets and features within each subset might be
important in an application. In scRNA-seq application, identifying important genes in the
biological pathways may be of interest. Simon et al. [18] proposed sparse group lasso as a
potential improvement to this problem. They proposed a method to estimate the regression
coefficients using a sparse group lasso as follows:

β̂SGL = argmin
β

(
1
n
||Y−

J

∑
j=1

Xjβj||
2 + λ

J

∑
j=1
||β′jKjβj||

1
2 + αλ||β||1)), (10)
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where the regularization parameters are λ ≥ 0 and α ∈ [0, 1]. Therefore, the penalty term
in the sparse group lasso is a convex combination of the penalty terms in lasso and group
lasso. Note that when α = 0, the SGL reduces to the group lasso. Further, when α = 1, the
model reduces to lasso. This feature of sparse group lasso is analogous to elastic net, which
is a convex combination of ridge and lasso regression.

2.1.6. Drop LASSO

The modeling of scRNA-seq data may become complicated and challenging to create
a number of modeling and computational problems. For example, as there is a little
amount of RNA is present in each cell, a big proportion of polyadenylated RNA might be
stochastically lost during sample collection including cell lysis, reverse transcription, or
amplification. As a result, a good collection of genes may fail to be detected even when
they are expressed, introducing a type of error referred to as dropouts. This may introduce
a lot of zeros in the scRNA-seq data. The presence of excess zeros in the data might pose
considerable challenges to the analysis and biological interpretation, and may give rise to
new stochastic models for data shifting and scaling, and visualization or gene differential
analysis. As a remedy, Khalfaoui and Vert [12] proposed drop lasso to arrive at a solution
to the above problem. Drop lasso is a combination of the dropout regularization proposed
by [13,31]. The methodology creates a sparse linear model that appears to be robust to
the noise by artificially augmenting the training set with new examples. First, a random
permutation of rows is performed in matrix X with n observations and p predictor variables.
After that, each of the permuted rows in X undergo an element-wise scaling with a random
dropout mask—a vector of 1’s and 0’s —of length p to create a new matrix Xdrop. The drop
lasso estimator then optimizes the following:

β̂DL = argmin
β

(
1
n
||Y− Xdropβ||2 + λ||β||1), (11)

where the regularization parameter λ ≥ 0 is also known as the tuning parameter.

2.1.7. Big LASSO

Zeng and Breheny [19] implemented big lasso (in R), which can handle large-scale,
ultra-high-dimensional data. Their approach incorporates out-of-core computation con-
tinuously by importing data into computer memory only when it is required. This is
conducted with the support of memory-mapped files, which have the ability to store huge
amounts of data on the computer disk. big lasso also incorporates efficient feature selection,
which can make the computation much faster. The prime differences between big lasso and
other regular lasso methods are in their ability to do out-of-core parallel computation. The
estimator of the coefficients of big lasso can be obtained as

β̂BL = argmin
β

(
1
n
||Y− Xβ||2 + λ||β||1), (12)

where the tuning parameter is λ ≥ 0, which controls the amount of regularization to
be injected.

2.2. Clustering

Clustering is the process of grouping data instances into clusters so that the instances
in the same cluster have high similarity [32]. Two popular clustering methods in machine
learning used in this study are hierarchical and K-Means clustering. They are briefly
described below.

2.2.1. Hierarchical Clustering

In hierarchical clustering, the data values are placed into groups or clusters hierar-
chically [32]. The resulting clusters of data values are displayed in a tree-like diagram
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called a dendrogram. The resulting dendrogram, when displayed graphically, appears to
be useful in determining the optimal number of groups or clusters. In this study, we use
hierarchical clustering to group feature variables, specifically to group genes into clusters,
before sending them down to group lasso or SGL. The ability to group genes using hierar-
chical clustering bypasses the requirement of domain-specific knowledge of genes to use
prior groups.

2.2.2. K-Means Clustering

As in hierarchical clustering, the K-Means clustering algorithm also clusters data
values into groups. The K-Means algorithm starts by randomly selecting k centroids of
p-dimensional feature space [33]. The initial values of k are often supplied by the user. After
that, the clusters are formed by repeatedly assigning data values into their nearest centroid.
The algorithm continues iteratively by recalculating the centroids in such a way that the
within cluster sum of squared error is minimized. Often, regularization is performed to
determine the optimal number for k, which may improve prediction accuracy [34]. In this
study, we applied K-means clustering to cluster cells at the final step of the algorithm.

2.3. K-Fold Cross-Validation

Cross-validation (CV) is a method of randomly dividing data values into folds, which
we often call training and test folds, to calculate prediction performances of the models and
to tune model parameters [35]. In k-fold CV, the data values are first randomly divided into
k folds, of which k− 1 of them are used to train a model and the rest are used to test the
model. The test performances are then calculated for each of the k random folds separately
by swapping the folds for a total of k times. The average prediction performance from the k
test folds is used as the overall prediction performance of the model. In this study, we used
10-fold CV by assigning k = 10. As mentioned before, this 10-fold CV is also used to tune
the model hyperparameters.

2.4. Evaluation Metrics

To evaluate the performance, the methods are compared using the performance metrics
calculated from a confusion matrix [36] shown in Figure 1. True Positives (TP) are the
positive cases that are predicted positive by the ML model. Similarly, True Negatives (TN)
are the negative cases that are predicted negative. False Positives (FP) are the negative
cases that are incorrectly predicted as positive by the ML model. Likewise, False Negatives
(FN) are the positive cases that are misclassified as negative by the ML model.

Figure 1. A Confusion Matrix from which performance metrics are usually calculated.

2.4.1. Sensitivity

Sensitivity, also known as recall or True Positive Rate (TPR), is the proportion of
positive cases that are predicted positive out of all positive cases. This metric is useful to
detect positive cases when the classes are imbalanced [37].
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Sensitivity =
TP

TP + FN
.

2.4.2. Specificity

Specificity is the proportion of negative cases that were predicted as negative out of
all negative cases. False Positive Rate (FPR), calculated as

FPR = 1− Speci f icity,

is complementary to specificity. FNR is not sensitive to the changes in data distributions
and can be used with imbalanced data [37].

Speci f icity =
TN

FP + TN
.

2.4.3. Area under the Curve (AUC) of Receiver Operating Characteristic Curve (ROC)

An ROC is a two-dimensional plot that assigns the true positive rate (TPR) on the
y-axis and the false positive rate (FPR) on the x-axis [38]. Often, ROC is used to evaluate
the performance of a classifier in a binary classification problem. The AUC values under
an ROC curve evaluate the ranking performance of a classifier. In an unbalanced binary
classification problem, the AUC is a better assessment metric than accuracy. However,
the computational complexity of AUC is a bit higher than that of the other evaluation
metrics [39].

2.5. Proposed Algorithm for Feature Selection Using Penalized Regression Methods

In this paper, we propose a novel algorithm for feature selection using 5 penalized
regression methods (ridge, lasso, elastic net, drop lasso, and SGL). The proposed algorithm
aims to handle the ’large-p-small-n’ problem of scRNA-seq data through step-by-step
feature selection, as shown in Figure 2. The algorithm is designed as a sequential exe-
cution of data preprocessing, feature selection, clustering, and visualization. In the data
preprocessing stage, cell groups are assigned to class 0 or class 1 as per the labels in the
raw data. Then, to randomize the data points, the cells are shuffled within each class. In
the next step, all the genes with no variability in expression for all the cells are removed.
The data are then split as test (10% of the data) and training (90% of the data) sets for a
10-fold cross-validation. The training data are then used as the input for the next stage.
These conclude the data preprocessing stage. Next, our algorithm uses several penalized
regression methods for feature selection in two stages. The first stage of feature selection
is carried out by ridge, lasso, elastic net, and drop lasso methods. Each algorithm selects
genes that appear to be important. Here, the genes with coefficients above the mean of
the absolute value of coefficients are selected. The union of all the top important genes
from the 4 penalized regression methods is used as the input for the next stage. The union
of top important genes contains less than the 50% of the genes in the original data. This
reduced subset of genes is grouped using Hierarchical Clustering. Then, SGL is applied
using the groups of important genes from Hierarchical Clustering. The resulting model
with the selected set of genes is applied on the test data for prediction. As we have used
10-fold CV, this process is repeated for a total of 10 times. The algorithm repeats the process
of selecting important genes using the SGL model coefficients. The selected genes are then
visualized in a gene vs. coefficient plot. This final set of genes is then used to cluster cell
types in the scRNA-seq data using the K-Means clustering. The steps to implement the
proposed algorithm are presented in Algorithm 1.
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Algorithm 1 Steps to implement the proposed algorithm

1. Load data set into R and assign classes 1 and 0 to the two selected group of cells to
form a binary classification problem.

2. Shuffle cells within each class to randomize the data points.
3. Remove genes with no variability in expression across all cells.
4. Split the data set into training (90%) and test (10%) for 10-fold cross validation.

(a) Fit ridge, lasso, elastic net, and drop lasso.
(b) Find the top important genes from each method. The top genes are the genes

that have coefficients above a cut off (mean of absolute value of coefficients).
(c) Form a gene pool by taking union of the top important genes from the 4 models;

for instance, Figures 3 and 4 represent the gene pool of data sets GSE123818
and GSE71585, respectively.

(d) Fit SGL with the new gene pool pre-grouped by hierarchical clustering.
(e) Save the coefficients of SGL.
(f) Repeat the steps for a 10-fold CV.

5. Calculate the average of coefficients for each gene across the 10 folds and sort the
genes.

6. Visualize the gene versus coefficients plot and select the final set of genes using an
elbow curve.

7. Cluster all the cells by applying K-means clustering on the top important genes.

Figure 2. Schematic of the proposed algorithm for feature selection using penalized regression
methods. There is a considerable reduction in the number of genes prior to the execution SGL. The
top important genes selected by SGL are used to cluster cell groups using K-means clustering.
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Figure 3. The gene pool of data set GSE71585 formed by taking the union of top important genes
from the ridge, lasso, elastic net, and drop lasso. For this data set, the top important genes from
drop lasso had no intersection with the top genes from other 3 methods. In the proposed algorithm,
gene pool is formed with the union of the top important genes from the 4 methods rather than an
intersection because there may not always be an intersection due to differences in regularization used.

Figure 4. The gene pool of data set GSE123818 formed by taking the union of top important genes
from ridge, lasso, elastic net, and drop lasso.

3. Experimental Data and Research Design
3.1. Experimental Data

There are a total of 5 data sets used in this study. To compare the penalized regression
methods, 4 scRNA-seq data sets from 3 different species (Human, mouse, and plant) were
used. One additional data set was used to compare the performance of the proposed
method with the best-performing single method (SGL). This study used real data sets



Biology 2022, 11, 1495 11 of 28

rather than simulated data sets because real data sets often contain variables with complex
interrelationships that are difficult to reproduce using a simulation. Two data sets were
downloaded from Conquer (http://imlspenticton.uzh.ch:3838/conquer/ accessed on 1 July
2021), a curated database of continuously processed, analysis-ready, and well-documented
scRNA-seq data. There are over 40 publicly available scRNA-seq data sets on this website,
and they all have the count and transcripts per million (TPM) estimates for genes, qual-
ity control, and exploratory analysis reports. The remaining three datasets (GSE123818,
GSE81861, and GSE157997) are all available from the Gene Expression Omnibus (GEO) and
can be retrieved using the accession numbers. We summarize these data sets in Table 1
including the number of genes and cells, GEO accession numbers, organism, technology
used, and the source links. In our study, the cells were separated into two groups (classes)
as per the label from each of the original experiments. The data set GSE81861 had batch
effect correction in the original study. For the other data sets, it is not clear if batch effect
correction was carried out from the descriptions of the original experiments. No additional
batch effect correction was conducted in the data preprocessing stage for this research. We
did not consider any other biological effects, which may be considered a potential limitation
of this study.

Table 1. Experimental data sets.

Data Set
(Species) Genes Cells Organism Technology Source

GSE60749
(Mouse) 22,443 183:84 Mus

Musculus
Illumina

HiSeq conquer

GSE71585
(Mouse) 24,057 79:57 Mus

Musculus
Fluidigm
BioMark conquer

GSE123818
(Plant) 27,629 1099:1099 Arabidopsis

Thaliana
Illumina
NextSeq GEO

GSE81861
(Human) 57,241 272:160 Homo

Sapiens

Fluidigm
based

scRNA-seq
protocol

GEO

GSE157997
(Human) 33,694 1504:1504 Homo

Sapiens
Illumina

NextSeq 500 GEO

3.1.1. Gene Expression Data from Mice

The Mus musculus data set GSE60749 was generated by single-cell expression profiling
of PSCs under different chemical and genetic perturbations [40]. In the original study,
gene expression variability in Pluripotent Stem Cells (PSCs) was investigated and their
expression levels were quantified as transcripts per million reads (TPM). In our study, 183
individual v6.5 Mouse Embryonic Stem Cells (mESCs) and 84 Dgcr8 −/− mESCs that lack
mature miRNAs (knockout of a miRNA processing factor) were selected as two classes.
The 183 cells were labeled as class 1 and the 84 cells as class 0. There were 22,443 genes in
the original data. After removing the genes with no expression variance across all cells, we
had 15,508 genes in total.

The Mus musculus data set GSE71585 was generated by scRNA-seq of adult mouse
primary visual cortex in a study [41] conducted to understand cell type diversity in the
nervous system. The original data set contains 1809 cells and 24057 genes, of which 79
Ntsr1_tdTpositive_cell were labeled as class 0 and 57 Ntsr1_tdTnegative_cell as class 1.
After conducting a similar process as in the previous data set (removing genes with no
expression variance), we had 17,870 genes in total.

3.1.2. Gene Expression Data from Plant

The Arabidopsis Thaliana data set GSE123818 came from the study of Spatiotemporal
Developmental Trajectories in the Arabidopsis Root [42]. The original study was to inves-
tigate Arabidopsis root cells in different developmental fates and times. Using Illumina

http://imlspenticton.uzh.ch:3838/conquer/
http://imlspenticton.uzh.ch:3838/conquer/
http://imlspenticton.uzh.ch:3838/conquer/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123818
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81861
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE157996
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NextSeq technique, the authors generated mRNA profiles of 6-day-old wild-type (wt) and
shortroot-knockout (shr) Arabidopsis thaliana roots by deep sequencing of single-cell and
bulk RNA libraries (wild type only), in duplicate (bulk and wild-type single cell) and
singlicate (shr-3). The original data set contains 4727 wt cells and 1099 shr cells. Since there
are significant differences in the numbers of cells of the two types, we selected all the 1099
shr cells and randomly selected 1099 cells from the total 4727 wt cells to create a balanced
data set for our study. Then, after removing the genes with no variance in expressions, we
had 24,075 genes in total.

3.1.3. Gene Expression Data from Human

The data set relating homo sapiens GSE81861 is from the analysis of transcriptional
heterogeneity in colorectal tumors [43]. Intratumoral heterogeneity is a major obstacle to
cancer treatment and a significant confounding factor in bulk-tumor profiling. A study [43]
was conducted on the transcriptional heterogeneity in colorectal tumors and their microen-
vironments using scRNA-seq. The original data set contains 272 primary colorectal tumor
cells and 160 matched normal mucosa cells. The 272 primary colorectal tumor cells are la-
beled as class 1 and 160 matched normal mucosa cells as class 0. With the shape differences
of the original data compared with other data sets, this data set was then transposed to
form a matrix of 432 rows (cells) and 57,241 columns (genes). After removing all the genes
with no variance in expressions among all cells, we had 38,090 genes in total.

The last data set GSE157997 belongs to studies relating homo sapiens and Mus mus-
culus. This data set is a super series of the subseries GSE157995 and GSE157996. From
the subseries, GSE157996 (homo sapiens) was selected for further analysis. This data set
was generated from an experiment to investigate human lung epithelial cell subpopulation
between healthy donors and idiopathic pulmonary fibrosis (IPF) patients [44]. IPF is a fatal
lung disease with life expectancy of 3–5 years. There were 6 healthy donors and 6 IPF
Patients. The cells from each subject were labeled separately. Samples of normal donor 1
and IPF patient 1 were selected for analysis in this study. For this data set, the two groups
of cells were collected and sequenced separately from two different people. The plan is to
find the topmost differentiated genes between the healthy donor and IPF patient. As binary
classification is studied in this research, any subpopulations in the Lin–EpCAM+ cells are
not considered for further analysis. In this data set, there are 33,694 genes in the gene
expression profile. There are 2788 IPF patient cells and 1504 healthy donor cells. A total
of 1504 cells were randomly sampled from IPF patient cells to make the two classes more
balanced. Healthy donor samples were assigned the value of 0 and IPF patient samples
were assigned the value of 1. All the genes that have the same value across all the cells were
removed as a part of data preprocessing, which reduced the number of genes to 24,057.

3.2. Research Design

We started the analysis by preprocessing the data sets to make sure they were com-
patible for use in different R packages used. Data sets are available as a single CSV file or
multiple files with genes as rows and cells in the columns. Multiple files were combined
into a single file and transposed to obtain a single matrix with cells as rows and genes in
the columns.

In this research, we focused on binary classification. Therefore, two cell groups were
created and labeled as classes 0 and 1 for each experimental data set. Cells were also shuffled
within each class and for the data sets with significant differences in the numbers of samples
for the two classes. Therefore, we balanced the data sets before conducting analysis. For
all the data sets, genes with no expression variance across all cells were removed. We
then verified how each method performs in terms of AUC, computational time, and cross-
validation with the different scRNA-seq data used. Here, a 10-fold stratified cross-validation
was performed to calculate the performance metrics. We used different hyperparameters
for each method, which are shown in Table 2. We used hierarchical clustering for grouping
variables prior to sending down to group lasso and sparse group lasso.
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Table 2. Performance comparison of the methods (Metric = Average CV-AUC). Note that the R
packages for SGL, group lasso, and big lasso methods internally calculate models for a vector of λ

values and select the λ (lambdamax), which minimizes prediction error. For ridge, lasso, and elastic
net, the hyper-parameter λ is selected as lambda.1se. lambda.1se is the largest value of λ for which
error is within 1 standard error of the cross-validated errors for the best model [45].

Method R Package 60749 71585 123818 81861

Sparse Group Lasso (α = 0.95, λ = lambdamax) SGL 1 0.98 0.92 0.83
Group Lasso (λ = lambdamax) grplasso 1 0.98 0.99 0.87
Drop Lasso (λ = 0.001) droplasso 0.99 0.94 0.97 0.87
Big Lasso (λ = lambdamax) biglasso 1 1 0.95 0.80
Lasso (α = 1, λ = lambda.1se) glmnet 1 0.96 0.94 0.85
Elastic net (α = 0.5, λ = lambda.1se) glmnet 1 0.63 0.93 0.86
Ridge (α = 0, λ = lambda.1se) glmnet 0.99 0.84 0.90 0.71

After calculating the performance metrics, the best-performing methods were selected
and combined to form the proposed algorithm for feature selection using penalized regres-
sion methods. Finally, the performance metrics of the proposed algorithm were compared
with those of the top-performing method. Figure 2 illustrates the proposed algorithm for
feature selection using penalized regression methods. First, we used 4 data sets (GSE60749,
GSE71585, GSE81861, and GSE123818) for benchmarking the penalized regression methods.
Second, the fifth data set GSE157997 was used to test results of the proposed method on
data not used during benchmarking methods. Note that we could extend the study to
include more cell groups and verify methods for the multi-classification problem in the
future; however, in the current study, we focus on comparing the methods for binary
classification only.

Hardware Requirements

All the experiments are conducted on an Ubuntu 20.04.4 LTS (GNU/Linux 5.4.0-
100-generic x86_64) virtual machine, hosted by Compute Canada, with 32 GB RAM. The
programming language used is R Project for Statistical Computing version 4.1.2 [46].

4. Results
4.1. Benchmarking Penalized Regression

The first objective of this study is to compare the performance of the selected penalized
regression methods. The results in terms of cross-validated AUC (CV-AUC) and compu-
tational time are shown in Tables 2 and 3, respectively. Figure 5 shows the CV-AUC by
method for the four data sets. From Table 2 and Figure 5, we observe that the top 5 methods
in order of importance are SGL, grplasso, droplasso, biglasso, and lasso. As evident from
Table 4, the variance of CV-AUC is close to 0 for all methods when rounded to 2 decimal
points. Notice that SGL and grplasso outperform the other methods in terms of CV-AUC,
whereas ridge regression method has the least CV-AUC. This could be because grplasso
and SGL incorporated grouping of genes into the model, whereas ridge regression treats all
the genes equally. After performing Friedman test (a non-parametric statistical test) with
the CV-AUC results of the 7 methods, we found statistically significant differences between
their performance at p-value = 15%. An Analysis of Variance (ANOVA) test such as the
Friedman test alone cannot reveal which of these methods has a significant difference in
performance [47]. Therefore, we use a post-hoc test in the next step. Post-hoc tests are
statistical tests carried out on the subgroups in data already tested in other analyses such
as an ANOVA test [47]. A Nemenyi test is one such post-hoc test. A Nemenyi test on our
results revealed that the difference in performance is between SGL and ridge regression.
However, more data sets may need to be analyzed to further verify these results.
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Table 3. Performance comparison for the methods (Metric = Average computation time in seconds).

Method R Package GSE60749 GSE71585 GSE123818 GSE81861

Sparse Group Lasso SGL 6.53 1.73 5.66 2.97
Group Lasso grplasso 1.12 2.51 3.78 29.66
Drop Lasso droplasso 13.57 7.18 3.36 59.33
Big Lasso biglasso 3.11 4.77 20.30 7.23
Lasso glmnet 3.18 2.76 48.54 13.39
Elastic net glmnet 3.57 2.66 51.51 13.59
Ridge glmnet 58.07 26.71 17.58 3.77

Figure 5. Average Cross-validation AUC across all four data sets. Even though group lasso has better
AUC than SGL, SGL is better in terms of gene selection. Selection of the differentially expressed genes
is of more importance for a scRNA-seq application than better prediction.

Table 4. Variance of CV-AUC.

Method R Package GSE60749 GSE71585 GSE123818 GSE81861

Sparse Group Lasso SGL 0 0.0018 0.0012 0.0018
Group Lasso grplasso 0 0.0018 0.0000 0.0017
Drop Lasso droplasso 0.0004 0.0047 0.0003 0.0006
Big Lasso biglasso 0 0 0.0061 0.0061
Lasso glmnet 0 0.0029 0.0003 0.0017
Elastic Net glmnet 0 0.0406 0.0007 0.0021
Ridge glmnet 0.0004 0.0042 0.0003 0.0089

After comparing the computation time of the methods given in Table 3, it is evident
that the SGL method has the least average computation time across the data sets. Ridge
regression requires the highest computation time on average across the four data sets. This
is because of its computational complexity arising from using all of the features (genes) in
the data. SGL can deselect an entire group of genes or some of the genes within a group,
which reduces the computational complexity. Data set GSE60749 has lesser computation
time than GSE81861 across all methods because it has fewer non-zero coefficients. Average
computation time for lasso, elastic net, and big lasso increased with an increase in the
number of samples in the data.

4.2. Performance of the Proposed Algorithm for Feature Selection

The second objective of this study was to combine the top-performing penalized
regression methods to improve predictive AUC and perform gene selection. From the
discussion of the results of the first objective, we observed that SGL and grplasso were
better candidates to form a new method. In terms of gene selection, SGL outperforms
grplasso. SGL could identify the top important genes in one fold of 10-fold CV, whereas
grplasso takes multiple folds to obtain the same result. In other words, the results of top
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important genes changed from fold to fold of the 10-fold CV for group lasso. Therefore,
SGL was chosen over grplasso for the proposed algorithm. SGL achieves better AUC
than biglasso in comparable time for data sets of size 63 MB to 252 MB when tested on a
computer with a 32 GB processor. Since biglasso did not show a significant improvement
in computation time relative to SGL, biglasso is not included in the proposed method.

To develop the proposed algorithm using penalized regressions, we selected the ridge,
lasso, elastic net, and droplasso to form a filter that produces a gene pool with the number
of genes reduced considerably relative to all the available genes. The gene pool was formed
by taking a union of the top important genes selected from the four methods as the top
important genes have some variations between methods. A union of top important genes
is, therefore, more likely to capture the important and differentially expressed genes. The
gene pool thus formed is grouped and sent down to SGL to calculate predictive AUC.

The experimental data used to test the performance of the proposed method include
all four data sets in the benchmarking, and also a new independent data set (GSE157997).
This data set has the largest number of cells among all five data sets, and was not used to
develop the proposed algorithm. It is therefore expected to generate a fair and independent
comparison between the proposed method and others.

In the proposed algorithm for feature selection using penalized regression methods,
feature selection is performed in two stages. The first stage creates a gene pool that has a
significantly reduced number of genes (less than 50%) compared to the original data as
shown in Table 5. Then, the gene pool is grouped using hierarchical clustering and the
grouping information is used as input to SGL.

Table 5. Comparison of performance (AUC) between SGL with all genes and SGL using the proposed
method, which reduces the number of genes by the union of the selected genes from ridge, lasso,
elastic net, and droplasso. The proposed method is consistently improving over SGL.

Data Set All Genes Gene Pool SGL Proposed
Method

GSE60749 22,443 5965 1 1
GSE71585 24,057 5448 0.98 1
GSE123818 27,629 10,857 0.83 0.85
GSE81861 57,241 5823 0.92 0.94
GSE157997 33,694 15,386 0.9 0.9

From our experiments, the hierarchical clustering and SGL originally required a 32
GB RAM processor for the computation. With the contribution of the proposed method,
large numbers of genes are reduced in the gene pool. We notice that the proposed method
can be executed on an 8 GB RAM processor for the following data sets: GSEGSE60749
and GSE71585. The proposed algorithm can be used for other high-dimensional data sets
and feature selection as well. As shown in Table 5, this method consistently improves
the predictive AUC of SGL. The genes in the SGL model are visualized in a gene versus
coefficients plot to select the final subset of genes. Then, this subset of genes is used for cell
clustering of each data set using K-Means clustering.

Essentially, the proposed algorithm tackles the “large-p-small-n” problem by applying
feature selection, on the high-dimensional scRNA-seq data, in a sequential fashion. At each
stage, different penalized regression methods are used for feature selection. The first stage
(ridge, lasso, elastic net, and drop lasso) reduces the number of genes to less than 50% of
the original size, and the second stage (SGL) reduces it further to make the number of genes
comparable to the number of cells.

5. Discussion

In this section, we discuss the final subset of genes selected by the proposed method
and the cell clustering within each data set to reveal potential biological interpretation
and meanings.



Biology 2022, 11, 1495 16 of 28

5.1. Mus Musculus Dataset GSE60749

Figure 6 shows the genes versus coefficients plot for the first data set GSE60749
(mESCs). The most important genes identified by the proposed method are 44441, 44260,
44454, 44446, 44450, 44440, Pbld, Lifr, Hist2h4, and AK203176 (Table 6). As in Figure 7, the
data set GSE60749 after clustering by the top important genes has well-separated classes.
In addition, we notice that the top genes (44441, 44260, 44454, and 44440) turned out to be
Piwi-interacting RNAs (piRNAs). piRNAs are non-coding RNAs whose function is largely
unclear to the biomedical field. According to a study by [48], these RNAs are abundant
in testes and have interaction with a murine Piwi protein. This study also suggested that
piRNAs could be potentially involved in gametogenesis due to their abundance in germline
cells and murine Piwi protein mutation causing sterility in males. A study [49] published
in 2011 investigated the relationship between piRNAs and carcinogenesis, and identified
piRNAs as a potential marker for cancer diagnosis. Even though the exact function of
these piRNAs is unknown, the available study proves that the proposed algorithm selected
the most relevant genes. The next two genes Pbld and Lifr are also involved in pertinent
biological pathways. The Pbld gene is linked to negative regulation of transforming growth
factor beta receptor signaling pathway and Lifr is linked to the ESC pluripotency pathway.
The original study by [40] for the data set GSE60749 also suggests that Lifr is a marker gene.

Figure 6. Genes versus coefficients plot for the data set GSE60749. Here, piRNA 44441 is the top
important gene.

Figure 7. Data set GSE60749: Cells are clustered using the selected genes. The top gene (piRNA
44441) alone can perfectly differentiate two cell groups as there is no overlap of cell clusters.
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Table 6. Set of selected genes for GSE60749.

Gene Function Source

44441 piRNA. Function unknown. ENA

44260 piRNA. Function unknown. NCBI

44454 piRNA. Function unknown. RNA Central

44446 Predicted gene. Function unknown. RGD

44450 Predicted gene. Function unknown. RGD

44440 piRNA. Function unknown. piRNAdb

Pbld

Predicted to enable identical protein binding activity
and isomerase activity. Predicted to be involved in
maintenance of gastrointestinal epithelium; negative
regulation of SMAD protein signal transduction; and
negative regulation of transforming growth factor beta
receptor signaling pathway.

NCBI

Lifr

Predicted to enable several functions, including ciliary
neurotrophic factor receptor binding activity; growth
factor binding activity; and leukemia inhibitory factor
receptor activity. This gene has also been discussed in
nine pathways including ESC pluripotency pathways.

NCBI

Hist2h4

It encodes a replication-dependent histone that is a mem-
ber of the histone H4 family (basic nuclear proteins
responsible for the nucleosome structure of the chromo-
somal fiber in eukaryotes). This gene is found in the
Type II interferon signaling (IFNG) pathway.

NCBI

AK203176

Predicted to enable GTP binding activity; double-
stranded RNA binding activity; and ubiquitin protein
ligase binding activity. Acts upstream of or within cellu-
lar response to interleukin-4.

NCBI

5.2. Mus Musculu Dataset GSE71585

The genes versus coefficient plot for the second data set GSE71585 is shown in Figure 8
and their functions are listed in Table 7.

Figure 8. Genes versus coefficients plot for the data set GSE71585. Calm2 and Spap25 are the two
most important genes.

https://www.ebi.ac.uk/ena/browser/view/Non-coding:DQ576329.1:1..30:ncRNA
https://www.ncbi.nlm.nih.gov/nuccore/DQ576148?report=GenBank
https://rnacentral.org/rna/URS0000AAA1C7/10090
https://rgd.mcw.edu/rgdweb/report/gene/main.html?id=15562692
https://rgd.mcw.edu/rgdweb/report/gene/main.html?id=15561668
https://www.pirnadb.org/information/pirna/rno-piR-44440
https://www.ncbi.nlm.nih.gov/gene?cmd=Retrieve&dopt=Graphics&list_uids=68371
https://www.ncbi.nlm.nih.gov/gene/16880
https://www.ncbi.nlm.nih.gov/gene/?term=Hist2h4+mus+musculus
https://www.ncbi.nlm.nih.gov/gene?cmd=retrieve&list_uids=22143
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Table 7. Final set of selected genes for GSE71585.

Gene Function Source

Calm2

This gene enables calcium-dependent protein binding activ-
ity. It is involved in the Alzheimer’s disease pathway and
Glycogen metabolism pathway. It is also involved in sev-
eral important processes including regulation of response
to tumor cell. Human ortholog of this gene is implicated in
long QT syndrome 15.

NCBI

Snap25

This gene enables syntaxin-1 binding activity. It is used
to study attention deficit hyperactivity disorder; obesity;
schizophrenia; and type 2 diabetes mellitus. Human or-
tholog of this gene is implicated in Down syndrome and
congenital myasthenic syndrome 18. It is found in 10 dif-
ferent pathways.

NCBI

0610005C13Rik This gene is expressed in several structures, including heart;
intestine; liver; lung; and metanephros. NCBI

0610007C21Rik

This gene is replaced with name Atraid. It is predicted to
be involved in several processes, including negative reg-
ulation of osteoblast proliferation; positive regulation of
bone mineralization; and positive regulation of osteoblast
differentiation.

NCBI

The proposed algorithm for feature selection can cluster the primary visual cortex
cell groups well (Figure 9) with the topmost important genes. The final genes selected
are Calm2, Snap25, 0610005C13Rik, and 0610007C21Rik. This data set contains Ntsr1
(neurotensin receptor 1) tdT (tdTomato—an exceptionally bright red fluorescent protein)
positive cells and Ntsr1 tdT negative cells. Calm2 gene is active in the cortex, frontal lobe,
and a few other organs. It enables N-terminal myristoylation domain binding, calcium
ion binding, and protein binding. This gene is also involved in some important pathways
such as Alzheimer’s disease and Glycogen Metabolism. From the information published
on NCBI, we found that several infants with severe forms of the long-QT syndrome
(LQTS) who displayed life-threatening ventricular arrhythmias together with delayed
neurodevelopment and epilepsy were found to have mutations in either this gene or
another member of the calmodulin gene family [50]. The second gene, Snap25, is also an
important gene that is involved in 10 biological pathways. Snap25 is a known pan-neuronal
marker gene as per the original study [41]. A variety of disorders such as attention deficit
hyperactivity disorder, schizophrenia, and type 2 diabetes mellitus are studied using this
gene as shown in NCBI [51]. The relationship between knockout of tdT protein in Ntsr1
cells and the genes selected by the proposed method warrants further examination.

https://www.ncbi.nlm.nih.gov/gene/12314
https://www.ncbi.nlm.nih.gov/gene/20614
https://www.ncbi.nlm.nih.gov/gene/?term=0610005C13Rik
https://www.ncbi.nlm.nih.gov/gene/381629
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Figure 9. Data set GSE71585: Cells are clustered using the selected set of genes. The two most
important genes (calm2 and Snap25) can differentiate two cell groups very well, as there is minimal
overlap of cell clusters.

5.3. Arabidopsis Thaliana Dataset GSE123818

The most important genes for the data set GSE123818 found by the proposed method
are AT2G43610, AT4G05320, AT2G07698, and AT3G51750 (Figure 10). This data set has more
overlap between cell clusters compared to that of the other data sets (Figure 11). Table 8
lists the final set of selected genes and their functions. The first gene, AT2G43610, is a gene
coding Chitinase family protein, and it acts upstream of or within the root development
process of Arabidopsis thaliana [52]. It is involved in the Chitin degradation II pathway.
The AT2G43610 gene was reported as a marker gene by a study [53] on cell-cycle-regulated
gene expression in Arabidopsis. The second gene AT4G05320, also known as Polyubiquitin
10, is one of five polyubiquitin genes in Arabidopsis thaliana. These genes encode ubiquitin
protein that covalently attaches to substrate proteins for their targeted degradation [54].
The AT2G07698 gene is expressed during the seed and seedling development stages and
involved in proton transmembrane transport [55]. The gene AT3G51750 encodes a protein
that acts upstream of or within the root development process [56]. From the results, we see
that the proposed method has selected genes that are involved in the development of the
root cells. Our findings further support the study of these genes regarding the development
of root cells in Arabidopsis Thaliana.

Figure 10. Genes versus coefficients plot for the data set GSE123818. Here, AT2G43610 and
AT4G05320 are the two most important genes.
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Table 8. The final set of selected genes from GSE123818.

Gene Function Source

AT2G43610
This gene is found in growth and devlopmental stages
such as root development. It enables chitinase activity
and protein binding.

TAIR

AT4G05320

One of five polyubiquitin genes in Arabidopsis thaliana.
These genes encode the highly conserved 76-amino-acid
protein ubiquitin that is covalently attached to substrate
proteins targeting most for degradation. This gene en-
ables mRNA binding, protein tag, and ubiquitin protein
ligase binding. The mRNA is cell-to-cell mobile.

TAIR

AT2G07698

This gene is expressed in growth and developmental
stages such as seed and seedling development. It en-
ables ADP binding, ATP binding, poly(U) RNA binding,
and zinc ion binding.

TAIR

AT3G51750

This gene is expressed during initial leaves-visible
stages and flowering stages. The biological processes
associated with this gene are cellular lipid metabolic pro-
cess, response to inorganic substance, response to light
stimulus, root development, and seed development.

TAIR

Figure 11. Data set GSE123818: Cells are clustered with the final set of selected genes. The top two
important genes (AT2G43610 and AT4G05320) can differentiate the two cell groups with some overlap.

5.4. Homo Sapiens Dataset GSE81861

The set of selected genes by the proposed method in the GSE81861 data set are
shown in the genes versus coefficients plot (Figure 12). For GSE81861, cell groups are
clustered with some overlap in classes (Figure 13). Table 9 lists the final set of selected
genes and their functions. The most important genes are FABP1, SAT1, PHGR1, LGALS4,
FRYL, MT1E, HSP90AA1, and HNRNPH1. The first two genes, FABP1 and SAT1, are
important and each is involved in 13 different biological pathways. FABP1 is involved in
fatty acid uptake, transport, and metabolism. It is also found in Peroxisome proliferator-
activated receptor (PPAR) signaling pathway, PPAR-alpha pathway, fatty acid transporters,
and metabolism [57]. The FABP1 gene has also been identified as a novel prognostic
marker for gastric cancer by a study [58] recently published in June 2022. The second
gene SAT1 enables N-acetyltransferase activity and spermidine binding. It participates

https://www.arabidopsis.org/servlets/TairObject?type=locus&name=At2g43610
https://arabidopsis.org/servlets/TairObject?type=locus&name=AT4G05320
https://arabidopsis.org/servlets/TairObject?type=locus&name=AT2G07698
https://arabidopsis.org/servlets/TairObject?type=locus&name=AT3G51750
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in pathways such as metabolism, spermine and spermidine degradation I, and NOTCH1
regulation of endothelial cell calcification pathway. Defects in this gene are associated with
keratosis follicularis spinulosa decalvans (KFSD) [59]. The third gene LGALS4 codes the
galectin proteins. Galectins are a family of beta-galactoside-binding proteins implicated
in modulating cell–cell and cell–matrix interactions. The LGALS4 gene is underexpressed
in colorectal cancer [60]. The fourth gene HSP90AA1 is found in 115 biological pathways
such as signaling by EGFR, EGFRvIII, and ERBB2 in Cancer [61]. The HNRNPH1 gene is
identified in 12 biological pathways. This gene may be involved in hereditary lymphedema
type I. Knockdown of heterogeneous nuclear ribonucleoprotein H1 (HNRNPH1) by siRNA
inhibits the early stages of HIV-1 replication in 293T cells infected with VSV-G pseudotyped
HIV-1 [62].

Looking at Table 9, we observe a remarkable connection between the topmost impor-
tant genes and HIV-1. We note that four genes (SAT1, MT1E, HSP90AA1, and HNRNPH1)
from a colorectal tumor tissue have interactions with HIV-1 proteins. Cancer and HIV-1
association has been subject to a variety of research [63–66]. These factors could potentially
lead to the finding that the genes selected by the proposed algorithm are pertinent to
human colorectal cancer.

Table 9. Final set of selected genes from GSE81861.

Gene Function Source

FABP1
This gene encodes the fatty acid binding protein found
in liver. Biological pathways—13, such as Peroxisome
proliferator-activated receptor (PPAR) signaling pathway.

NCBI

SAT1
The protein encoded by this gene is a rate-limiting enzyme
in the catabolic pathway of polyamine metabolism. Biolog-
ical pathways—13. It has HIV-1 interaction and KFSD.

NCBI

PHGR1 It is a protein coding gene with biased expression in colon
and small intestine. NCBI

LGALS4

The galectins are implicated in modulating cell–cell and
cell–matrix interactions. The expression of this gene is
restricted to the small intestine, colon, and rectum. It is
underexpressed in colorectal cancer.

NCBI

FRYL
This gene is predicted to be involved in cell morphogenesis
and neuron projection development. It is predicted to be
active in the site of polarized growth.

NCBI

MT1E

Biological pathways—5, such as Zinc homeostasis and Cop-
per homeostasis. HIV-1 Tat upregulates the interferon-
responsive gene expression of Metallothionein, an effect
that likely facilitates the expansion of HIV-1 infection.

NCBI

HSP90AA1

The protein encoded by this gene aids in the proper folding
of specific target proteins. Biological pathways—115, such
as programmed cell death and innate immune system. It
has strong interactions with HIV-1 proteins.

NCBI

HNRNPH1

This gene may be associated with hereditary lymphedema
type I. Biological pathways—12, such as mRNA processing.
Knockdown of HNRNPH1 inhibits the early stages of HIV-1
replication in 293T cells.

NCBI

https://www.ncbi.nlm.nih.gov/gene/2168
https://www.ncbi.nlm.nih.gov/gene/6303
https://www.ncbi.nlm.nih.gov/gene/644844
https://www.ncbi.nlm.nih.gov/gene/3960
https://www.ncbi.nlm.nih.gov/gene/285527
https://www.ncbi.nlm.nih.gov/gene/4493
https://www.ncbi.nlm.nih.gov/gene/3320
https://www.ncbi.nlm.nih.gov/gene/3187
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Figure 12. Genes versus coefficients plot for the data set GSE81861. FABP1 and SAT1 are the two
most important genes.

Figure 13. Data set GSE81861: Cells are clustered with the final set of selected genes. The two most
important genes (FABP1 and SAT1) can differentiate two cell groups very well as there is some
overlap of cell clusters.

5.5. Homo Sapiens Dataset GSE157997

The last data set GSE157997 is used to independently evaluate the performance of the
proposed algorithm with others. In terms of AUC, the proposed algorithm performs the
same as the best-performing single method (SGL) (Figure 5). The proposed method shows
promising results in terms of gene selection as well. The genes versus model coefficients
plot is shown in Figure 14. Table 10 lists the final set of selected genes and their functions.
As shown in Figure 15, there is minimal overlap of cells in the two groups. The topmost
important genes found with the new method are TMSB4X, S100A6, B2M, SEPW1, and
HLAB-1. Notably, the TMSB4X gene is involved in cell proliferation, migration, and
differentiation and is also linked to tumorigenesis. Several existing studies [67,68] have
identified TMSB4X gene as a marker gene for cancer. The second gene S100A6 is involved
in the up-regulation of fibroblast proliferation. The B2M gene is involved in 25 pathways
including the immune system, as is the HLA-B gene, which also plays a central role in
the immune system. Inflammation and immunity are also included in the pathogenesis of



Biology 2022, 11, 1495 23 of 28

IPF [44]. Therefore, these genes are also related to IPF. Evidently, the proposed algorithm
can select a highly relevant subset of genes.

The penalized regression methods select genes that are highly different in their expres-
sion between cell types. In our study, the penalized regression methods were evaluated for
their ability to predict cell types based on the genes differentially expressed between them.
Then, we proposed an algorithm using these penalized regression methods to select genes
through successive stages of feature selection to improve cell type prediction performance
via AUC. We have shown that, for all data sets, some of the top genes from the subset of
differentially expressed genes selected by the proposed algorithm are known marker genes.
We suggest using the genes identified by our proposed method as a pool of candidates for
the future wet-lab experiments for verification.

Table 10. Final set of selected genes for GSE157997.

Gene Function Source

TMSB4X

This gene encodes an actin sequestering protein that
plays a role in the regulation of actin polymerization.
The protein is also involved in cell proliferation, migra-
tion, and differentiation. It is found in three pathways—
notably, the VEGFA-VEGFR2 signaling pathway. This
pathway is related to Angiogenesis. Angiogenesis is
the formation of new blood vessels from pre-existing
vasculature; is central to several physiological condi-
tions, from embryogenesis to wound healing in adults;
and is a hallmark of pathological conditions such as
tumorigenesis. Tumorigenesis is the gain of malignant
properties in normal cells, including primary dedifferen-
tiation, fast proliferation, metastasis, evasion of apopto-
sis and immunosurveillance, dysregulated metabolism
and epigenetics, etc., which have been generalized as
the hallmarks of cancer.

NCBI

S100A6
Chromosomal rearrangements and altered expression
of this gene have been implicated in melanoma. It is
involved in the up-regulation of fibroblast proliferation.

NCBI

B2M

The encoded antimicrobial protein displays antibacterial
activity in amniotic fluid. A mutation in this gene has
been shown to result in hypercatabolic hypoproteinemia.
Related to 25 pathways including disease, HIV, and
immune system.

NCBI

SEPW1

Studies in mice show that selenoprotein is involved in
muscle growth and differentiation, and in the protec-
tion of neurons from oxidative stress during neuronal
development. This gene is related to two pathways.

NCBI

HLA-B

The protein encoded by this gene plays a central role
in the immune system. This gene has HIV interaction
and is linked to four pathways. This gene is particularly
relevant to IPF because immunity is a pathogenesis of
IPF [44].

NCBI

https://www.ncbi.nlm.nih.gov/gene/7114
https://www.ncbi.nlm.nih.gov/gene/6277
https://www.ncbi.nlm.nih.gov/gene/567
https://www.ncbi.nlm.nih.gov/gene/6415
https://www.ncbi.nlm.nih.gov/gene/3106
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Figure 14. GSE157997 data: cell clustered (K-Means) with the final set of selected genes. The top two
important genes are TMSB4X and S100A6. There is some overlap of the cell clusters from healthy
donor and IPF patient.

Figure 15. GSE157997 data: cell clustered (K-Means) with the final set of selected genes. The top two
important genes are TMSB4X and S100A6. There is some overlap of the cell clusters from healthy
donor and IPF patient.

6. Conclusions

This study benchmarks several state-of-the-art penalized regression methods on their
performance to scRNA-seq classification. Based on the findings of the benchmarking, we
proposed an algorithm of penalized regressions, which improved the prediction perfor-
mance.

The results and findings show that the SGL method outperforms other methods in
terms of predictive AUC and computation time. We note that the penalized regression
methods can have many hyperparameters, and changes in these hyperparameters may
affect the results. For instance, the number of groups of genes and the methods used for
grouping the genes can cause differences in predictive AUC, computation time, and final
gene selection by group lasso and SGL. The proposed algorithm for feature selection shows
a better prediction compared with SGL.

The advantages of our proposed method are two-fold in the sense that it uses hierar-
chical clustering to find the grouping information of genes that bypasses the need to have
much knowledge of genes in scRNA-seq data prior to the execution of SGL, and yet the
differentially expressed genes selected by the proposed method and the cell clusters in the
data have a strong association. It is because the proposed algorithm for feature selection
carries out the feature selection by creating a gene pool based on the union of the top genes
from four different methods. This step ensures that any relevant genes that may have been
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missed by any one of the penalized regression methods are highly likely to be captured by
other methods and subsequently included in the gene pool. Due to the sequential nature
of analysis and two stages of feature selection, the proposed algorithm may require more
time to execute than SGL alone. However, the proposed method uses a smaller subset of
genes as input for SGL, thereby reducing computational memory requirements from 32 GB
RAM to 8 GB RAM.

This research has the potential to be extended to include more methods and relevant
R packages, such as the Seagull [69], which also implements lasso, group lasso, and sparse
group lasso. The proposed method sometimes can be time consuming as it is implemented
in a sequential manner. Therefore, further reduction in computational time is possible via
parallel computing. The use of other possible machine learning methods such as XGBoost
[70] on top of SGL is a possible research direction worth exploring. In this study, we
have explored two groups of cells. Any subpopulations inside the two groups are not
investigated. Yet, scRNA-seq data sets may have more than two groups of cells. Therefore,
the use of other R packages such as msgl [71], which can implement the multinomial
classification method, is a potential future work to be explored.
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Abbreviations
The following abbreviations are used in this manuscript:

AUC Area Under the Receiver Operating Characteristic Curve
CV Cross Validation
FN False Negative
FP False Positive
FPKM Fragments per Kilo-base per Million
FPR False Positive Rate
GEO Gene Expression Omnibus
HNRNPH1 Heterogeneous Nuclear Ribonucleoprotein H1
IPF Idiopathic Pulmonary Fibrosis
KFSD Keratosis Follicularis Spinulosa Decalvans
LASSO Least Absolute Shrinkage and Selection Operator
LQTS Long-QT Syndrome
mESCS Mouse Embryonic Stem Cells
ML Machine Learning
NCBI National Center for Biotechnology Information
NTsr1 Neurotensin receptor 1
PPAR Peroxisome proliferator-activated receptor
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PSCs Pluripotent Stem Cells
RFE Recursive Feature Elimination
ROC Receiver Operating Characteristic Curve
scRNA-seq Single-Cell RNA Sequencing
SGL Sparse Group Lasso
shr Shortroot-knockout
shr-3 Singlicate
tdT tdTomato
TN True Negative
TP True Positive
TPM Transcripts Per Million
TPR True Positive Rate
wt Wild-type

Appendix A

The source code for this research is available in the GitHub repository-https://
github.com/bhavithry/Benchmarking-LASSO-R, accessed on 1 July 2022.
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