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Abstract
Simple sequence repeats (SSRs) are widespread units on genome sequences, and play

many important roles in plants. In order to reveal the evolution of plant genomes, we investi-

gated the evolutionary regularities of SSRs during the evolution of plant species and the

plant kingdom by analysis of twelve sequenced plant genome sequences. First, in the

twelve studied plant genomes, the main SSRs were those which contain repeats of 1–3

nucleotides combination. Second, in mononucleotide SSRs, the A/T percentage gradually

increased along with the evolution of plants (except for P. patens). With the increase of

SSRs repeat number the percentage of A/T in C. reinhardtii had no significant change,

while the percentage of A/T in terrestrial plants species gradually declined. Third, in dinucle-

otide SSRs, the percentage of AT/TA increased along with the evolution of plant kingdom

and the repeat number increased in terrestrial plants species. This trend was more obvious

in dicotyledon than monocotyledon. The percentage of CG/GC showed the opposite pattern

to the AT/TA. Forth, in trinucleotide SSRs, the percentages of combinations including two or

three A/T were in a rising trend along with the evolution of plant kingdom; meanwhile with

the increase of SSRs repeat number in plants species, different species chose different

combinations as dominant SSRs. SSRs in C. reinhardtii, P. patens, Z.mays and A. thaliana
showed their specific patterns related to evolutionary position or specific changes of

genome sequences. The results showed that, SSRs not only had the general pattern in the

evolution of plant kingdom, but also were associated with the evolution of the specific

genome sequence. The study of the evolutionary regularities of SSRs provided new insights

for the analysis of the plant genome evolution.

Introduction
Plant genomes are filled with low-complexity repetitive sequences. One of the most frequent
low complexity sequences is simple sequence repeats (SSRs, defined as1~6 bp unit) [1]. Studies
have shown that SSRs have many important biological functions, such as the regulation of
chromatin organization, DNA metabolic processes, gene activity and RNA structure [2–4].
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SSRs have therefore emerged as the third major class of genetic variations, alongside copy num-
ber variations and single nucleotide polymorphisms [5].

SSRs in plant genome sequences evolve along with the plant gene and genome evolution.
Gene and genome duplications are major driving forces of gene diversification and evolution
[6]. Angiosperms are paleopolyploids, that is to say the genome of their common ancestor was
subject to a large-scale or even genome wide duplication event during the Late Jurassic or Early
Cretaceous, 100~160 million years ago [7–8]. This duplication event might have triggered the
angiosperm radiation during the Late Cretaceous, which is apparent in fossil record [9]. There
are evidences for several other large-scale or genome-wide duplication events among the angio-
sperms [8, 10–17]. The core eudicotyledon apparently duplicated their genomes in the Late
Cretaceous, while the common ancestor of the Brassicales did so again in the Cenozoic [8, 18].
Moss P. patens is a paleopolyploid as well. The genome duplication to have occurred between
30 and 60 million years ago [19]. Interestingly, the retention of genes after such large-scale
duplication events has been shown to be biased towards certain functional classes [20–22]. It
has been argued that such biased retention of duplicated genes were a driving force for mor-
phological complexity, increase in biological diversity and eukaryote adaptive radiation [8, 23].

At the same time SSRs themselves are variations. One striking feature of SSRs is its high
mutation rate [24]. It is established that SSRs exhibit a very high expansion/contraction rate,
mainly through replication errors caused by DNA polymerase strand slippage [25–27]. A typi-
cal insertion/deletion event will add/remove one unit, meanwhile changes of several units have
also been observed [28]. Theoretically, shorter units allow for more potential replication slip-
page events per unit length of DNA [29] and are thus likely to be more unstable and carry
higher mutation rates [30–31]. It has also been proved that the bases substitution rate is
increased in the SSRs sequences [32–33] as well as in their flanking regions [34]. In view of the
above experimental evidences, SSRs can be regarded as mutational hot spots in genome
sequences.

The distributions and characteristics of SSRs in plant genomes and their relation with the
annotated genome components, mainly as genes sequences (including introns and exons), pro-
moters and transposable elements, have been investigated [35–38]. However, the evolution reg-
ularities of SSRs in individual plant genomes and plant kingdom evolution have not been
extensively studied. In this paper, we studied the evolution regularities of SSRs in individual
plant genome and plant kingdom and expected to shed insights onto the evolution of plant
genome sequences.

Materials and Methods

1. Genome sequences
In this study, four dicotyledon species (Arabidopsis thaliana Col-0 (A. thaliana), Glycine max
(G.max), Vitis vinifera (V. vinifera), Solanum lycopersicum (S. lycopersicum)), four monocot-
yledon species (Brachypodium distachyon (B. distachyon), Oryza sativa Japonica Group (O.
sativa), Sorghum bicolor (S. bicolor), Zea mays (Z.mays)), one ferm species (Selaginella moel-
lendorffii (S.moellendorffii)), one moss species (Physcomitrella patens (P. patens)), and two
algae species (Chlamydomonas reinhardtii (C. reinhardtii), Volvox carteri (V. carteri)) were
selected for analysis. To analyze whether the SSR distribution pattern is occurring randomly,
the other two ecotypes of A. thaliana and Drosophila melanogaster (D.melanogaster) were
selected for calculation. The genome sequences of A. thaliana (Col-0), B. distachyon, G.max,
O. sativa (Japonica Group), S. lycopersicum, V. vinifera and D.melanogaster were down-
loaded from the National Center for Biotechnology Information (NCBI) genome database
(ftp://ftp.ncbi.nlm.nih.gov/genomes/). The genome sequences of C. reinhardtii, P. patens, S.
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moellendorffii, S. bicolor and Z.mays were downloaded from the Ensembl plant database
(http://plants.ensembl.org/). The genome sequence of V. carteri was downloaded from the
PlantGDB dababase (http://www.plantgdb.org/). The genome sequences of A. thaliana eco-
types Ler-0 and Ws-0 were downloaded from http://mus.well.ox.ac.uk/19genomes/fasta/
MASKED/. Details showed in S1 Table.

2. SSRs analysis
SSRs in these twelve plant genome sequences were harvested with a Perl program specifically
developed for this paper (see S1 File: perl_program_for_SSR_analyze.rar). We defined a mono-
nucleotide repeat unit with no less than six ((N)x, x�6; N: A, T, G or C) and di- to hexnucleo-
tide repeats units with no less than three ((N(2–6))x, x�3, N: A, T, G or C).

In the percentage analysis of SSRs section, we classified nucleotide combinations according
to the principle of complementary base and sequence of nucleotide combination and analyzed
the data according to different nucleotide combination groups. In mononucleotide SSRs, we
classified adenine (A) repeat SSRs and thymine (T) repeat SSRs as a group; cytosine (C) repeat
SSRs and guanine (G) repeat SSRs as another group. In dinucleotide SSRs, twelve nucleotide
combinations were classified into four groups, named AT/TA, CG/GC, AC/GT/CA/TG and
AG/CT/GA/TC. In trinucleotide SSRs, sixty nucleotide combinations were classified into ten
groups, named AAT/ATT/ATA/TAT/TAA/TTA, AAC/GTT/ACA/TGT/CAA/TTG, AAG/
CTT/AGA/TCT/GAA/TTC, ATC/GAT/TCA/TGA/ATG/CAT, ACT/AGT/CTA/TAG/GTA/
TAC, ACC/GGT/CCA/TGG/CAC/GTG, AGG/CCT/GGA/TCC/CTC/GAG, ACG/CGT/CGA/
TCG/GAC/GTC, AGC/GCT/GCA/TGC/CAG/CTG and CCG/CGG/CGC/GCG/GCC/GGC. In
this section we chose SSRs groups with the same nucleotide number SSRs units as a whole
(100%) in a species.

In the percentage analysis of SSRs based on repeat number section, we chose SSRs contain-
ing the same repeat number and having more than 1000 total SSRs number to analyze. We
chose SSRs groups with the same repeat number and the same nucleotide number SSRs units
as a whole (100%) in a species.

3. Cluster analysis
The symmetrized Kullback–Leibler divergence analysis [39], a quantity that measures the
difference between two subpopulations p and q was defined as

ð
X

x

pðxÞlog pðxÞ
qðxÞ þ

X

x

qðxÞlog qðxÞ
pðxÞÞ �

1
2
, was according to percentage of dinucleotide combi-

nation and trinucleotide combination, p(x) and q(x) represent the percentage of the same
nucleotide compositions in two species respectively, x represents different nucleotide combina-
tions. All pairs of comparisons between the thirteen genomes were performed (including con-
trol). The cluster analysis was performed by using the UPGMAmethod of MEGA4 software
package according to the symmetrised Kullback–Leibler divergence analysis.

Results

1. Genome size and GC content
Among these twelve plants the genome sizes of C. reinhardtii (105,409,962 nucleotides), V. car-
teri (125,353,261 nucleotides) and A. thaliana (118,960,141 nucleotides) (referring to the eco-
type Col-0 hereinafter if not labeled) were smaller than the others, and the Z.mays genome
(2,046,695,782 nucleotides) was the largest (Fig 1A). We calculated the nucleotide percentage
of these genomes. The percentage of adenine (A) was approximately equal to that of thymine
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(T) in the twelve plant single-stranded genome sequences. The cytosine (C) and guanine (G)
showed the same trend (S1 Fig). In the twelve plants C. reinhardtii (63.87%) and V. carteri
(56.11%) genomes were GC-rich, and the other genomes were AT-rich (Fig 1B). The GC con-
tent in fern S.moellendorffii (45.23%) and monocotyledon (43.55%~46.89%) were approxi-
mately equal and the GC content in moss P. patens (33.60%) was close to that of dicotyledon
(33.95%~36.03%) (Fig 1B).

Fig 1. Genome size and GC content in the twelve species studied. (A) Total nucleotide number in the twelve plants genome sequences. (B) The
percentage of C/G in the twelve plants genome sequences.

doi:10.1371/journal.pone.0144108.g001

SSRs Evolution in Plant Genome

PLOSONE | DOI:10.1371/journal.pone.0144108 December 2, 2015 4 / 18



2. Overall SSRs density
We analyzed the SSRs number and SSRs density (SSRs number / mega bases) in the plant genome
sequences (Fig 2 and S2 Table). The densities of mono-, di- and tri- SSRs were significantly higher
than other SSRs, so we chose these SSRs as the main SSRs. The densities of mononucleotide SSRs
in moss P. patens and dicotyledon were significantly higher than other plants. The SSRs densities
from trinucleotide to hexanucleotide in C. reinhardtii and V. carteri were higher than those of
other plants, which was consistent with the results of zhao et al. [35]. While the SSRs densities
frommononucleotide to pentanucleotide in S.moellendorffiiwere lower than other plants.

3. The main SSRs analysis among plant genomes
We have shown that the mononucleotide, dinucleotide, and trinucleotide repeats were more
abundant than the longer repeated units SSRs, so we focused on these three types of SSRs. In

Fig 2. The SSRs density in the twelve plants.

doi:10.1371/journal.pone.0144108.g002
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mononucleotide SSRs, the A/T percentage was similar between fern S.moellendorffii (86.15%)
and monocotyledon (71.96%~89.17%). While the percentages of A/T in moss P. patens
(97.30%) and dicotyledon (96.01%~98.76%) were approximately equal. There was a special
case that Z.mays had significantly lower A/T (71.96%) than other monocotyledon (85.85%
~89.17%). The algae C. reinhardtii and V. carteri had the higher C/G content (74.55%~91.07%)
(Fig 3A), which was different from other plants in mononucleotide.

In dinucleotide SSRs, the AT/TA percentage increased along with the evolution of plants from
algae, fern andmonocotyledon to dicotyledon. The CG/GC percentage showed opposite trend.
The moss P. patenswas a special case which showed the same trend as dicotyledon (Fig 3B).

In trinucleotide SSRs, the percentages of combination including two or three A/T were in a
rising trend along with the evolution of plants from algae, fern and monocotyledon to dicotyle-
don (Fig 3C). The percentage of CCG/CGG/CGC/GCG/GCC/GGC and AGC/GCT/GCA/
TGC/CAG/CTG was more than 57.72% in algae. So the percentages of other trinucleotide com-
bination including two or three C/G decreased only during the terrestrial plants evolution (Fig
3D). However, there were some exceptions. For example, the moss P. patens showed the same
trend with the dicotyledon (Fig 3C and 3D) and the percentage of CCG/CGG/CGC/GCG/
GCC/GGC in O. sativa was significantly higher than other monocotyledon studied in this paper.

4. The main SSRs analysis based on repeat number within plant
genomes
With the increase of the SSRs repeat number, different species showed a different evolutionary
trend. In mononucleotide SSRs, the percentage of mononucleotide repeats was different
between terrestrial plants and algae. The percentages of mononucleotide repeats had no obvi-
ous change with the increase of the repeat number and the percentage of C/G repeats (more
than 90%) was obviously higher than that of the A/T repeats in algae C. reinhardtii. In the
monocotyledonous plants and fern, the percentages of A/T repeats decreased along with the
increase of the repeat number, and gradually lower than the percentage of C/G repeats at high
repeat number. In the dicotyledonous plants and moss, A/T repeats decreased with the increase
of repeat number, but the percentages of A/T repeats were always higher than the percentages
of C/Gs (Fig 4).

In dinucleotide SSRs, algae and terrestrial plants exhibited different patterns as well. In
algae, the percentage of AC/GT/CA/TG combination was higher than other dinucleotide
combinations, and it showed a significant increase along with the increase of repeat number.
On the contrary, in terrestrial plants, the percentage of AC/GT/CA/TG combination
decreased along with the increase of repeat number. In terrestrial plants, the percentages of
AT/TA combination showed a rising trend along with the increase of repeat number (except
for B. distachyon). Meanwhile, AT/TA combination was dominant in dicotyledon and moss
P. patens. In monocotyledon (except for S. bicolor) and fern S. moellendorffii, AG/CT/GA/
TC combination was dominant and the percentage increased along with the increase of
repeat number. However the percentage of AG/CT/GA/TC combination declined along with
the increase of repeat number in dicotyledon and moss P. patens. The percentages of CG/GC
combination decreased along with the increase of repeat number in the twelve plants. Dicoty-
ledon and moss were significantly lower in percentage of CG/GC combination than other
plants (Fig 5).

In trinucleotide SSRs, the percentages of three nucleotide combinations showed a diversifi-
cation trend along with the increase of repeat number in the twelve plants. In algae and mono-
cotyledon plants (except for Z.mays), the combinations of CCG/CGG/CGC/GCG/GCC/GGC
were dominant SSRs. In moss P. patens and dicotyledon (except for A. thaliana), AAT/ATT/
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Fig 3. The percentages of SSRs with different combinations in the twelve plant genomes. (A)The SSRs
percentage of mononucleotide repeats. (B) The SSRs percentage of dinucleotide repeats. (C) The SSRs
percentage of trinucleotide repeats.

doi:10.1371/journal.pone.0144108.g003
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Fig 4. The percentages of mononucleotide SSRs with different repeat number in twelve plant
genomes. 6: repeat number 6, 7 and 8; 9: repeat number 9, 10 and 11; etc.

doi:10.1371/journal.pone.0144108.g004
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ATA/TAT/TAA/TTA combinations were dominant SSRs, and the percentages increased
along with the increase of repeat number. The percentage of SSRs with trinucleotide combina-
tions in A. thaliana and Z.mays differed from other plants along with the increase of repeat
number (Fig 6).

Fig 5. The percentages of dinucleotide SSRs with different repeat number in twelve plant genomes.

doi:10.1371/journal.pone.0144108.g005
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Fig 6. The percentages of trinucleotide SSRs with different repeat number in twelve plant genomes.

doi:10.1371/journal.pone.0144108.g006
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5. Clustering analysis based on SSRs percentage
SSRs percentage clearly distinguished the algae from the terrestrial plants (Fig 7). Within the
twelve plants, a symmetrised Kullback–Leibler divergence analysis based on dinucleotide com-
binations percentage or trinucleotide combinations percentage also divided the monocotyle-
donous/fern and dicotyledonous/moss species into two recognizable clades (Fig 7). The
relationship between the terrestrial plants was somewhat different when a clustering analysis
was applied as an alternative to the symmetrised Kullback–Leibler divergence analysis. Based
on dinucleotide combination percentage, fern can separate from monocotyledonous (Fig 7).
We chose D.melanogaster as a control, and found that the GC content in D.melanogaster
genome was comparable to monocotyledon (S2 Table).

Discussion

1. SSRs evolution accompanied by evolution of plant genomes
Plants have undergone the process of evolution which was from aquatic to terrestrial habitats
in the living environment, and from simple to complex in morphological structures. In the
genome level, plants have gone through huge changes, including the duplications of chromo-
some fragments and/or whole genomes, loss of chromosome fragments, and so on [19, 40–41].
In this study, we found simple sequence repeats in plant genome sequences have evolutionary
regularities relative to the plant genome evolution.

First, the main SSRs were those that contain combination of repeat units consisting of 1–3
nucleotides in both algae and terrestrial plants (Fig 2). Second, in mononucleotide SSRs, the
A/T percentage gradually increased along with the evolution of plants (except for P. patens)
(Fig 3A). This result was consistent with of previous studies [42–44]. With the increase of
SSRs repeat number, the percentage of A/T in C. reinhardtii had no significant changes,
while the percentages of A/T in terrestrial plants were gradually declining and the declining
trends in monocotyledon were significantly greater than dicotyledon (Figs 4 and 8A). Toth
et al. [43] suggested that the poly(A) tails of densely scattered retroposed sequences and pro-
cessed pseudogenes are responsible for this higher proportion of A/T-rich repeats, which
may the evolutionary driver of A/T mononucleotide SSRs. Third, in dinucleotide SSRs, the
percentage of AT/TA increased along with the evolution of plants (Fig 3B). In the terrestrial
plant, its percentage also increased along with the increase of repeat number (Fig 5), the
trends in dicotyledon were even clearer than in monocotyledon (Fig 8B and 8C). The per-
centage of CG/GC showed the opposite pattern to the AT/TA (Fig 8D). However AC/GT/
CA/TG was the most frequent dinucleotide repeat units in all vertebrates and arthropods
[43], which was different from the terrestrial plant (S2 Table). Forth, in trinucleotide SSRs,
the percentages of combinations including two or three A/T were in a rising trend along with
the evolution of plants from algae, fern and monocotyledon to dicotyledon (Fig 3C). Mean-
while, the dominant SSRs were differentiated in different species with the increase of repeat
number. For example, algae and monocotyledon (except for Z.mays) preferentially chose
CCG/CGG/CGC/GCG/GCC/GGC as dominant SSRs, moss P. patens and dicotyledon (except
for A. thaliana) chose AAT/ATT/ATA/TAT/TAA/TTA as dominant SSRs (Fig 6). It is
worth noting that ACG/CGT/CGA/TCG/GAC/GTC and ACT/AGT/CTA/TAG/GTA/TAC
were low frequency in most plants and animals [43–44]. Our results clearly demonstrate that
the dominant SSR types are taxon-dependent.

Toth et al. [43] thought that strand-slippage theories alone cannot explain microsatellite dis-
tribution in the genome as a whole, enzymes and other proteins involved in various aspects of
DNA-processing (i.e., replication and repair) and chromatin remodeling may be responsible
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Fig 7. Cluster analysis of SSR percentage based on dinucleotide combination and trinucleotide combination in algal and terrestrial plants
genomes. (A) Cluster analysis of dinucleotide combination percentage. (B) Cluster analysis of trinucleotide combination percentage. We choseD.
melanogaster as a control.

doi:10.1371/journal.pone.0144108.g007
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Fig 8. Variation of different combinations of SSRs. (A)The A/T frequency changed with different repeat
number in twelve plants genome sequences. (B)The AT/TA frequency changed with different repeat number
in monocotyledon genome sequences. (C) AT/TA frequency changed with different repeat number in
dicotyledon genome sequences. (D) CG/GC frequency changed with different repeat number in twelve plants
genome sequences. Fig8A and D with the same legend.

doi:10.1371/journal.pone.0144108.g008
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for the taxon-specificity of microsatellite abundance. Harr et al. [45] thought that the mismatch
repair system may have an important role in shaping genome composition.

2. Algae showed different regularities of SSRs from terrestrial plants
C. reinhardtii is a unicellular green algae whose lineage diverged from terrestrial plants over
one billion years ago. Many C. reinhardtii and angiosperm genes are derived from ancestral
green plant genes [46]. Genes shared by C. reinhardtii and animals are derived from the last
plant-animal common ancestor and many of these have been lost in angiosperms [47]. C. rein-
hardtii also displays extensive metabolic flexibility under the control of regulatory genes that
allow it to inhabit distinct environmental niches and to survive fluctuations in nutrient avail-
ability [48]. This may account for that fact that the GC content (Fig 1B) and SSRs characteris-
tics (Figs 3–6) were different between C. reinhardtii and terrestrial plant genome sequences.

3. Physcomitrella patens SSRs exhibit a specific distribution pattern
The haploid moss P. patens is a paleopolyploid. The genome sequences and construction of lin-
earized phylogenetic trees suggest that a large-scale duplication, possibly involving the whole
genome, has occurred between 30 and 60 million years ago [49]. Gene ontology and pathway
association of the duplicated genes in P. patens revealed different biases of gene retention com-
pared with seed plants [19, 49]. We found the characteristics of SSRs in P. patens genome
sequences were obviously different from C. reinhardtii (Figs 1–6). P. patens is the earliest ter-
restrial plant. During the adaptation of the terrestrial environment, great changes have
occurred in the structure and function, for example desiccation tolerance, auxin, ABA, cytoki-
nin signaling, and so on [19]. These changes are based on the changes in the genome sequences
[19, 49]. SSRs differences between P. patens and C. reinhardtiimay reflect the changes to some
extent.

Surprisingly, we discovered that P. patens shared the same characteristics of SSRs with
dicotyledon (Figs 1–6). However, in comparison with the dicotyledon, P. patens possessed
more tetranucleotide (except V. vinifera), pentanucleotide and hexanucleotide SSRs (Fig 2).
DNA polymerase strand slippage was a major factor of SSRs chain extension [25–27]. The dif-
ferent characteristics of SSRs may reflect the different fidelity of DNA polymerase between P.
patens and dicotyledon. Of course, further experiments are required to prove this hypothesis.

4. Monocotyledon and dicotyledon SSRs analysis
All flowering plants have survived at least three large-scale duplications/diploidizations over
the last 300 million years [23]. The monocotyledon branched off from dicotyledon 140~150
million years ago [50]. In the monocotyledon and dicotyledon genome sequences the percent-
age of A/T are higher than C/G’s and the dicotyledon has higher A/T percentage than mono-
cotyledon (Fig 1B). But there are special cases that the regularities of SSR variation are different
from other closely related plants due to their specific changes in the genome sequences.

Our results showed that the percentages of SSRs in Z.mays genome sequences, from mono-
nucleotide to hexanucleotide combination (except for trinucleotide) were lower than other
monocotyledon plants in this paper (Fig 2). In detail, the frequencies of mononucleotide and
dinucleotide combinations, which consist of A/T, were lower than other monocotyledon plants
studied in this paper (Fig 3A and 3B). The Z.mays genome has undergone several rounds of
genome duplication [14, 41]. Then the size of Z.mays genome has expanded dramatically (to
2.3 gigabases) (Fig 1A) over the last ~3 million years via a proliferation of long terminal repeat
retrotransposons [51], which rarely contain SSRs [52] and show a tendency to insert into some
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SSRs, such as AT-rich repeats [53–54]. These genome changes can thus lead to a significant
decrease in the percentage of SSRs.

The percentage of AG/CT/GA/TC and AAG/CTT/AGA/TCT/GAA/TTC combinations in
A. thaliana were higher than other studied dicotyledons (Figs 3B, 3C and 6). The A. thaliana
genome has undergone large-scale gene duplications or even duplications of the entire genome
followed by subsequent the high percentage of gene loss and extensive local gene duplications
(Fig 1A) [11, 40]. These combinations maybe retained in the process of the evolution.

5. SSRs comparative analysis between different ecotype plants
As we all know that SSRs are highly polymorphic. SSRs are already widely used in genetic
diversity analysis and evolutionary analysis of species, and have been widely used in crop
molecular assisted breeding [55–59]. In this paper we mainly analyzed the SSR difference in/
among species. At the same time we analyzed the genome sequences of three A. thaliana com-
mon ecotypes (Columbia (Col-0), Landsberg erecta (Ler-0) andWassilewskija (Ws-0)). We
found there were different SSRs regularities among three ecotypes. But the differences within
the three ecotypes are smaller than that between species (S2 Table).

Conclusion
With the evolution of plants and plant genomes, SSRs located in chromosome also undergone
regular changes. The percentages of SSRs, which (mainly) consist of C/G, were gradually
declining. And the percentages of SSRs, which (mainly) consist of A/T, were gradually
increased. At the same time, for a particular species, SSRs composition and percentage were
changed accompanied by the genome/genes varies (duplication, polyploidy and deletion).
Thus the regularities of SSRs in the twelve plant genome sequences can provide clues for reveal-
ing the evolution of plant genomes.

Given the current of sequenced plant genome restrictions, fern and moss chose only one
species, in the paper we cannot large sample analysis of SSRs feature in different evolutionary
position plants.
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